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Chapter 1

Introduction

The aim of this work is to analyze the size distributions of economic phe-
nomena and to investigate the relationship between size and growth.

The study of the size distributions is not exclusive of economics. Beyond
economics and finance (Gabaix (2009)), several type of size distributions are
studied in computer science (Mitzemacher (2003)), physics, biology, social
systems (Newman (2005)). The results of those different disciplines point
out similar behaviors in terms of size distribution and in terms of dynamics
of size distribution. Obviously, to study the size distribution of a phenomenon
and the dynamic of the size of this phenomenon is equivalent to study the
size and the growth process. Since the size distributions are formed as an
outcome of underlying dynamics (for instance, the firm size distribution is
the results of the firm underlying growth process involving entry and exit
from the market of firms and products, innovation, merges, acquisitions,
spin-out, etc.), several models have been proposed in literature to account
for these dynamics and each of these models generate a certain equilibrium
size distribution1.

According to these results, in literature, two different empirical tests are
commonly used (Hall (1987a)) to check the consistency of the theoretical
stochastic models of growth with the empirical data. The first approach con-
sists in assuming a stationary (over time) growth model, and then studying
the size distribution obtained from the growth model. The second approach
consists in investigating the determinants of growth rates by means of re-
gression methods.

1An equilibrium size distribution is a probability distribution that remains constant
over time. In many stochastic models used to describe the growth process, the stochastic
matrix is assumed to remain constant over time. Under this assumption, and provided
other properties, the distribution will tend to an equilibrium distribution dependent on
the stochastic matrix but not on the initial distribution (Champernowne (1953)).
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When the the first approach is used for testing growth models, usually,
the lognormal distribution is compared with the Pareto distribution. As a
matter of fact, these two distributions are obtained as size distributions of
the two most popular growth processes: the Gibrat’s rule of proportionate
effects (Gibrat (1931)) and the Simon growth process (Simon and Bonini
(1958b)).

The simplest growth model was proposed by Gibrat in 1931 (Gibrat
(1931)). The Gibrat’s law of proportionate effects states that the mean
growth rates are independent on the size. This model generates a lognor-
mal distribution as size distribution. More complex models (which account
for boundary conditions, exit and entry of units) generate, as equilibrium
size distribution, other distributions like the Pareto one (Simon and Bonini
(1958b)). Gibrat showed that the size distribution is approximately log-
normal for a broad range of data (Gibrat (1931), Sutton (1997)). Simon
and co-authors, on the other hand, argued that the observed size distribu-
tions are well approximated by a Pareto distribution, at least in the upper
tail (Simon and Bonini (1958a)). The exact shape of the size distribution
is still debated and, notwithstanding the Pareto distribution and the log-
normal distribution are typically retained useful benchmarks (Hall (1987b),
Cabral and Mata (2003), Growiec et al. (2008)), further works tried to de-
velop new models with a better fitting to the empirical data (L.C.Thurow
(1970), Salem and Mount (1974)), Singh and Maddala (1976), McDonald
(1984), Azzalini (1985), Azzalini and Capitanio (2003)). The drawback of
this approach is that the relationship between growth rates and size is not
explicitly investigated.

The second approach for testing a growth model consists in investigat-
ing the determinants of growth rates by means of regression methods. A
great contribution to this second approach has been provided by industrial
economists. An early prominent contribution on the investigation of Gibrat’s
Law was made by Mansfield (1962) who studied the growth rates of steel,
petroleum, rubber, tire and automobile industries. According to Mansfield,
the majority of empirical studies has rejected the Gibrat law claiming that
small firms grow faster than larger firms. The negative relation between firm
size and growth rates has been found using data for different countries2, dif-
ferent level of industrial aggregation3, and different industrial sectors4. Only

2Dunne and Hughes (1994), Kumar (1985) studied the quoted UK manufacturing firms,
Bottazzi and Secchi (2003), Hall (1987b) the quoted US manufacturing firms, J. Goddard
(2002) the quoted Japanese firms, Gabe and Kraybill (2002) establishments in Ohio.

3Dunne et al. (1989) analyze plant-level data as opposed to typical firm-level data.
4Typically the manufacturing sector but for example Barron et al. (1994) study New

York Credit Unions, Weiss (1998) Austrian farms, Liu et al. (1999) Taiwanese electronic
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few studies find some support in favour of the Gibrat law5. However, when
a specific discrimination between small and large firms is done, results are
somewhat different. While for small firms the negative relation holds nearly
always6, for large firms a flat relation is typically observed and whenever the
Gibrat law is rejected even a positive dependence is found7. Some studies
have tested the Gibrat law for firms above a certain size threshold. For ex-
ample Droucopoulos (1983) focuses on a sample of the world’s largest firms
and finds support for it8. Mowery (1983) analyzes two samples of small and
large firms and finds a negative relation for the former while the Gibrat’s law
holds for the latter. Cefis et al. (2006), for the worldwide pharmaceutical
industry, and Hart and Oulton (1996), for a data set of independent U.K.
companies, find a negative relation for pooled data but once the sample is
restricted to only large firms the dependence vanishes.

In this work we used both the approaches commonly used in literature
for testing growth models. First we analyzed some of the theoretical size dis-
tributions proposed in literature. Then we check the fitting of these models
to the empirical data considering Italian wage data for private sector. We
used these data since the renewed interest on income/wage distribution ob-
served since 1980s (Forster (2000)). We decided to use wage data instead of
income data for two main reasons. Firstly, the wage is a source of revenue
more homogeneous than the income. As a matter of fact, income is given by
the sum of wages, salaries, profits, interest payments, rents and other forms
of earnings received in a given period of time. Secondly, at the best of our
knowledge, in literature exist (for Italy or across Countries) many compar-
isons of parametric models of income distributions over time (see Bandourian
et al. (2003), Azzalini et al. (2002), Dastrup et al. (2007)), but does not exists
a comparison for parametric models of wage distribution in Italy over time.
As pointed out before, the analysis of the size distribution is one of the ap-
proaches commonly used to investigate the size growth relation and to study
the stochastic models of growth proposed in literature. Furthermore this
analysis allows us to know the entire distribution of a certain phenomenon
(in this case the Italian daily wage). Once the wage distribution is known,

plants.
5Bottazzi et al. (2005) for French manufacturing firms, Hardwick and Adams (2002)

for UK life insurance companies.
6See Evans (1987a), Evans (1987b), Yasuda (2005), Calvo (2006), McPherson (1996),

Wagner (1992), Almus and Nerlinger (2000). However Audretsch et al. (2004) find results
in favour of the Gibrat’s law for small-scale Dutch services.

7A positive relation was found by early studies of Hart (1962), Samuels (1965), Prais
(1974), Singh and Whittington (1975) on data for UK manufacturing firms.

8See also Becchetti and Trovato (2002), Geroski and Gugler (2004), Lotti et al. (2003).
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we can investigate some important features of wage, as the concentration
and the inequality, that, at least in the last 25 years, are become relevant
research topics (Forster (2000)). After performing the analysis of the size
distributions we use an econometric approach to test for the dependence be-
tween growth and size. For this analysis a data set of firms belonging to the
pharmaceutical sector is used. The expected growth is modeled as a function
of lagged sizes and of some other covariates (that are considered relevant, in
industrial literature, to explain the firms dynamics). This approach allows
to purge the size/growth relation of the effect due to other relevant economic
variables which we can observe in our dataset. Moreover, we make use of
dynamic panel data estimators in order to identify the coefficient of lagged
sales in the growth regression. In fact, this strategy allows us also to remove
the confounding effects due to unobserved determinants of growth and to the
correlation between lagged sales and the idiosyncratic error.

This work is structured as follows. In Chapter 2 we briefly describe the
models proposed by Gibrat and Simon and the related equilibrium distri-
butions, then we analyzed the regression methods used to investigate the
determinants of growth.

In Chapter 3 we study the size distribution of Italian wages between 1985
and 2004. The empirical results are based on a database called Work His-
tories Italian Panel (WHIP), implemented by Laboratorio Revelli (Revelli
(2010)). This data set was builded starting from the pieces of information of
the National Social Security Institute’s administrative archives. The WHIP
database contains a great amount of individual information about the work
histories of people who have worked in Italy (in private sector). After a brief
description of the Italian labour market between 1985 and 2004 (Section 3.2),
the data set used for the analysis is described in section 3.3 (alongside with
some preliminary evidences). In Section 3.4, the empirical wage distribution
(by year and by gender) is fitted with different models belonging to the gen-
eralized beta-family and with a skew-normal model and a skew-t model. The
distributions are compared by means of different measures of goodness of fit
(see Dastrup et al. (2007) and Bandourian et al. (2003)). In the last section
of Chapter 3 we performed an analysis of the inequality in the Italian wage
distribution between 1985 and 2004. The analysis of inequality is performed
by means of four inequality indices belonging to the generalized entropy class
of inequality measures. The inequality indices are calculated by gender and
over time. With this approach it is possible to analyze the dynamic of the in-
equality within different groups (the whole sample, the male sub-sample and
the female sub-sample). Usually, the inequality analysis proposed in litera-
ture for the Italian data does not distinguish between male and female (see
Brandolini et al. (2002), Manacorda (2004), Jappelli and Pistaferri (2010)
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and Devicienti (2003)). The results we found for the male sub-sample agree
with the findings proposed in literature while the results for the female sub-
sample are different. For this reason we decided also to analyze the dynamic
of inequality between the two samples. To perform this analysis we study
the dynamic of the gender gap by means of regression methods.

In Chapter 4 we investigate the size-growth relation analyzing a set of
micro data for firm sales. To perform this analysis we used a data set of
1,152 USA pharmaceutical firms for the period 1996-2007. In particular we
applied a growth regression approach to deal with a number of econometric
issue which have been arisen on literature. First, the panel dimension allows
us to account for the effect of time-constant unobserved heterogeneity. Then,
making use of an instrumental variables approach, we allow for the violation
of the strict exogeneity assumption which comes with the inclusion of size
on the right-hand side. This approach is carried out within a Generalized
Method of Moments (GMM) framework which delivers efficiency gains in es-
timation. Estimates are also robust to heteroskedasticity and autocorrelation
in the error term. Moreover, information contained in our data set allow us
to control for the age and the innovation of firms, which are considered the
most relevant determinants of growth (Jovanonic (1982), Cabral and Mata
(2003), Cirillo (2010), Evans (1987b), Dunne and Hughes (1994), Geroski
and Gugler (2004), Yasuda (2005), Coad (2007), Growiec et al. (2008)). Age
is an important variable to study firms behavior over time since the study of
the relationship between size and age generally shows that the size distribu-
tion of firms varies with firms age. A large number of studies find that age
reduces the growth rate of firms (see Evans (1987a), Evans (1987b), Dunne
and Hughes (1994), Geroski and Gugler (2004), Yasuda (2005)).

As regards innovation the relation with growth is not as clear as the re-
lation between age and growth. While the role of innovation is considered
central to the growth of firms (Carden (2005), Hay and Kamshad (1994),
Geroski (2000), Geroski (2005)), empirical studies find difficulties in mod-
eling such relation. Moreover Coad (2007) suggests, according to the liter-
ature, that another problem consists in the definition of innovation itself.
Two popular innovation proxies used are the expenditure in R&D and the
patents count but, both these measures have drawbacks though. Expenditure
in R&D may not be well associated with the actual output of an innovative
process. Patents count cannot discriminate between patents with substantial
and marginal economic impact, while it is typically found that the former are
a negligible amount. On the other hand, in many theoretical models, innova-
tion is represented by the entry in the market of new business opportunities
(Ijiri and Simon (1964), Kalecki (1945), Pammolli et al. (2007). In such a
case the innovation can be proxies both with new product launches and with
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the opening of new product lines, divisions, subsidiaries, and plants (Bottazzi
et al. (2001), Pammolli et al. (2007), Growiec et al. (2008)). Unfortunately
it is not easy to test empirically the effect of the entry of the new business
opportunities in the market . As a matter of fact it is not easy to have data
provided at the product level. Our data are provided at the product level,
so we can account for the entry in the market of new products and firms.

In our model specification we include a variable which attempts to over-
come both limits outlined above. In particular this variable synthesizes both
the net inflow of products and the change in Anatomical Therapeutic Chem-
ical (ATC) classification9. In this way, on the one side we allow for products
which are actually marketed, on the other side it is likely that a change in
ATC captures at least in part the output of the innovation process, unless
associated to a negative inflow, so that the problem of temporal lag should
be mitigated.

For the best of our knowledge, only in other few cases (see Oliveira and
Fortunato (2003), Ribeiro (2007)) the dynamic panel estimators were used
to test the Gibrat’s rule in the industrial context10. Furthermore we want
to explore the effect of the innovation on the size-growth relationship in
pharmaceutical industry. In last years many authors have dealt with in-
novation in pharmaceutical industry (see DiMasi et al. (1991), Masi et al.
(2003), Ornaghi (2006), Comanor and Scherer (2011)) focusing their research
on the relationship between innovation and merges. According to these re-
sults our contribution here is to explore whether the innovation benefits are
different for smaller and larger firms. There are two different levels of in-
novation related to the firms size in pharmaceutical industry: the small
firms are start-ups using the so called ”genetic engineering” or biotechnolo-
gies while the big pharma companies developed licensing, sponsored R&D
and partnerships with biotech in order to join biotechnological innovation
(Bobulescu and Soulas (2006)). Most of the authors studied the relation-
ship between innovation and size from the point of view of the existence
of scale economies in pharmaceutical industry R&D (Jensen (1987), Graves
and Langowitz (1993),Bobulescu and Soulas (2006), Cockburn and Hender-

9The classification system divides drugs into different groups according to the or-
gan or system on which they act and/or their therapeutic and chemical characteristics.
The anatomical first level of the code contains 14 main groups: Alimentary tract and
metabolism, Blood and blood forming organs, Cardiovascular system, Dermatologicals,
Genito-urinary system and sex hormones, Systemic hormonal preparations, excluding sex
hormones and insulins, Antiinfectives for systemic use, Antineoplastic and immunomod-
ulating agents, Musculo-skeletal system, Nervous system, Antiparasitic products, insecti-
cides and repellents, Respiratory system, Sensory organs, Various.

10Soo (2011) used a dynamic panel estimation to test the relation between size and
growth of state population in the United States.
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son (2001), Miyashige et al. (2007)). The results diverge from one to another
especially in relation to the measure of innovation used, however seems that
scale economies exist in pharmaceutical innovation. Moreover, Masi and A.
(1995) and R.Henderson and Cockburn (1996) showed that R&D costs per
new drug approved in the U.S. decrease with firm size, while sales per new
drug increase with firm size, but the relationship between innovation and
growth by firms size is not investigated.

The Chapter 4 is organized as follows. Section 4.1 describes the data and
provide some preliminary evidence. Section 4.2 discusses the methodology
employed to estimate the relation between growth and size. Section 4.3
and 4.4 discuss results respectively when the whole sample of firms is used
and when two sub-groups of small and large firms are selected. Section 4.5
concludes.
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Chapter 2

Size and Growth: theoretical
framework

Stochastic models of growth have been developed since 1931, when Gibrat
(1931) proposed his law of proportionate effects. Nowadays the Gibrat’s
model, together whit the Simon’s model (Simon (1955)), are considered
benchmark cases for the growth models. These two growth models generate
two different equilibrium size distributions. An equilibrium size distribu-
tion is a probability distribution that remains constant over time. In many
stochastic models used to describe the growth process, the stochastic ma-
trix is assumed to remain constant over time. Under this assumption, and
provided other properties, the distribution will tend to an equilibrium distri-
bution dependent on the stochastic matrix but not on the initial distribution
(Champernowne (1953)). The equilibrium size distribution generated by the
Gibrat’s model is the lognormal distribution while the Simon growth process
converges to a Pareto distribution.

To check the validity of the stochastic models of growth two different
approaches has been proposed in literature. The first approach consist on
studying the size distribution of a phenomenon and check if this distribution
is coherent with the distribution predicted by the stochastic model. For
instance, to test the Gibrat’s model we can study the size distribution and
check if it is lognormal.

The second approach consists on investigating the determinants of growth
rates by means of regression methods. For instance to check the validity of
the Gibrat’s model we can test if the growth rate are independents on the
size.

In this chapter we briefly describe the Gibrat’s model and the Simon’s
model and the related equilibrium distributions. Finally we analyzed the
regression methods used to investigate the determinants of growth rates.

13



14CHAPTER 2. SIZE AND GROWTH: THEORETICAL FRAMEWORK

2.1 Growth models and related equilibrium

distributions

Gibrat (Gibrat (1931)) in 1931 presented the book ”Inegalites Des Economiques”
in which he postulated the theory of a ”law of proportionate effects” that was
the first formal model of the dynamics of the size of a firm (or the income
of a individual). Gibrat asserted that the size of certain phenomena at time
t was the result of a joint effect of a large number of mutually independent
causes that have worked for a long period of time. At a certain time t the
size of a certain unit, xt, can be expressed in terms of size of the same unit
at time t− 1, namely xt−1, and of proportionate rate growth over the period
t− 1 to t, namely εt, so that:

xt − xt−1 = εtxt−1 (2.1)

whence
xt = (1 + εt)xt−1 = x0(1 + ε1)(1 + ε2)...(1 + εt) (2.2)

if εt is small enough, and it can be reasonably choosing a short period of time
t (Sutton (1997)), then is possible to approximate log(1 + εt) ' εt. Taking
logarithms we thus obtain

log(xt) ' log(x0) + ε1 + ε2...+ εt (2.3)

As t→∞ the term log(x0) becomes insignificant, and we obtain

log(xt) '
t∑

k=1

εk (2.4)

This imply that the size of a unit at time t can be explained in terms of its
idiosyncratic history of multiplicative shocks. Assuming that all the units
are independent realizations of these shocks and assuming that the shocks
εt are independent and normally distributed with means m and variance σ2,
than the distribution of log(xt) is approximated by a normal distribution and
the limit distribution of xt is lognormal.

This simple model is affected by several limitation. The growth rates
distribution of many economic phenomena is not normal but it is a fat-tailed
distribution (Buldyrev et al. (2007)). Furthermore, as pointed out by Kalecki
(1945), it is not reasonable to suppose, as predicted by the Gibrat’s model,
that the variance of units tends to infinity.

Simon and co-authors (Simon and Bonini (1958b), Ijiri and Simon (1964))
extended Gibrat’s model by accounting for the entry of new firms. The Simon
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growth model was developed to explain the growth process of firms but it
is a general model to describe the dynamics of a system of elements with
associated counters (Barabasi and Albert (2002)).

In Simon’s framework, the market consists of a sequence of many inde-
pendent ”opportunities” which arise over time, each of size unity. At time
t a new firm born with probability α or an existing firm, randomly selected
with probability β proportional to its size, increases its size with probability
1−α. For this stochastic process, Simon found a stationary solution exhibit-
ing a power-law distribution. Several models of proportional growth have
been subsequently introduced in economics to explain the growth process,
especially to explain the growth of of business firms (Gabaix (1999), Sutton
(1997)).

2.1.1 Pareto Distribution

The statistical study of size distributions started after the publication in 1896
of the Pareto’s Cours d’economique politique (Pareto (1896)). He showed
that the relation between the logarithm of the number of taxpayers Nx, with
incomes above a level x, and the log value of income x was close to a straight
line of slope −γ for some γ > 0. Formally:

log(Nx) = A+ log(x−γ) (2.5)

whereA,> 0. The Pareto distribution is power-law distribution (Mitzemacher
(2003)).

A power law is a relation of the type Y = kXα, where X and Y are the
variables of interest and α is called the exponent of the power law (Gabaix
(2009)). A variable X has a power-law distribution if its probability of taking
a value greater than x varies at the power of α. Formally, the complementary
cumulative distribution function1 (ccdf) is:

Pr(X ≥ x) = Cx−α (2.6)

where α > 0, C > 0. Power law distributions are scale free distributions2

characterized by heavy tails (heavier than other distribution such as the
exponential distribution) that decay, asymptotically, according to the power
of α.

An empirical test to check if a random variable follows a power law is to
plot the ccdf in log-y scale. Asymptotically the behavior of the CCDF of a

1The complementary cumulative distribution function is given by 1− Pr(X ≤ x)
2Mathematically a scale free distribution satisfies p(bx) = g(p)p(x)
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power law whit exponent α will be a straight line whit slope−α (Mitzemacher
(2003)) since:

log[Pr(X ≥ x)] = log(Cx−α) = log(C)− αlog(x). (2.7)

Power laws distributions are used to describe a large number of empiri-
cal regularities in economics and finance (Gabaix (2009)), computer science
(Mitzemacher (2003)), physics, biology, social systems (Newman (2005)).

Pareto distribution (Pareto (1896)) and Zipf’s (Zipf (1949)) law are two
common power-laws distributions. The Zipf’s law (after George Kingsley
Zipf, a Harvard linguistics professor) usually refers to the size y of an occur-
rence of an event relative to it’s rank r and states that the size of the r-th
largest occurrence of an event is inversely proportional to its rank r

y ∼ r−b (2.8)

If y is a certain income, equation 2.8 means that the r-th richest person
has an income equal to y plus a certain constant. So, reminding that from
equation 2.8 follows that r ∼ y−1/b, the probability that the variable Y is
equal to a certain income y can be written as follow

P (Y = y) =
dr

dy
∼ y−(1+1/b) (2.9)

Expression (2.9) represents the PDF of a Pareto distribution. Since the Zipf’s
law and the Pareto law can be regarded as equivalent, from this point we
will refer to the Pareto law.

In the classical version, the c.d.f of the Pareto distribution is defined as:

F (x) = 1−
(
x

x0

)−γ
, x ≥ x0 > 0, (2.10)

where γ is the shape parameter and x0 is the location and the scale parameter.
The density of a classical Pareto distribution is given by

f(x) =
γxγ0
xγ+1

, x ≥ x0 > 0. (2.11)

Note that γ = α− 1 where α is the power-law slope. The parameter γ gives
the heaviness of the right tail of the distribution. An higher coefficient γ is
associated with a less fat upper tail, i.e. faster convergence of density to-
wards zero. In economics γ is called the Pareto index and it is usually used
as a measure of the breadth of the income or wealth distribution. When the
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Pareto distribution is used to describe the income or the wealth distribu-
tion, The Pareto index represents a measure of inequality: the larger is γ the
smaller is the proportion of very high-income people. In economics is often
used the inverted Pareto coefficient λ = γ/(γ − 1) rather than the standard
Pareto coefficient γ. The λ coefficient represent the ratio between the av-
erage income of individuals with income above a certain threshold and the
threshold. The characteristic of the Pareto distribution (and of the Power
laws) is that λ does not depend od the threshold (Atkinson et al. (2011)).

The raw moment µ′k
3 is given by

µ′k =
γxk0
γ − k

, (2.12)

and exists only if k < γ. From eq. (2.12) follows the expressions for the
mean and the variance of a Pareto distribution. The expected value is given
by

E(X) =
γx0

γ − 1
, γ 6= 1 (2.13)

and exists only if γ > 1 4. The variance is given by:

var(X) =
γx2

0

(γ − 1)2(γ − 2)
, (2.14)

and exists only if γ > 2, while the mode is at x0.
The Pareto distribution is linked with the Exponential distribution in fact

it could be shown that if X ∼ Par(x0, γ) then

Y = log(
X

x0

) ∼ Exp(γ), (2.15)

and equivalently, if Y ∼ Exp(γ), then x0e
Y ∼ Par(x0, γ), as showed in

(fig.2.1).
The Pareto distribution was proposed in three different variants. The

first is the classical Pareto distribution defined in 2.10. The cdf of the second
Pareto model is given by

F (x) = 1−
(

1 +
x− µ
x0

)−γ
, x ≥ γ. (2.16)

3The k-th raw moment of a distribution with continuous pdf f(x) is defined as µ′k =∫ +∞
−∞ xkf(x)dx

4From extremely heavy-tailed distribution of this class, other measure of location must
be used (C. and S. (2003))
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Figure 2.1
Pareto distribution
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1. Points represent the density distribution of random variable X obtained as X = x0eY where
x0 is setting equal to 3 and Y is a random sample drawn from an exponential distribution with
parameter γ = 2. The line represent the theoretical density distribution of a Pareto distribution
with parameters x0 = 3 and γ = 2.

By setting µ = 0 in the 2.16 we obtain the cdf of a Pareto typeII distribution

F (x) = 1−
(

1 +
x

x0

)−γ
, x ≥ 0, x0, γ > 0. (2.17)

The Pareto type II distribution is called also Lomax distribution since Lomax
(Lomax (1954)) rediscovered it in a different contest. The Pareto type II
distribution is also considered a beta-type distribution (C. and S. (2003))
since it is a special case of Singh-Maddala distribution. The relation between
a classical Pareto (Pareto type I model) and a Pareto type II model is the
following

X ∼ ParII(x0, γ) ⇐⇒ X + x0 ∼ Par(x0, γ). (2.18)
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The cdf of a Pareto type III distribution is given by

F (x) = 1− Ce−βx

(x− µ)γ
, x ≥ µ, µ ∈ R, β, γ > 0. (2.19)

2.1.2 Lognormal Distribution

The lognormal distribution is often presented in terms of normal distribution
since a random variable X has a lognormal distribution if Y = log(X) has a
normal distribution. The pdf of a normal distribution is given by

f(y) =
1√
2πσ

e−
(y−µ)2

2σ2 , (2.20)

where µ is the mean, σ2 is the variance and −∞ < y < ∞. Therefore the
pdf of the lognormal distribution is given by

f(x) =
1

x
√

2πσ
e−

1
2σ2

(logx−µ)2 , x > 0, (2.21)

while the cdf is given by

F (x) = Φ

(
logx− µ

σ

)
, x > 0, (2.22)

where Φ is the cdf of a standard normal distribution.
The lognormal distribution is unimodal, with the mode being at xm =

eµ−σ
2
, and right skewed so that mode<median<mean5.

It is convenient to obtain the moment generating function in terms of the
moment generating function of a normal distribution

E(Xk) = E(ekY ) = ekµ+ 1
2
k2σ2. (2.23)

From eq.(2.23) follows that the mean of a lognormal distribution is

E(X) = e
µ+σ2

2 , (2.24)

and the variance is
V ar(X) = e2µ+σ2

(eσ
2 − 1). (2.25)

5This follows from the expressions of the three positions indices:

• Mode=exp(µ− σ2),

• Median=exp(µ)

• Mean=exp(µ+ σ/2)
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From the moment generating function (eq.2.23) it is also clear that the log-
normal distribution has moments of all orders.

As a consequence of the close relationship with the normal distribution,
some basic properties of the lognormal distribution follow from properties
of the normal distribution. For example, from the stability property under
summation of the normal distribution6 follows the multiplicative stability
property for the lognormal distribution. Formally, if X1 and X2 are two inde-
pendent variables with distribution X1 ∼ LN(µ1, σ

2
1) and X2 ∼ LN(µ2, σ

2
2),

respectively, then

X1X2 ∼ LN(µ1 + µ1, σ2
1 + σ2

1). (2.26)

Unfortunately, sums of lognormal random variables are not very tractable
(C. and S. (2003)).

There are some similarities between the Pareto distribution and the log-
normal distribution. First, both distributions can be obtained via exponen-
tiation of another random variable, namely the Pareto distribution from an
exponential and the lognormal from a normal distribution. Second, the be-
havior of the log-log plot of the ccdf (or of the pdf) of the two distributions,
will be very similar (Mitzemacher (2003)). In the case of the Pareto the
behavior is exactly linear while in the lognormal case, for large value of σ2,
the behavior will be almost linear for a large portion of the distribution (see
2.2). Using the pdf for simplicity, we have for the Pareto distribution

lnf(x) = (−γ − 1)lnx+ γlnx0 + lnγ, (2.27)

and for the lognormal

lnf(x) = −(lnx)2

2σ2
+
( µ
σ2
− 1
)
lnx− ln

√
2πσ − µ2

2σ2
. (2.28)

Since the Pareto and the Lognormal distributions often fitted only a part
of the empirical size distribution, other authors tried to develop new models
to fit the whole range of income. In recent years, empirical literature pro-
posed distributions with an high number of parameters: three parameters
Beta (L.C.Thurow (1970)), Gamma (Salem and Mount (1974)), Singh and
Maddala (1976) and generalizations of these densities, such as first kind and
second kind generalized gamma (GB1 and GB2) families densities (McDon-
ald (1984)).

6The stability property under summation of the normal distribution means that the
sums of independent normal variables are again normal.
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Figure 2.2
CCDF for a Pareto distribution and a Lognormal distribution
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2.2 Regression methods

As pointed out in the previous sections, an approach proposed in literature
(Hall (1987b)) to check the validity of a stochastic growth models, consists
on investigating the determinants of the growth by mean of regression meth-
ods. Since the 1950s the Gibrat law of proportionate effects has stimulated
a multiplicity of this kind of empirical works7. Empirical investigation of
Gibrat’s law by means of regression methods rely on estimation of equation
of type:

ln(Si,t)− ln(Si,t−1) = βln(Si,t−1) +Xi,tδ + µi + ui,t, (2.29)

7An exhaustive survey on firms growth is provided by Coad (2007).
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Where Si,t is the size at time t of the i− th unit. The composite error term
νi,t = µi + ui,t consists of a time constant unobserved heterogeneity µi and
of an idiosyncratic component ui,t. Xit is a matrix of regressors which can
correlate with µi and ui,t

The coefficient β is the “Gibrat coefficient” in the sense that evidence of
β = 0 supports the Gibrat’s law, while evidence of either positive or negative
β is at odds with it. Equation 4.1 can be rewritten as

si,t = β̃si,t−1 +Xi,tδ + µi + ui,t, (2.30)

where β̃ = 1 + β, and si,t = ln(Si,t). Equation 4.2 makes it clear that
estimating equation 4.1 is equivalent to estimating a dynamic equation of
logarithmic sizes with a lagged-dependent variable on the right-hand side.
We estimate this equation but interpretation of parameters can more easily
recovered from equation 4.18. Testing for β̃ = (>,<)1 is equivalent to testing
for β = (>,<)0.

In this equation it is clear that endogeneity may come from two sources.
First, lagged sizes are necessarily positively correlated with the fixed effect µi
so that, regardless of regressors in Xi,t being strictly exogenous, pooled OLS
applied to equation 4.2 would inflate estimates of β̃. For example, imagine
a large negative sizes shock for a given unit in a certain year t which cannot
be ascribed to any variables in the model. Ceteris paribus, the time constant
fixed effect over the whole period for that unit would appear lower so that
in t + 1 both lagged sizes and the fixed effect will be lower. In the end, the
correlation between si,t and si,t−1 would appear stronger though it would be
simply driven by the fixed effect (Roodman (2009a)). Moreover, also the
regressors in Xi,t may be correlated with the unobserved heterogeneity. For
example, some units may have an intrinsic capability to grow faster than
others and they may be as well more strongly associated to characteristics
included in the model, such as a higher propensity to innovation, which in
turn may affect growth. In such case the estimated innovation effect on
the growth would simply pick up, at least in part, the effect of unobserved
capability.

Standard panel data methods overcome this problem wiping out the fixed
effects by ad hoc transformation of data. For example, the Within and first
differences methods transform data so that the estimating equation would
appear like this

s∗i,t = β̃s∗i,t−1 +X∗i,tδ + u∗i,t, (2.31)

8Estimates of parameters δ are to be interpreted as regressors effects on the sales growth
since are estimated in equation 4.2 for given si,t−1.
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where the apex ∗ denotes transformed data. The typical panel approach con-
sists in applying pooled OLS to this equation. Unfortunately, even though
one assumes that the regressors in Xi,t are strictly exogenous9, s∗i,t−1 is nec-
essarily correlated with u∗i,t so consistency of panel estimates is lost. In
particular, sizes and the error term in levels can appear, respectively, in
the s∗i,t−1 and in the u∗i,t expressions at some periods, (depending on the
kind of transformation) of which at least one is the same in both expres-
sions. For the fixed effects case, the correlation between s∗i,t−1 and u∗i,t
turns out to be negative and its strength is inversely related to T (see
Nickell (1981)). As a consequence, fixed effects estimates would underes-
timate β̃ and the magnitude of the bias would be smaller the larger T . In
the fixed effect case s∗i,t−1 = si,t−1 − 1

Ti−1
(si,1 + . . . + si,t + . . . + si,Ti) and

u∗i,t = ui,t − 1
Ti−1

(ui,2 + . . . + ui,t−1 + . . . + ui,Ti). The component − si,t
Ti−1

in

s∗i,t−1 is correlated with ui,t in u∗i,t, and the component −ui,t−1

Ti−1
in u∗i,t is corre-

lated with si,t−1 in s∗i,t−1 (see Bond (2002) and Roodman (2009a)). If Ti were
large the component above would be negligible and the correlation would
disappear.

The typical solution in panel data when strict exogeneity is violated is
to apply instrumental variables methods. For example, a tempting approach
may be to apply two stage least squares to the transformed equation where
lagged sales are instrumented with variables that are both correlated with
s∗i,t−1 and orthogonal to u∗i,t. Natural candidates as instruments of s∗i,t−1 may
be deeper lags of si,t−1. However, in the fixed-effects transform, which is based
on a time demeaning, lags of si,t−1 are still not orthogonal to the transformed
error. This is the reason why other kinds of transformations are applied when
dealing with dynamic panels, such as the first differences and the “orthogonal
deviations”. In dynamic panel estimation, efficiency gains can be achieved
within the Generalized Method of Moments (GMM) framework (see Hansen
(1982)). Building on the work of Anderson and Hsiao (1982) and Holtz-Eakin
et al. (1988), Arellano and Bond (1991) derived one-step and two-step GMM
estimators using moments conditions in which lagged levels of the dependent
and predetermined variables are instruments for the first-differenced equa-
tion (other than strictly exogenous variables). In a first step, where some
reasonable but arbitrary covariance matrix for the errors is chosen, an ini-
tial GMM regression is performed to get a preliminary consistent estimate of
parameters. Then residual from the first step are used to estimate the sand-

9In panel data jargon, variables are strictly exogenous when they are uncorrelated with
current, past and future realizations of the disturbance term. When this condition does
not hold, the variable is said endogenous, but when the variable remains uncorrelated with
future values it is said predetermined.
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wich covariance matrix of the errors which is used to perform second step.
This two-step estimator is asymptotically efficient and robust to whatever
patterns of heteroskedasticity and cross-correlation the sandwich covariance
estimator models. However, though two-step is asymptotically efficient, ro-
bust two-step estimator of standard errors tends to be severely downward
biased. Windmeijer (2005) derived a bias-corrected robust estimator for the
two step covariance matrix so that the two-step efficient GMM is in general
preferred to the one-step. Windmeijer finds that the two-step efficient GMM
performs somewhat better than one-step in estimating coefficients, with lower
bias and standard errors. Also corrected two-step standard errors are quite
precise.

The Arellano-Bond estimator has been further developed by Arellano and
Bover (1995) and Blundell and Bond (1998) who pointed out that in some
applications lagged levels may be poor instruments for transformed variables.
In particular, they proposed a system GMM estimator in which the trans-
formed equation is augmented by adding the original equation in levels to the
system. In this equation, variables in levels are instrumented with suitable
lags of their own first differences (no matter the kind of transformation), and
the transformed equation is still instrumented with all available lags of en-
dogenous and predetermined variables. This method is known as the system
GMM, in opposition to the difference GMM of Arellano-Bond10.

10The Arellano-Bond estimator is generally called difference GMM since in the original
formulation data are transformed by first differences, but when orthogonal deviations are
carried out the term is not appropriate though sometimes still used.



Chapter 3

The Size Distribution of Italian
Wage

Studying size distribution is not exclusive of economics. Beyond economics
and finance (Gabaix (2009)), several type of size distribution are studied
in computer science (Mitzemacher (2003)), physics, biology, social systems
(Newman (2005)). And, the results of those different disciplines point out
similar behaviors in terms of size and growth distribution. The aim of this
work is to analyzed some of the theoretical size distributions proposed in
literature and to check the fitting of these models to empirical data. To
perform this analysis Italian wage data for private sector are used. We used
these data since the renewed interest on income/wage distribution observed
since 1980s (Forster (2000)). We decided to use wage data instead of income
data for two main reasons. Firstly, the wage is a source of revenue more
homogeneous than the income. As a matter of fact, income is given by the
sum of wages, salaries, profits, interest payments, rents and other forms of
earnings received in a given period of time. Secondly, at the best of our
knowledge, in literature exist (for Italy or across Countries) many compar-
isons of parametric models of income distributions over time (see Bandourian
et al. (2003), Azzalini et al. (2002), Dastrup et al. (2007)), but does not exists
a comparison of parametric models of wage distribution in Italy over time.

Income distribution analysis has always been a relevant research topic
in Italy. From the beginning of Twenty century eminent Italian economists
and statisticians were interested in studying income distributions, concentra-
tion and inequality (Benini (1897), Gini (1909b), Gini (1909a), Gini (1932)
Amoroso (1925), Cantelli (1929), D′Addario (1932)). In other western coun-
tries, on the contrary, the focus on income distribution has been developed
only in the last 25 years. Quoting the web site of the Distributional Analysis
Research Programme (DARP) at London School of Economics and Political

25
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Science (LSE): ”the study of income distribution is enjoying an extraordinary
renaissance: interest in the history of eighties, the recent development of the-
oretical models of economic growth that persistent wealth inequality, and the
contemporary policy focus upon the concept of social exclusion are evidence
of new found concern with distributional issues”.

The renewed interest on income distribution is, almost in part, a con-
sequence of the significant increase in income inequality observed in many
countries since 1980s. Forster (2000) studying inequality in OECD coun-
tries summarized that ”there has been no generalised long-term trend in the
distribution of disposable household incomes since the mid-1970s. However,
during the more recent period (mid-1980s to mid-1990s), income inequality
has increased in about half the countries, while non of the remaining countries
recorded an unambiguous decrease in inequality.”

The first income distribution was proposed by Pareto (1896). In his stud-
ies Pareto argued that the income distribution is hyperbolic and skewed (see
also Ammon (1898)). Furthermore, Pareto sustained that the distribution
does not change significantly in space and time. The author also concluded
that inequality shrink as the income rise. Gini (1909b) proposed a new in-
equality measure, scale free, called Gini index. The empirical results of Gini
was at variance with the conclusions of Pareto. Gini showed that inequal-
ity in income distribution raises as income increases. Furthermore empirical
studies showed that the Pareto distribution has a good fitting with empirical
data only for high income levels.

Gibrat (1931) introduced the assumption that income distribution is log-
normal. The author argued that income and wealth are governed by a mul-
tiplicative random process. The log-normal model has a god fitting for the
bulk of empirical income distribution but not for the tails. Following the
Gibrat example, Simon and Bonini (1958a) ,Ijiri and Simon (1964), Man-
delbrot (1960), Parker (1999), Draculescu and Yakovenko (2001b) and Drac-
ulescu and Yakovenko (2001a) proposed densities that arise from stochastic
processes of income growth.

In recent years, empirical literature proposed distributions with an high
number of parameters: three parameters Beta (L.C.Thurow (1970)), Gamma
(Salem and Mount (1974)), Singh and Maddala (1976) and generalizations
of this densities, such as first kind and second kind generalized gamma (GB1
and GB2) families densities (McDonald (1984)).

Nowadays, the GB2 is largely considered a good description of income dis-
tributions, with a fine goodness-of-fit. A large number of empirical studies
showed that GB2 outperforms other densities in income fitting, in particu-
lar for USA income data (Butler and McDonald (1989), McDonald and Xu
(1995) and F.Bordley et al. (1996)), for German data (Brachmann et al.
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(1996)) and for UK data (Jenkins (2007) and Jenkins (2009)).
GB2 is an extremely flexible model that can assume the shape of several

well-known distributions of the social statistics literature and of the indus-
trial statistical literature (Cirillo (2010)). Moreover, it has been shown that
the GB2 distribution family also includes several flexible models recently in-
troduced in the literature, such as the generalized k-distribution (Clementi
et al. (2008)).

A theoretical justification for the use of a GB2 as personal income dis-
tribution was provided by Parker (1999). The author proposed a neoclassic
optimizing model, based on micro-foundations, which predicts the earnings
distribution to follow a GB2. In Parker model a representative firm has to
choose the optimal number of workers to employ at each human capital level,
considering that the firm must pay earnings to induce workers to invest in
human capital. This decision problem leads to a GB2 density function as the
optimal earnings distribution.

An alternative to the GB2 density was proposed by Azzalini et al. (2002)
introducing a log-skew normal and a skew-t as income family distributions
for US and European data.

In this work we analyze the distribution of wage in Italy for the private
sector. The empirical results are based on a database called Work Histories
Italian Panel (WHIP) implemented by Laboratorio Revelli (Revelli (2010)).
After a brief description of the Italian labour market between 1985 and 2004
(Section 3.2), the data set used for the analysis is described in Section 3.3
(alongside with some preliminary evidences). In Section 3.4 the empirical
wage distribution (by year and by gender) was fitted with different models
belonging to the generalized beta-family and with a skew-normal model and
a skew-t model.The distributions are compared by means of different mea-
sures of goodness of fit (Dastrup et al. (2007), Bandourian et al. (2003)). As
pointed out in Chapter 2, the analysis of the size distribution is one of the ap-
proaches commonly used to investigate the size growth relation and to study
the stochastic models of growth proposed in literature. Furthermore this
approach allows us to know the entire distribution of a certain phenomenon
(in this case the Italian daily wage). Once the wage distribution is known,
we can investigate some important features of wage, as the concentration
and the inequality, that, at least in the last 25 years, are become relevant
research topics (Forster (2000)). In the last section we performed an analysis
of the dynamic of the inequality in the Italian wage between 1985 and 2004.
The analysis of inequality is performed by means of four inequality indices
belonging to the generalized entropy class of inequality measures. The in-
equality indices are calculated by gender and over time. With this approach
is possible to analyzed the dynamic of the inequality within different groups
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(the whole sample, the male sub-sample and the female sub-sample). Usu-
ally, the inequality analysis proposed in literature for the Italian data does
not distinguish between male and female (see Brandolini et al. (2002), Man-
acorda (2004), Jappelli and Pistaferri (2010) and Devicienti (2003)). The
results we found for the male sub-sample agree with the findings proposed in
literature while the results for the female sub-sample are different. For this
reason we decided also to analyzed the dynamic of inequality between the
two samples. To perform this analysis we study the dynamic of the gender
gap by means of regression methods.



3.1. THE ITALIAN LABOUR MARKET BETWEEN 1985 AND 2004 29

3.1 The Italian labour market between 1985

and 2004

As argued by Fabiani et al. (2000), Italy, between 1980s and 2000s, experi-
enced ”one of worst labour market performances among the countries of the
European Union.”. In 1980s and 1990s levels of unemployment rate1 were so
high as those observed in the post-war period.

Figure 3.1
Unemployment rate in Italy between 1985-2004.
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1. Plot represent the harmonized unemployment rate monthly series based on the results of the EU
Labour Force Survey.

2. Data are provided by Eurostat on the web site: http :
//epp.eurostat.ec.europa.eu/portal/page/portal/statistics/searchdatabase.

The dynamic of aggregate unemployment rate in Italy between 1985 and
2004 is showed in Figure 3.1. A great increase in unemployment took place
from the mid 1970s to the late of 1990s. This rise could be divided in two
separate episodes (see Bertola and Garibaldi (2003)). An early stage, be-
tween 1975 and 1988, over which unemployment increased constantly up to

1Unemployment rate is the number of people unemployed as a percentage of the total
population aged 15-64. Where unemployed persons are all persons 15 to 74 years of age
who were not employed during the reference week, had actively sought work during the
past four weeks and were ready to begin working immediately or within two weeks.
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(a) Unemployment rate by gender.
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(b) Unemployment rate by age.

Figure 3.2
Unemployment rate between 1985 and 2004. Monthly data.

Notes:

1. Figure a represent the harmonized unemployment rate monthly series by gender based on the
results of the EU Labour Force Survey.

2. Figure b represent the harmonized unemployment rate monthly series by age based on the results
of the EU Labour Force Survey.

3. Data are provided by Eurostat on the web site: http :
//epp.eurostat.ec.europa.eu/portal/page/portal/statistics/searchdatabase.

some 10% in 1989. And a second stage between 1993 and 1998 when the
increase of unemployment rate was remarkably fast, particularly in 1993-95.
Between this two episodes, in 1989-92, a fall in unemployment rate is observ-
able. In most recent years, from 1998 to 2004, unemployment rate showed a
decline. The dynamic of the aggregate Italian unemployment is the results of
a complex structure of disaggregated unemployment rates. The main dimen-
sions of heterogeneity are a gender effect, an age effect and a geographical
effect. Figures 3.2(a), 3.2(b) and 3.3 shows the unemployment rate in Italy
by gender, age and geographical area respectively.

Gender is a relevant dimensions. Female unemployment rate is never
lower of 10% of the labour force while male unemployment rate is never
higher than 9% of the labour force. Also the age dimension is relevant. The
unemployment rate of young people is remarkable higher than the national
average reaching a maximum of 32% of the labour force in 1987. In addition
to the gender dimension and to the age dimension, Italian unemployment is
affected by a geographical dimension. Unemployment rate in North areas is
lower than in the other geographical areas. In the Center the unemployment
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is above the Italian average but larger than in the Northern areas, while
in South and Islands the unemployment is much larger than the national
average.

Figure 3.3
Unemployment rate in Italy between 1985-2004 by geographical

area.
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1. Plot represents the annual unemployment rate based on data provided by ISTAT

2. Data are from: Istat Rilevazione trimestrale sulle forze di lavoro until 2003 and Rilevazione sulle
forze di lavoro for 2004.

3. Between 1985 and 2004 definitions of employed and unemployed change. Between 1993 and 2003
data have been updated according to revised population series within inter-censual period 1991-
2001.

4. Until 1992 people of 14 year old are included in labor force. From 1993 labor force included people
of at least 15 year old.

Aggregate and disaggregated unemployment rate dynamics among OECD
countries have been explained in terms of interaction between institutional
features and macroeconomics shocks ( Layard et al. (2001), Grubb and Wells
(1993), Saint-Paul (1997), Nickell and Layard (1999), Nickell (1997), Blan-
chard and Wolfers (2000), Bertola and Garibaldi (2003), Belot and Ours
(2000), Bassanini and Duval (2006a), Bassanini and Duval (2006b), Barbieri
(2009)). The incapacity of European labor markets to cope with the unem-
ployment was ascribed to their lack of flexibility and to the lack of flexibility
of the the social security systems. The most common solution of EU coun-
tries to face rising unemployment has been to introduce new contracts that
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allowed for a progressive deregulation of the labour market. The introduc-
tion of new type of temporary and non standard contracts favored the entry
in the labour market of some particular categories of workers characterized
by a high rate of exclusion (especially young people and women). The new
contracts in fact, thanks to lower levels of social protection, allowed to re-
duce the labour cost. In addition, the entry of new contracts contributed to
the segmentation of the labour market. Therefore different kinds of workers
coexist: regular workers with a higher social protection and a higher bargain
power and temporary workers, potentially, with an higher risk of been firing
and low wages.

In early 1980s Italian labour market was characterized by strong job pro-
tection and downward wage rigidity. The stringent regulation of employment
relationship was regulated by the 1970 Statuto dei lavoratori and by subse-
quent reforms such as the reform of labor litigation of 1974 (see Bertola
and Ichino (1995)). Still during 1970s regionally differentiated wage were
replaced by industry-specific negotiated wage structured and in 1975 the
wage indexation system was introduced (the so called Scala Mobile). Since
early 1980s flexibility-oriented policies have been introduced. On the wage
side, the indexation system was progressively reformed and then abolished
in 1992. Further new legislations on temporary and non standard contracts
were introduced.

In Italy the atypical contracts were introduced since 1955 (Law n.25),
when the first regulation related to apprenticeship contracts was established.
The fixed-term contracts were introduced in 1962 by Law n. 230. The
regulation on temporary contracts limited fixed terms contracts to seasonal
workers, unusual activities and top management. The Law n. 863/84 intro-
duced the on the job training contracts (Contratto di formazione lavoro CFL)
in order to ease entry into the labour market. Like the fixed-term contracts,
the CFL contracts had a determined duration: one year in order to acquire
low qualification and two years in order to acquire high qualification. The
legislation of CFL contracts was modified in 1987, with the Law n. 56 that
made the CFL contract applicable to all economic sectors, and in 1994 (Law
451/94) with the raising of the age limit of their applicability from 29 years
old to 32 years old. In 1995 the coordinate and continuous collaboration
(Co.Co.Co.2) contracts were introduced. In 1997, in order to bring flexibil-
ity and dynamism to the Italian labour market, the so called Treu Law (Law
n. 196) was introduced. The Treu Law (named after the Labor Minister
Tiziano Treu) introduced temporary contracts (without age limitation) and

2A Co.Co.Co is a self-employment with some specific relationship with the company
featuring.
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Temporary Work Agency (TWA3). Furthermore the reform modified: the
statuatory discipline of fixed term contracts, the apprenticeship relationship
and the CFL applicability.

In 2003 the Treu Law were replaced by the Law n.30/2003 or Biagi reform
(named after Marco Biagi, advisor on labor market reform under the 2001-
2006 Berlusconi government). The law introduced new contractual forms
and innovated some existing ones, affecting mainly subordinated jobs. Ma-
jor innovations concerned apprenticeship and training contracts. The CFL
contracts were substituted by the insertion contracts4. Finally, the Biagi Law
changed the Co.Co.Co contracts, substituting them with the Co.Co.Pro. re-
lationships, in which workers are put into a specific project or plan. The
dynamics of contracts in private sector between 1985 and 2004 is showed in
Table 3.1. The number of workers with a temporary or atypical contract is
increased constantly since the introduction of the new type of contracts until
2003. The increase of temporary contracts is remarkably evident especially
among young workers (see Table 3.2 )

Table 3.1
Evolution of share of contracts from 1985 to 2004 in private sector

Year
Contract 1985 1990 1995 1998 1999 2000 2001 2002 2003 2004
Permenent 93.81 88.67 92.48 82.10 74.65 74.65 74.18 72.95 71.05 71.12
Fixed-term 5.78 6.50 7.10 7.08 7.91 8.57 9.81
Apprendiceshipe 5.30 5.25 3.97 4.87 5.04 5.42 5.39 5.06 4.99 5.48
CFL 0.89 6.08 3.55 3.70 2.95 2.12 1.94 1.53 1.23 0.57
TWA 0.07 0.61 1.09 1.46 1.41 1.66 1.87
Collaborator 1.77 8.67 8.12 8.63 10.01 11.34 9.98
Seasonal 1.72 1.58 1.49 1.32 1.12 1.16 1.17
Totale 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Notes:

1. Data are from: Work Histories Italian Panel (WHIP).

As described above, between 1985 and 2004, the Italian aggregate un-
employment rate showed different dynamics. Two episodes of rise (the first
episode started in 1975 and ended in 1988, while the second took place be-
tween 1993 and 1998) and two episodes of decline (the first took place between
1989 and 1992 and the second started after 1998) are observable. The two
episodes of increasing unemployment correspond with two economic shocks:
the oil price hikes in 1970s and the productivity slowdown of 1980s; and

3TWA employment represents a triangular contract, in which an agency hires a worker
for the purpose of making him available to a client firm for a temporary assignment

4Insertion contracts can not by applied in public administration.
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Table 3.2
Evolution of share of contracts from 1985 to 2004 sector for

young people (15-25 years)

Year
Contract 1985 1990 1995 1998 1999 2000 2001 2002 2003 2004
Permanent 77.64 63.53 70.44 48.19 42.91 44.33 40.81 39.97 37.22 34.46
Temporary contracts* 22.36 36.47 29.53 42.99 46.30 48.20 48.86 46.40 47.24 50.94
Collaborator 8.83 9.37 8.89 10.33 13.63 15.54 14.60
Totale 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Notes:

1. *Termporary contract comprehends all type of contracts except permanent and collaborator

the fiscal and monetary restrictions, due to reach the prerequisite for EMU
(European Monetary Union) membership in 1992.

In the first episode unemployment rate rose lower than in the 1990s since
the employers were protected from dismissing redundant employees (Bertola
and Garibaldi (2003)). The growth of unemployment rate was particulary
high for the young people (who were not able to enter in the labor market)
and for the South and Island (i.e in geographical areas with a low produc-
tivity).

From 1998 unemployment rate shows a decline despite a sharp cyclical
slowdown and despite rather restrictive fiscal policy. A possible explanation
to this phenomenon can be found in the institutional changes (such as a
more flexible labour market, the introduction of the wage moderation and
the introduction of the hiring subsidies) occurred from the mid of 1990s
(Bertola and Garibaldi (2003)).

3.2 TheWork Histories Italian Panel (WHIP)

data base

The Work Histories Italian Panel (WHIP) is a data base implemented by
Laboratorio Revelli. WHIP is builded starting from the pieces of informa-
tion of the National Social Security Institute’s administrative archives. The
reference population is made up by all the people, Italian and foreign, who
have worked in Italy even only for a part of their working career.5

5 The standard version of the data base is a Public version of WHIP. The sampling
coefficient in the standard file is about 1:180, for a dynamic population of about 370,000
people.
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Table 3.3
Sample consistency by year and gender between 1985 and 2004

Year Freq. Male Female Year Freq. Male Female

1985 56,397 69.76% 30.24% 1995 59,740 65.66% 34.34%
1986 56,741 69.46% 30.54% 1996 60,537 65.38% 34.62%
1987 57,954 68.89% 31.11% 1997 60,693 64.73% 35.27%
1988 59,440 68.48% 31.52% 1998 61,347 64.32% 35.68%
1989 60,628 67.91% 32.09% 1999 63,614 64.06% 35.94%
1990 62,392 67.80% 32.20% 2000 66,451 63.78% 36.22%
1991 63,011 67.56% 32.44% 2001 68,798 63.38% 36.62%
1992 62,742 67.36% 32.64% 2002 71,243 63.35% 36.65%
1993 60,090 66.93% 33.07% 2003 72,464 63.04% 36.96%
1994 59,332 66.48% 33.52% 2004 73,023 62.59% 37.41%

For each of these people the main episodes of their working careers are ob-
served. The complete list of observations includes: private employee working
contracts, dependent self employment contracts6 (the so called parasubor-
dinati), self-employment activities (i.e artisan, trader and some activities as
freelancer), retirement spells and non-working spells. During non-working
spells the individual received social benefits, such as unemployment subsi-
dies or mobility benefits. The workers for whom activity is not observed
in WHIP are those who have an autonomous security fund (i.e people who
worked in the public sector or as freelancers). In our analysis we dropped out
the atypical contracts and the self-employment. We do this for the follow-
ing reasons. Firstly, most of the available variables for the other contracts
are not available for atypical contracts and self-employment. Secondly, it
is not possible to calculate a reliable daily wage for the atypical contracts.
The WHIP section concerning employee contracts is a Linked Employer Em-
ployee Database. In addition to the data about the contract, thanks to a
linkage with the Inps Firm Observatory, data concerning the firm in which
the worker is employed are also available.

For each individual within the database, several variables are available,
distinguishable between time-constant and time varying variables. The time-
constants variables are: birth data; birth area, which indicates the geograph-
ical area7 of Italy where the individual was born, and gender. The time-

6There are two main categories of workers: professionals and co-workers (the so called
collaboratori). The archive for dependent self employment contracts covers the period
1996 to 2004 co-workers contract were introduced in Italian Labour market in 1995.

7Four geographical macro areas are available in the standard version: North West
-which includes Valle d′Aosta, Piemonte, Lombardia and Liguria- North East - which
includes Trentino Alto Adige, Veneto, Friuli Venezia Giulia and Emilia Romagna- Centre
-which includes Toscana, Marche, Umbria and Lazio - South - which includes Campania,
Molise, Abruzzo, Basilicata, Puglia and Calabria - and Islands - which includes Sardegna



36 CHAPTER 3. THE SIZE DISTRIBUTION OF ITALIAN WAGE

varying variables are: work area, which indicates the geographical area of
Italy where employment was performed 8; number of paid working days equiv-
alent to full time 9; number of paid weeks equivalent to full time work; skill
level, distinguishes between various employment positions (Apprentice, Blue
Collar Worker, White Collar Worker, Cadre10 -high skilled White Collar-
, Manager); classification of economic activity into 18 sections according
to the Ateco91 classification (ISTAT (1991)); total annual compensation in
euro11; TFR fund which indicates the amount accrued by the employee in the
end-of-service fund (Trattamento di Fine Rapporto, TFR)12; a code which
indicates the type of contribution rebate eventually applied to the worker’s
contract; the starting date of the job spell, deduced from the contributions
paid monthly by the employee (the variable is left censored at January 1,
1985); the date of ending of the job spell (the variable is right censored at
31 December 1999).

In addition, the data base contains the following dummy variables: ma-
ternity benefit, part time position, wage supplement for temporary layoffs
(Cassa Integrazione Guadagni, CIG), illness benefits.

Table 3.3 shows the sample consistency by year and gender. In the ob-
served sample males represent at least 62.5% of total observations. In the
twenty years of observations females weight rises of 7%.

e Sicilia
8During the whole period of employment the employee can modify the geographical

location in which he/she works; partition of italian regions in macro areas is the same
used for birth area

9A day is considered paid when the employer paid compensation subject to tax; A week
or month is considered paid if they contain at least one paid day. Conventionally Inps
(Italian Social Security Organization) reports paid days based on a 6 day working week;
for example a 40 hour week 5 working days corresponds to 6 days ’paid.’ The conversion,
justified by insurance specifications, implying that one month and one year completely
’paid’ are 26 days and 312 days respectively.In the case of part-time work, paid days and
weeks are converted into days and weeks equivalent to full time.

10The position of Cadre is distinguishable from that of White Collar Worker only since
1997 on. Before 1997 Cadres have the same code as White Collar Workers.

11Total annual compensation in euro (top coded at 1.100 euro, applied to the average
weekly compensation). At the fiscal/accounting level it represents the base for calculating
social security and insurance contributions paid by the firm, the social burden of the
employee and the eventual tax relief applied to employment. Therefore, it represents the
annual net compensation received by the employee, net of the social security and health
benefit contributions paid by the firm but gross of the social security and health benefit
contributions that have to be paid by the employee.

12Top coded at 60,000 euro.
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3.2.1 Preliminary evidences on WHIP data

In this section a preliminary analysis of the data described above is per-
formed. The dynamics of the age and of the daily wage of the sample be-
tween 1985 and 2004 are showed by means of some descriptive statistics and
non parametric distributions. To make the value of daily wage comparable
between different years we adjusted all values to 1985 euros by GDP price
deflator. The sample was then divided in sub sample by age, geographical
area, type of contract, skills and gender and the wage distribution is analyzed
for each sub sample.

Table 3.4
Age distribution: mean and percentiles. 1985-2004

Stats 1985 1990 1995 2000 2004

Age
mean 35 35 35 36 37

p5 18 19 20 20 21
p10 20 21 22 23 23
p50 34 33 33 34 36
p75 44 44 44 43 44
p95 55 55 55 54 55
p99 60 60 60 60 59

Table 3.4 reports the average and percentiles of the age distribution (see
Figure 3.4(a)) from 1985 to 2004. The trend underlines an ageing of the
sample. Average age changes from 35 years old in 1985 to 37 years old
in 2004. In Fig. 3.4(a), we can see the right shift of the median age and
of the percentiles below the median, and the invariance of superior order
percentiles (graphically a reduction of asymmetry) This effect could be the
result of many phenomena:

• a delayed entry in labour market;

• an increase of atypical contracts as main type of contract for young
workers (as suggested by the increase in the number of collaborator
contracts for young people showed in Table 3.2);

• a delayed exit from the labour market due to the increase in age of
retirement13.

Dividing the sample in two groups by age (between 15 and 25 and more than
25 years old) the ageing of the sample become clear. In 1985 workers younger

13The increase in the age of retirement started in Italy in 1992 with the Law 503/1992,
the so called Riforma Amato.
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Figure 3.4
Kernel distributions of age and wage between 1985-2004

than 26 years old represent about the 27% of the whole sample while in 2004
the percentage of young worker shrinks to 14.86%. (see Table 3.5)

Table 3.5
Sample distribution by age between 1985-2004

Age 1985 1990 1995 2000 2004

15-25 26.93% 27.26% 21.08% 18.23% 14.86%
over 25 73.07% 72.74% 78.92% 83.42% 85.14%

Figure 3.4(b) illustrates the daily wage distribution14 between 1985 and
2004. The wage distribution results to be right asymmetric with the right tail
heavier than the left one. This is a consequence that low wage workers are
fewer than high wage workers. As time goes by, right tail enlarges itself and
since 1995 it appears a wage clumping. On the contrary, left tail shows a wage
clumping in the first year of observation, which shrinks without disappearing
in the following years.

The average daily wage varies from 32.31 euros in 1985 to 34.58 in 2004.
The median varies from 29.07 euros in 1985 to 29.76 in 2004. Average wage
time series (see Figure 3.5) shows that daily wage reaches its maximum in
1992 and then it decreases following Italian economic cycles.

14Epanechnikov kernel
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Figure 3.5
Average daily wage and median daily wage: 1985-2004.
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Table 3.6 shows workers distributions by geographical area in three years:
1985, 1995 and 2004. Around 60% of the sample works in North Italy, while
the remaining 40% is distributed in the other areas (19.5% in the Centre,
between 13.90% and 15.4% in the South, and 6.5% in the Islands). Most
of the natives of North and Centre work, during their lives, in the same
geographical areas. Around 35% of people coming form the South and the
Islands work in different macro areas. The North West is the geographical
area where average daily wage is higher, while the South is where it is lower.
In the 20 observed years, the North West area and the North East one register
higher increments in average wage (respectively 2.91 euros and 3.5 euros),
than others geographical areas, (the average wage rise less than 1.50 euros).
In the same period, standard deviation of average daily wage decreases. In
particular, Islands standard deviations shrinks from 45.28 euros in 1985, to
21.18 in 2004 (see Table 3.7).

The sample was then divided into groups on the basis of the employment
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Table 3.6
Workers by work area and born area

Born Area
Work Area

North-West North-East Central South Islands

1985
North-West 95.7% 2.3% 1.4% 0.3% 0.2%
North-East 11.7% 86.3% 1.5% 0.3% 0.2%
Central 5.0% 2.5% 91.0% 1.2% 0.3%
South 22.5% 4.2% 8.6% 64.1% 0.6%
Islands 23.1% 3.4% 6.2% 1.4% 65.9%
Abroad 32.3% 32.4% 19.8% 11.7% 3.9%
Total 36.0% 23.0% 19.7% 14.6% 6.7%

1995

North-West 94.6% 3.0% 1.5% 0.6% 0.4%
North-East 7.1% 91.2% 1.4% 0.3% 0.1%
Central 4.2% 2.9% 90.9% 1.6% 0.4%
South 20.4% 7.0% 8.7% 63.2% 0.6%
Islands 20.8% 5.1% 6.5% 1.1% 66.5%
Abroad 31.6% 35.4% 18.7% 10.6% 3.7%
Total 34.8% 25.5% 19.2% 13.9% 6.5%

2004

North-West 93.3% 3.5% 1.9% 0.8% 0.5%
North-East 5.8% 92.1% 1.5% 0.4% 0.2%
Centre 3.7% 3.0% 91.0% 2.0% 0.4%
South 15.9% 8.4% 9.2% 65.8% 0.7%
Islands 17.7% 7.2% 6.1% 1.6% 67.4%
Abroad 35.7% 33.5% 20.6% 8.0% 2.2%
Total 33.0% 24.9% 19.8% 15.4% 6.8%

contract. Until 2000, only three groups were observed: Permanent, Train-
ing on-the-job (TOJ) and Apprenticeshipe. Since 2000 other three types of
contracts are provided: Seasonal, Temporary and Temporary Work Agency
(TWA). Figures 3.6(a) and 3.6(b) shows the distributions of average daily
wages by contract for the years 1985 and 2004. In 1985, we observe three dis-
tinct distributions for the three types of contracts. Apprenticeship contract
workers are those who earn, on average, the lowest wage, while workers with
permanent contracts receive, on average, the highest wage. TOJ contract
workers are in an intermediate position.

In the following years, distributions change, even if the differences be-
tween the three distributions do not change. New contracts are placed be-
tween the distribution of Apprenticeshipe and Permanent job workers.
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Table 3.7
Wage dynamics by work area (euro per day) between1985-2004.

work area
1985 1990 1995 2000 2004

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

North-West 33.92 24.78 36.99 27.54 36.69 23.30 37.07 22.22 36.83 21.43
North-East 30.63 28.34 32.66 20.54 33.11 19.81 34.27 22.27 34.13 17.36
Central 32.99 38.38 35.62 25.85 35.33 23.40 35.15 21.66 34.42 20.41
South 30.56 19.50 33.40 17.85 33.33 21.98 32.18 15.75 31.67 18.78
Islands 31.20 45.28 32.62 18.06 32.78 17.19 32.30 20.52 32.45 21.18
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Figure 3.6
Daily wage by contracts. (Euro/day)

Table 3.8 illustrates the average and the most relevant percentiles of daily
wage by gender. Female wage is consistently lower than the wage received by
men, both in daily average and in the percentiles. This difference in wage by
gender could be a consequence of a different distribution by gender among
different work positions as showed in the Section 3.3.5. Density distributions
by gender for the years 1985 and 2004 are showed in Figures 3.7(a) and
3.7(b), respectively.

In 1985, female distribution is more centered on the mode than the male
one, with a lower modal value. In the same year, left tail shape of male
distribution shows that men wages are more scattered than women ones.
In addition, the heavier left tail of the female distribution with respect to
the male distribution suggests that the percentage of low payed women is
higher than the percentage of low payed men. In the following years, female
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Table 3.8
Wage dynamic by gender (euro per day)

Male
Stats 1985 1990 1995 2000 2004
mean 34.71 37.55 37.28 37.10 36.51
p5 16.02 18.49 18.88 18.03 18.49
p10 20.99 22.18 21.87 21.66 21.60
p50 31.14 32.25 31.82 31.64 31.38
p75 37.85 41.13 41.42 41.36 40.97
p90 47.89 55.22 57.49 58.79 58.34
p95 57.01 67.94 72.29 75.81 75.54
p99 97.69 111.83 134.82 109.07 90.08

Female
Stats 1985 1990 1995 2000 2004
mean 26.75 29.22 30.05 31.20 31.35
p5 13.22 15.59 16.04 15.09 16.12
p10 15.14 18.90 19.68 19.14 19.72
p50 25.19 26.11 26.57 27.35 27.45
p75 29.64 31.59 32.40 33.59 34.07
p90 35.52 40.55 42.05 44.29 45.12
p95 41.50 48.81 50.95 55.96 55.72
p99 55.47 68.76 71.15 75.64 84.53

distribution shifts on the right, becoming more similar to male distribution.
Nevertheless, a difference in concentration near the mode, a modal value for
women lower than the men and different tails heaviness, remains evident.

In 1985, male earned 34.71 euros as average daily wage, while female
earned on average only 26.75 euros. In 2004, the average daily wage for men
was 36.51 euros, increasing of 1.8 euros since 1985. In the same time period
(1985-2004), female average daily wage increases of 4.6 euros reaching, in
2004, the value of 31.35 euros.

Figures 3.8(a) and 3.8(b) summarize the two facts stands out from the
analysis of wage by gender. Firstly, the average daily wage received by women
is lower than the male daily wage for the whole observation period. Secondly,
female average daily wage growths more than male daily wage between 1985
and 2004. It is possible to analyze the evolution in the wage gender gap
plotting the ratio between the male wage and the female wage over 20 years.
The plot (see fig. 3.9) shows that the gender gap, between 1985 and 2004,
shrinks. This relation can be skewed since essential variables to explain the
wage and its evolution over time are no taken into account. For this reason,
in the section (3.3.5), the wage gender gap is analyzed after controlling for
some individual covariates.
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Figure 3.8

3.3 Statistical models for wage distribution

In this section some parametric models to describe the wage distribution are
analyzed. Different models (with two three and four parameters) were fit-
ted to the WHIP data. For the best fitting model inequality indices were
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Figure 3.9
difference between logarithmic male wage and logarithmic female
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calculated. The analysis is performed separately for the whole sample, the
male sub-sample and the female sub-sample. Furthermore, the wage distri-
bution is analyzed in three different years (1985, 1995 and 2004), so that it
can be possible to evaluate the wage distribution dynamics over time and by
gender. Wage distribution has been fitted with statistical models belonging
to the generalized beta family (C. and S. (2003)) and with distribution gen-
erated by perturbation of symmetry of a normal distribution (Azzalini and
Capitanio (2003)). In the following section the models used in the analysis
are briefly described, than the results of the fitting are showed. Finally, the
inequality dynamic is analyzed by the means of four inequality indices.
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3.3.1 The generalized beta family

The generalized Beta distribution of the second kind (GB2) is a four-parameters
distribution belonging to the Beta-type family. The probability density func-
tion of a generalized beta (GB) distribution is given by:

GB(y; a, b, c, p, q) =
ayap−1(1− (1− c)(y/b)a)q−1

bapB(p, q)(1 + c(y/b)a)p+q)
for 0 < ya <

ba

1− c
(3.1)

and zero otherwise, where B(., .) is the Beta function and 0 ≤ c ≤ 1, 0 ≤
b, p, q.

A Generalized Beta of Second kind (GB2) is obtained from a GB setting
the c parameter equal to one:

GB2(y; a, b, p, q) =
ayap−1

bapB(p, q)[1 + (y
b
)a]p+q

, x, a, b, p, q > 0 (3.2)

where a, p and q are shape parameters, b is a scale parameter, B(., .) is the
Beta function and Γ(.) is the Gamma function. The thickness of the tails is
given by a, the larger is the value of a the thinner the tails of density are,
while p and q determinate the skewness of the distribution (see C. and S.
(2003)).

The Kth moment of the distribution is:

E
(
yk
)

=
bkΓ(p+ k

a
)Γ(q − k

a
)

Γ(p)Γ(q)
(3.3)

and exists only if −ap < k < aq.
The GB2 includes the Singh-Maddala, the Beta of second Kind and the

Dagum distribution as special cases, corresponding to q=1, a=1 and p=1,
respectively. Setting a = b = p = q = 1 the GB2 can also considered a
generalized log-logistic or Fisk distribution and for a = p = 1 a Lomax
distribution is obtained (seeC. and S. (2003)). The Generalized Gamma
(GG) distribution is obtained as a limiting case of the GB2:

GG(y; a, β, p) = lim
q→∞

GB(y; a, b = q1/aβ, c = 1, p, q) (3.4)

The Weibull and the Gamma distribution are obtained from a GG setting
p = 1 and a = 1, respectively while the lognormal distribution is a limiting
case of GG.

LN(y;µ, σ) = lim
a→0

GG(y; a, β = (σ2a2)1/a, p = (aµ+ 1)/σ2a2) (3.5)

The GG family includes the generalized normal (GN) family (β = 2), that is
itself a flexbile family and includes half normal (HN) distribution (a = 1/2
and p2 = 2σ2). The relationships between these distributions are summarized
in Fig. 3.10.
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Figure 3.10
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3.3.2 Skew-normal distribution and skew t-distribution

Another distributions used as parametric models to describe the empirical
income and wage belong to the class of the distributions generated by per-
turbation of symmetry of a normal distribution (Azzalini et al. (2002)) The
class of skew-normal distributions was introduced in Azzalini (1985). The
density of skew-normal (SN) is defined by:

φ(z;α) = φ(z)Φ(αz), for −∞ < y <∞ (3.6)

where φ and Φ are the density function and the distribution function of a
N(0, 1) variate, respectively and α is the shape parameter. From a SN a
N(0, 1) is obtained setting α = 0 and a half normal is obtained as a limiting
case setting α→∞.

It is possible to generalized the eq. 3.6 introducing a scale parameter ω
and a location paramater ψ. If Z ∼ SN(α) and Y = ψ + ωZ where ψ ∈ R,
ω ∈ R+, then Y ∼ SN(ψ, ω2, α) and its pdf is:

f(y) = 2φ(y − ψ;ω)Φ[α(y − 1ψ)ω−1]. (3.7)

Azzalini (1985) proposed an alternative parametrization, the so called
centered parametrization (CP parametrization), where the new three pa-
rameters (µ, σ, γ3) have the usual meaning of mean, variance and skewness.
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Centred parameters can be expressed in terms of direct parameters:

µ = ψ + ωδ

√
2

π
,

σ2 = ω2

(
1 +

2δ2

π

)
,

γ3 =
4− π

2

(δ
√

2/π)3

(1− 2δ2/π)3/2
,

(3.8)

where δ = α√
1+α2 .

The skew-t distribution is an asymmetric version of a Student’s t distribu-
tion. In the Azzalini and Capitanio (2003) formulation a skew t-distribution
is obtained as the ratio of a skew normal variable and a transformation of a
χ2 variable. A skew t-distribution can be defined as:

Z̃ = V −
1
2Z, (3.9)

where Z is a skew normal variate with ψ = 0 and V ∼ χ2
ν/ν is independent

of Z. It is possible to generalize this expression by introducing other two
parameters ψ and ω so that Ỹ = ψ + ωZ̃. A skew t-distribution can be
obtained also mixing a scale mixture of SN variables whit scale mixing factor
V 1/2. The pdf of a standard skew t-distribution is:

f(y) = 2t(z; ν)T

(
α

(
1 + ν

z2 − ν

)1/2

; ν − 1

)
(3.10)

where

t(z; ν) =
Γ ((ν + 1)/2)

(πν)1/2Γ(ν/2)

(
1 +

z2

ν

)−(ν+1)/2

(3.11)

is the density function of a t variable with ν degrees of freedom, and T (x; ν+1)
is the t distribution function with ν + 1 degrees of freedom.

A skew t-distribution can be derived also as a transformation of a beta
density. The skew t family introduced by Jones and Faddy (2003) has density:

f(x; a, b) =
1

B(a, b)2a+b−1
√
a+ b

(
1 +

x√
a+ b+ x2

)a+1/2(
1− x√

a+ b+ x2

)b+1/2

,

(3.12)
where a, b > 0 and B(., .) is the Beta function. As Jones and Faddy (2003)
underlined the skew-t distribution that they derived behaves rather differ-
ently from the skew-t distribution derived by Azzalini. The authors stressed
the different way in which skewness is controlled by the two models. Jones
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model considers two separate left-tail and right-tail power parameters. In
this model the skewness arises through differences between tail-weight pa-
rameters. In the skew t-distribution proposed by Azzalini there is just one
parameter controlling the tails weight. The skewness is introduced by differ-
ent scales in each tails.

3.3.3 Parameters estimation

Parameters estimation of models described in the Sections 3.3.1 and 3.3.2
is based on the log-likelihood( see C. and S. (2003)). The parameters are
estimated to maximize:

l(θ) =
N∑
i=1

ln(fd(yi : θ)), (3.13)

where f is the pdf of the distribution and θ is the vector of the distributional
parameters. When the equations for the estimation are not in a closed form
unknown parameters are estimated with numerical optimization methods15.

To compare nested models (such as GB2 and Sing-Maddala) the likelihood
ratio test is used. To compare non-nested models (such as Singh-Maddala and
Dagum) the chi-square goodness-of-fit measures is computed (see Dastrup
et al. (2007)).

Parameters estimation for the GB2 and the skew t-distribution

GB2 and skew t-distribution are best performing models in terms of goodness
of fit for our data set, as showed in Section 3.3.3. For this reason GB2 and
skew t specification are described in more datails.

Consider a GB2 model, the log-likelihood for a complete sample is:

l =n log Γ(p+ q) + n log(a) + (ap− 1)
n∑
i=1

log(xi)− nap log(b)− n log Γ(p)−

− n log Γ(q)− (p+ q)
n∑
i=1

log
[
1 +

(xi
b

)a]
(3.14)

Deriving with respect to a, b, p, q the following partial derivatives are obtained

15R users may referred to VGAM package, GB2 package and SN package
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(C. and S. (2003)):

n

a
+ p

n∑
i=1

log (fracxib) = (p+ q)
n∑
i=1

log
(xi
b

)[( b

xi

)a
+ 1

]−1

, (3.15)

np = (p+ q)
n∑
i=1

[(
b

xi

)a
+ 1

]−1

, (3.16)

nψ(p+ q) + a
n∑
i=1

log
(xi
b

)
= nψ(p) +

n∑
i=1

log
[(xi

b

)a
+ 1
]
, (3.17)

nψ(p+ q) = nψ(q) =
n∑
i=1

log
[(xi

b

)a
+ 1
]

(3.18)

where ψ(.) is digamma function, the derivative of the function Γ(.)

ψ(x) =
d

dx
lnΓ(x) = Γ′(x)/Γ(x) (3.19)

The system can be solved using a numerical optimization. Algorithms
for numerical optimization are used to find the maximum (or minimum) of a
function when the function has not explicit solutions. One of the most used
iterative method to calculate an approximation of the maximum loglikeli-
hood estimates is the Newton-Raphson method. This method of optimiza-
tion consist on to find the root of the equation f ′(x) = 0. The first-order
approximation of this function around the n-th approximation xn of the true
solution x∗ is (Dennis and Schnabel (1983)):

f ′(x∗) ∼ f ′(xn) + f ′′(xn)(x∗ − xn). (3.20)

where f ′(xn) is the gradient of f at xn and f ′′(xn) is the Hessian at xn.
Since f ′(x∗) = 0, we can solve for ∆xn = x∗ − xn by solving:

f ′′(xn)∆x− n = −f ′(xn) (3.21)

One of the main disadvantages of the Newton-Raphson method is that it
requires second derivatives. When to calculate the Hessian is impractical
or costly quasi-Newton algorithm can be used. In quasi−Newton meth-
ods, the idea is to use matrices which approximate the Hessian matrix,
instead of exact computing of the Hessian matrix. To solve the system in
eq.(3.15)-eq.(3.18) we use the Broyden−Fletcher−Goldfarb−Shanno (BFGS)
method16 (Avriel (2003)).

16R user may referred to GB2 package
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The parameters standard errors are estimated with a sandwich estimator
and with the bootstrap method (see Gentle (1994)). A sandwich variance
estimator for the vector of parameters θ̂ is given by:

ˆV ar(θ̂) = [l′′(θ̂)]−1 ˆV ar(l′(θ̂))[l′′(θ̂)]−1 (3.22)

where l′(θ̂) and l′′(θ̂) are the sums of first and second derivatives of the
log density (Freedman (2006), Pfeffermann and Sverchov (2003), Graf and
Nedyalkova (2010)).

The log likelihood of skew t-distribution has been developed by Azza-
lini and Capitanio (2003) . Azzalini also provided a suite of R routines for
evaluating the log-likelihood and its derivatives. 17.

Moments for the skew t-distribution can be calculated remembering that
a variable Y ∼ st(µ, ω, α, ν) could be expressed as: Y = µ + V −

1
2X where

V 2 ∼ χν/ν , X ∼ SN(µ+ ωZ) and V is independent on X. If E(Y (m)) is a
moment of order m, than:

E(Y (m)) = µ+ E(V −
(m)
2 )E(X(m)). (3.23)

It is known that:

E(V −
(m)
2 ) =

(ν/2)(m/2)Γ
(
ν−m

2

)
Γ
(
ν
2

) (3.24)

while the moment generating function for a SN(µ, ω2α) is given by:

mgfy(t) = 2exp(µt+
ω2t2

2
)Φ(δωt) (3.25)

where δ = α/
√

1 + α2.

3.3.4 Inequality Indices

The literature on Lorenz curves and inequality measures is very wide. In
this section we shall present only the basic results. The Lorenz curve was
introduced in 1905 as a powerful method of illustrating the inequality of the
wealth distribution. Suppose to have n people with income y1...yn to plot
the Lorenz curve we must calculate:

pi =
i

n
, (3.26)

17The SN package is available at http://azzalini.stat.unipd.it/SN.
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qi =

∑i
j=1 y(j)∑n
j=1 y(j)

, (3.27)

where pi and qi represent the cumulate share of the first i people and the
cumulate share of the income of the first i people respectively. To drawn the
Lorenz curve the points with coordinates (pi, qi) are interpolated linearly.
The diagonal of the unit square corresponds to the Lorenz curve of a society
in which everybody receives the same income and thus serves as a benchmark
case against which actual income distributions may be compared with.

The most commonly used measure of inequality is the Gini coefficient
(Gini (1909b)). The coefficient varies between 0, which reflects complete
equality and 1, which indicates complete inequality (one person has all the
income or consumption, all others have none). Graphically, the Gini coeffi-
cient can be easily represented as twice the area between the Lorenz curve
and the line of equality (C. and S. (2003)):

G = 1− 2

∫ 1

0

L(u)du (3.28)

where L(u) is the Lorenz curve. Among the several formula of the Gini
coefficient one of the most used is (Xu (2004)):

G =
2

N2y

N∑
i=1

i(y(i) − y) (3.29)

where N is the population size, y is the average income and individuals are
ordered in non decreasing order. In this formulation the Gini coefficient
can be interpreted as the espected gap between the wages of two random
selected individuals. As stressed by Jenkins (2007) the main disadvantage
of Gini coefficient is that it is relatively sensitive to income difference only
around the mode of the distribution. Other inequality indices, sensitive to
income difference in different areas of the income distribution, are the indices
belonging to the generalized entropy (GE) class of inequality measures. The
GE class of inequality measures I(α) is defined, for α 6= 0, 1, as (Cowell and
Kuga (1981)):

I(α) =
νaµ−1 − 1

α(α− 1)
, (3.30)

where

να =

∫
yαdF (y). (3.31)
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and F (y) is the cdf for y. The index for α = 0 and for α = 1 are obtained as
limiting case of I(α).

I(0) = lim
α→0

I(α) = logµ+ ν0 (3.32)

where ν0 =
∫
logydF (y) and µ is the expected value of y.

I(1) = lim
α→1

I(α) =
µ

ν1

− logµ (3.33)

where ν1 =
∫
ylogydF (y). I(0) is the mean logarithmic deviation (MLD)

and I(1) is the Theil index. Measures from the GE class are sensitive to
changes at the lower end of the distribution for α close to zero, equally
sensitive to changes across the distribution for α equal to one (Theil index),
and sensitive to changes at the higher end of the distribution for higher
values. Following Jenkins (2007) and Jenkins (2009) GE class of inequality
indices are provided for α = (−1, 0, 1, 2). Inequality in earnings distributions
has been summarized in terms of the Gini coefficient and of four inequality
indices derived from the General Entropy (GE) class of inequality measures
I(α) (see Jenkins (2007)). Bootstrap standard errors for all indices used to
summarized inequality are computed.

Inequality indices for the GB2 distribution and for the skew t-
distribution

The expressions for the inequality indices for a GB2 model has been provided
by Jenkins (2007), in particular: the bottom sensitive index I(−1) is given
by:

I(−1) = −1

2
+

Γ(p− 1
a
)Γ(q + 1

a
)Γ(q − 1

a
)

2Γ2(p)Γ2(q)
. (3.34)

The top sensitive index I(2) is given by:

I(2) = −1

2
+

Γ(p)Γ(q)Γ(p+ 2
a
)Γ(q − 2

a
)

2Γ2(p+ 1
a
)Γ2(p− 1

q
)

(3.35)

The mean logarithmic deviation index is given by:

I(0) = Γ(p+
1

a
)Γ(q − 1

a
)− Γ(p)− Γ(q)− ψ(p)

a
+
ψ(q)

a
(3.36)

and the Theil index is:

I(1) =
ψ(p+ 1

a
)

a
−
ψ(q − 1

a
)

a
− Γ(p+

1

a
)− Γ(q − 1

a
) + Γ(p) + Γ(q). (3.37)
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For the skew t-distribution is not possible to calculate I(−1) from eq.3.30,
since it is necessary to know explicitly ν−1. It could be proof (see Cressie
et al. (1981)) that for a positive random variable X,

E(X−1) =

∫ 0

−∞
MX(t)dt. (3.38)

where MX(t) is the moment generating function for X. Substituting in
eq. 3.38 the expression for the mgf for the SN(µ, ω2α) given in eq. 3.25, the
expression for the the moment of order m = −1 is obtained:∫ 0

−∞
2e

(
µt+ω2t2

2

)
Φ(δωt)dt (3.39)

The integral in eq.(3.39) is equal to:∫ 0

−∞
2e

(
µt+ω2t2

2

) [
1

2
+

1√
2π

∫ ∞
δωt

e−x
2

dx

]
dt =∫ 0

−∞
e

(
µt+ω2t2

2

)
dt+

∫ 0

−∞

[
2√
2π
e

(
µt+ω2t2

2

) ∫ ∞
δωt

e−x
2

dx

]
dt,

but first integral, calculate in t = −∞, is not finite

∫ 0

−∞
e

(
µt+ω2t2

2

)
dt =

[
eµt+

ω2t2

2

µ+ ω2t

]0

−∞

.

For this reason is not possible to calculate I(−1). To overcame this problem
is possible to calculate inequality index I(−1) from a random sample drawn
from a skew t-distribution. To check if I(−1) calculated from a random
sample is a good approximation to I(−1) calculated directly from the moment
generating function the two index has been compared for the GB2 model.
The approximation is reasonable for all the inequality indices (results are
showed in Appendix). For this reason and for homogeneity purpose all the
four indices are calculated from a random sample. In details, when the skew
t-distribution was the best-fitting model, 1000 random samples with the same
size of the empirical sample has been drawn. Then the inequality indices has
been calculate, with their standard errors. In particular the formula for
inequality indices for α 6= 0, 1 is (C. and S. (2003)):

I(α) =
1

Nα(α− 1)

N∑
i=1

[(
yi
ȳ

)α
1

]
, (3.40)
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while for α = 1 the inequality index is given by:

I(1) =
1

N

N∑
i=1

[
yi
ȳ
ln

(
yi
ȳ

)]
, (3.41)

and for α = 0

I(0) =
1

N

N∑
i=1

ln

(
yi
ȳ

)
. (3.42)

3.3.5 Empirical results

The daily wage is fitted with all the distributions described in the previous
sections. The analysis was performed for the whole sample, for the men
sub-sample and for the women sub-sample. For each sample three years are
analyzed: the first and the last available (1985 and 2004) and an intermediate
one (1995). Thus the distributions was fit for 9 different data sets.

Distributions were compared on the basis of the likelihood ratio test
(where applicable) and on the basis of other goodness of fit measures. Fol-
lowing Dastrup et al. (2007), table 3.9 shows the log likelihood value for the
”best fitting” two - three - and four parameters models. The lognormal dis-
tribution results to be the best two parameters model in seven cases on nine,
while among the three parameters distribution Sing-Maddala and Dagum
are equally frequent the best fit. Among the four parameters model the GB2
is the best fitting model in 6 cases on 9, while in three cases the skew-t
distribution is preferable. The four parameters GB2 provides a statistically
significant improvement relative to its nested distributions in all the 8 cases
where was possible to perform a log-likelihood test.

Table 3.9
Best fitting models

Two parameters Three-Parameters Four Parameters

model Log-L model Log-L model Log-L
Whole sample 1985 Gamma -212620.8 Dagum -210339.4 GB2 -209889.5

1995 Lognormal -230987.5 SM -228495.3 GB2 -228035.0
2004 Lognormal -274593.6 Dagum -271948.6 Skew t -271145.8

Male 1985 Gamma -148996.0 Dagum -147218.1 GB2 -146805.7
1995 Lognormal -155494.5 SM -154021.6 GB2 -153842.2
2004 Lognormal -172063.0 SM -170945.0 Skew t -1700787.0

Female 1985 Lognormal -60352.77 Dagum -58534.5 GB2 -58424.9
1995 Lognormal -70240.32 Skew-Normal -62152.77 GB2 -59776.2
2004 Lognormal -100078.0 SM -98885.72 Skew t -98379.9

Tables from 3.10 to 3.13 show the estimated parameters, and their stan-
dard errors, for the best fitting models for the wage distribution by gender
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and year. For the years 1985 and 1995 the GB2 is the best fitting model
for all the three samples (all workers, male and female), while in 2004 the
skewed-t distribution is the best model to describe the data.

It is interesting to analyzed the evolution of the wage distribution for the
three samples. To perform this analysis we compare the estimated param-
eters of the GB2 distribution by gender and year. The overall shape of the
distribution is governed by the parameter α, while p and g govern the left
tail and the right tail of the distribution, respectively. The lower are the
values of p and q the heavier are the tails of the distribution. Comparing
the distribution for all the workers in 1985 and ten years later, we notice
that a and p increase while q decreases. Between 1985 and 1995 the wage
distribution shift on the right and the heaviness of the right tail increases.
The effect on the wage is an increase of the modal wage, furthermore the
probability to select randomly a high wage was higher in 1995 than in 1985.

Table 3.10
Parameters estimation for a GB2 model. Whole sample.

Par 1985 1995

Coef S.E Z S.E boot Coef S.E Z S.E boot
a 13.44 0.407 33.01 0.73 14.61 0.52 28.27 0.75
b 30.32 0.089 341.14 0.15 27.27 0.07 378.81 0.11
p 0.251 0.009 30.12 0.02 0.331 0.01 26.01 0.02
q 0.309 0.012 27.58 0.02 0.217 0.01 25.11 0.02

The parameters dynamic for Italian data set between 1985 and 1995 is
different from the dynamic showed in other Countries. For instance, Brach-
mann et al. (1996), who analyzed the household income in Germany between
1984 and 1993, show a different dynamics where a decreases while p and
q increases, so that the tails of the distribution become less heavy and the
variance of the data shrinks.

The dynamic founded by Brachmann and his coauthor is similar to the
dynamic of the GB2 parameters, between 1985 and 1995, for the male sub-
sample (Table 3.11) where: a decreases, p increases while q remains stable.
The effects of this dynamic on the size distribution of the wage are a de-
creasing of the modal value, a lighter left tail (i.e. the probability of select
randomly a low wage is lower in 1995 than ten years before) and a substantial
invariance of the right tail.

The female sub-sample shows, between 1985 and 1995 a different dynamic
respect to the male sub-sample (see Table 3.12). Parameters a and p increase
while q decreases, so that, between 1985 and 1995, the modal value of daily
wage increases, the left tail become lighter while the right tail become heavier



56 CHAPTER 3. THE SIZE DISTRIBUTION OF ITALIAN WAGE

Table 3.11
Parameters estimation for a GB2 model. Men

Par 1985 1995

Coef S.E Z S.E boot Coef S.E Z S.E boot
a 15.81 0.613 25.77 0.657 11.35 0.46 24.75 0.511
b 31.84 0.098 324.90 0.102 28.86 0.10 280.53 0.112
p 0.237 0.010 23.24 0.012 0.419 0.02 21.79 0.022
q 0.273 0.012 22.56 0.014 0.262 0.01 21.41 0.011

(i.e. the probability of select randomly a low wage is lower in 1995 than in
1985, while the probability of select randomly a high wage is higher in 1995
than in 1985).

Table 3.12
Parameters estimation for a GB2 model. Women

Par 1985 1995

Coef S.E Z S.E boot Coef S.E Z S.E boot
a 21.73 2.710 8.02 1.620 28.524 0.41 70.07 0.53
b 27.14 0.128 212.53 0.130 25.741 0.09 289.55 0.11
p 0.154 0.020 7.74 0.014 0.190 0.01 19.18 0.015
q 0.257 0.036 7.14 0.028 0.162 0.01 11.40 0.011

Even if for 2004 the best theoretical model to describe the daily wage
distribution is the skewed-t, we have estimated also the parameters of the
GB2 model. In this way we can compare the 2004 estimates with the esti-
mates of the previous years. The results are summarized in Figure 3.11. The
comparison between the daily wage distribution by gender and years points
out three facts:

• for all the three samples (the whole sample, the men subsample and the
female subsample), the main changes in the wage distribution occurred
between 1985 and 1995 for all the three samples;

• The dynamic of the whole sample is mainly driven by the dynamic
of the male sub sample, since men represent, at least, the 63% of the
entire sample;

• The dynamic of the female sample, in terms of parameters q, is different
respect with the dynamic of the male sample. The estimated parame-
ter q for the female distribution decreases monotonically between 1985
and 2004, so that the heaviness of the right tail of the distribution is
monotonically increasing between 1985 and 2004.
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Figure 3.11
Daily wage distribution by gender and year.

Inequality

Table 3.14 shows the Gini coefficent, the bottom sensitive index I(−1), the
mean logarithmic deviation I(0), the Theil index (I(−1)) and the top sensi-
tive index or the half the squared coefficient of variation I(2). For the first
two years indices are calculated for a GB2 model for the last year (2004)
indices are calculated for a skew t-distribution.

The dynamic of the inequality indices points out that the wage distribu-
tion changes, between 1985 and 2004, especially in the right tail, namely for
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Table 3.13
Parameters estimation for a Skew t-distribution. Whole sample.

Par Whole Sample

Coef S.E Z S.E boot
location 21.23 0.06 85.02 0.07
scale 11.73 0.10 37.91 0.11
shape 2.43 0.03 15.30 0.03
df 3.20 0.05 14.81 0.05

Par Male sample

Coef S.E Z S.E boot
location 21.56 0.08 76.19 0.07
scale 13.51 0.138 36.10 0.145
shape 2.81 0.037 14.61 0.041
df 3.77 0.09 12.64 0.09

Par Female sample

Coef S.E Z S.E boot
location 21.46 0.096 69.23 0.083
scale 8.59 0.118 24.94 0.128
shape 2.68 0.030 9.72 0.036
df 3.69 0.059 11.01 0.072

the higher wages. Inequality between 1985 and 2004 decreases among the
low wage ( I(-1) index is the only inequality index that decreases from 1985
to 2004) and increases for the high wage. The dynamic of the inequality
indices can be divided in two different stages. An early stage between 1985
and 1995 characterized by a high increase in inequality especially on the top
of the distribution. And a last stage, from 1995 to 2004, characterized by a
general decreasing of the inequality indices. These results are coherent with
the standard findings for Italian inequality. The wage inequality dynamic in
Italy was analyzed by Brandolini et al. (2002) which used the survey of Bank
of Italy (SHIW). The authors investigated the dynamics of net wages in Italy
between 1977 and 1998 and pointed out that at the beginning of 1990s an
increase in earnings inequality took place (especially in 1992-1993) due to
the economic crisis (1992) and the abolition of the wage index mechanism,
the so-called Scala Mobile18 (see also Manacorda (2004)). From 1993 to 1998
Brandolini et al. (2002) argued that inequality remains unchanged. Jappelli
and Pistaferri (2010) analyzed the SHIW data from 1980 and 2006 and found
that ”inequality grows quite dramatically between 1989 and 1995 and is basi-
cally flat thereafter”. The same results was pointed out by Devicienti (2003)
analyzing the WHIP data set from 1985-1996.

18With the Scala Mobile mechanism the wage was indexed to the cost of life
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Table 3.14
Inequality indices. Whole sample

I(-1) I(2) I(0) I(1) Gini

1985
coeff 0.0825 0.0852 0.0723 0.0730 0.20

s.e boot (0.002) (0.002) (0.043) (0.034) (0.002)

1995
coeff 0.0929 0.1816 0.0943 0.1125 0.23

s.e boot (0.002) (0.003) (0.03) (0.003) (0.002)

2004
coeff 0.0741 0.1044 0.0801 0.1021 0.22

s.e boot (0.001) (0.005) (0.05) (0.001) (0.001)

The inequality analysis proposed in literature for the Italian data does not
distinguish between male and female (see Brandolini et al. (2002), Manacorda
(2004), Jappelli and Pistaferri (2010) and Devicienti (2003)). The results we
found for the whole sample and for male sub-sample agree with the findings
proposed in literature (the dynamic of the whole sample is mainly driven
by the male sub-sample since men represent, at least, the 63% of the entire
sample) while the results for the female sub-sample are different. Inequality
for men wage is summarized in Table 3.15. Over the first 10 years of obser-
vation, inequality increases in particular for the high wages. Between 1995
and 2004 a general decline of inequality is observable.

Table 3.15
Inequality indices. Men

I(-1) I(2) I(0) I(1) Gini

1985
coeff 0.0741 0.0809 0.0668 0.0685 0.194

s.e (0.001) (0.002) (0.001) (0.001) (0.001)

1995
coeff 0.0976 0.1946 0.0989 0.1185 0.241

s.e (0.001) (0.006) (0.001) (0.002) (0.002)

2004
coeff 0.0832 0.0923 0.07174 0.0759 0.216

s.e (0.004) (0.003) (0.001) (0.001) (0.002)

Inequality within woman shows a different pattern (Table 3.16). Between
1985 and 1995 all the inequality indices increase except I(-1) that decreases,
as happened for the whole sample, but from 1995 and 2004 inequality con-
tinues to rise slightly.

Some theories, explaing the dynamics of inequality in OECD countries,
pointed out the importance of the skill based technological change. Quoting
The New Palgrave Dictionary of Economics (Durlauf and Blume (2008)):
”Skill-biased technical change is a shift in the production technology that
favours skilled over unskilled labour by increasing its relative productivity
and, therefore, its relative demand. Traditionally, technical change is viewed
as factor-neutral. However, recent technological change has been skill-biased.
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Table 3.16
Inequality indices. Women

I(-1) I(2) I(0) I(1) Gini

1985
coeff 0.0702 0.0572 0.0582 0.0548 0.1770

s.e (0.001) (0.001) (0.052) (0.054) (0.001)

1995
coeff 0.0651 0.0984 0.0650 0.0732 0.2410

s.e (0.002) (0.002) (0.041) (0.032) (0.002)

2004
coeff 0.093 0.1093 0.0689 0.0759 0.2160

s.e (0.015) (0.024) (0.003) (0.002) (0.002)

Theories and data suggest that new information technologies are complemen-
tary with skilled labour, at least in their adoption phase. Whether new capital
complements skilled or unskilled labour may be determined endogenously by
innovators economic incentives shaped by relative prices, the size of the mar-
ket, and institutions. The factor bias attribute puts technological change at
the center of the income-distribution debate.” (the so called STBC), see also
Acemoglu (2002)). Standards STBC theories are associated to an increase of
wage inequality. Furthermore, recent empirical works (see Autor et al. (2006)
Goos and Manning (2007) and Goos et al. (2009)) show that upper tail and
the lower tail of the wage distribution are characterized by different patterns
of the inequality trends. An explanation of these phenomena can be related
with the changes in the structure of the job quality distribution. Autor et al.
(2006) and Goos and Manning (2007) found that non-routine tasks are con-
centrated in high-paid and low-paid service jobs (the top and the bottom of
the distribution) while routine tasks are concentrated in manufacturing and
clerical works (the middle of the distribution). Autor et al. (2006), Goos and
Manning (2007) and Goos et al. (2009) argued that from the early 1990s in
USA and in Europe technologies are becoming more intense in the use of
non-routine tasks concentrated in high-paid and low-paid service job.

The different trends of the inequality recorded within male sub-sample
and and female sub-sample suggests us to investigate the dynamics of wage
among the two groups defined by the gender. To analyzed the dynamics of
the wage between 1985 and 2004 a regression is used.

The regression model is builded starting from the Mincerian wage re-
gression (Mincer (1974)). Mincer developed a model of earnings to estimate
returns to schooling, returns to schooling quality, and to measure the impact
of work experience on male-female wage gaps (Heckman et al. (2003)) In the
standard form of the Mincer earnings model, log earnings are regressed on a
constant term, a linear term in years of schooling, and linear and quadratic
terms in years of labor market experience. Formally a standard Mincerian
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wage regression can be expressed as:

log(Wt) = β0 + β1s+ β2z + β3z
2, (3.43)

where Wt is the individual wage al time t, s represents the years of education
and z keeps the years of post-schooling investment in human capital into
account (Heckman et al. (2003)). Since, in our dataset, the informations
about the years of education and the years of experience are not available,
we have choose the skill level and the age as proxies for the education and
labour market experience respectively.

The analysis is performed with a fixed effects model. To decide between a
fixed effects model or a random effects model a Hausman test was performed.
Since the null hypothesys is rejected (i.e. the error components are correlated
with the regressors) we choose to perform this analysis with a fixed effects
method. The estimated model is:

yit = β0 + β1ageit + β2age
2
it + β3contractit + β4illnessit + β5migrationit+

+ γskillsit + δwork areait + αsectorit + ψtyearit ∗ sex+ ωtyearit + εit
(3.44)

where yit is the logarithm of the daily wage; ageit is the age at time t of
the i − th individuals and age2

it is the square of ageit. The quadratic term
is used to model a non linear effect of age. Contractit is a dummy variable
taking value 1 if the i− th individual at time t has a permanent contract and
zero otherwise; illnessit is a dummy variable taking value 1 whether in the
reference year the i − th worker received an illness benefit; migrationit is a
dummy variable that takes value 1 if the working geographical area differs
from the geographical born area; skillsit indicates the skill of individual
i − th at time t; work areait indicates the geographical area of Italy where
employment was performed; sectorit indicates the industrial sector and year
is the calendar year. Since the fixed effects model removes variables that are
time constant is not possible to include the gender as one of the covariates
in the model. To overcome this problem and to estimate how the gender gap
has changed over time we add to the model the interaction between gender
and time. Even thought is not possible to identify the effect of gender in
any particular time period t, the coefficients ψ2 . . . ψ20 are identified, and
therefore the differences in partial effects on time-constant variables relative
to the base period can be estimated (see Wooldridge (2010)). The estimated
coefficients of the model in eq.3.44 are showed in table 3.17.

The estimated coefficients are generally in line with the standard eco-
nomic interpretation. The age has a quadratic effect with the linear term
positive and the squared term negative. The parabolic function given by the
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Table 3.17
Fixed effect estimates of the logarithmic daily wage

lwage Coef. Std.

Age 0.0416*** 0.0011
Age2 -0.0003*** 0.0000
Ptime 0.0713*** 0.0013
Contract 0.0309*** 0.0011
Illness Benefit -0.0435*** 0.0008
Migration -0.0135*** 0.0014
Skill: Blue Collar 0.2125*** 0.0018
Skill: White Collar 0.2999*** 0.0021
Skill: Manager 0.5515*** 0.0033
Work area: North East -0.0067 0.0027
Work area: Centre -0.0211*** 0.0029
Work area: South-Island -0.033*** 0.0028
Sector D 0.0446*** 0.0029
Sector E 0.0928*** 0.0081
Sector F 0.0949*** 0.0032
Sector G 0.031*** 0.0030
Sector H 0.0594*** 0.0034
Sector J-I -0.0389*** 0.0029
Sector L-M-N-O-P-Q -0.0589*** 0.0031
Cons 2.1055 0.02978
Interaction sex-year dummies X
Year dummies X
sigma u 0.36627822
sigma e 0.24892871
rho 0.68405136

Notes:

1. ** Significant at the 5% level; *** Significant at the 1% level.

2. Base categories for categorical variables are: Apprentice (Skill), North-West (Work area), Sector
A-B-C-E (Sector).

3. Sectors A-B-C-E include: Agriculture, hunting and forestry; Fishing; Mining and quarrying. Sec-
tor D includes: Manufacturing. Sector E includes: Electricity, gas and water supply. Sector
F includes:Construction. Sector G includes: Commerce. Sector H includes: Hotels and restau-
rants. Sectors I-J-K includes: Transport and communications; Financial intermediation;Business
services. Sectors L-M-M-O-P-Q includes:Public administration and defence, compulsory social se-
curity; Education; Health and social work; Other community, social and personal service activities;
Activities of households; Extra-territorial organizations and bodies.

4. Coefficients for Interaction between gender and year dummies and coefficients for the year dummies
are all significant at the 5% level.

coefficients of age and age2 reachs its maximum for an age of 69 years (i.e out
of the working age range). The implication is that wage increases with age
at decreasing rates until retirement. Coefficients for Ptime and Contract are
positive and significant, while coefficients for Illines and Migration are neg-
ative. The employment positions Blue Collar, White Collar and Manager
are associated with higher wages respect to the base category Apprentice.
The working areas Center and South and Islands are associated with lower
wages respect to the base category North-East, while the difference between
North West and North East is not significative. From the estimated model
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the average partial effects19 of the interaction between gender and time are
calculated.

Figure 3.12
Predictive margins
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In Fig. 3.12 the gender gap calculated as the difference between the log-
arithmic male wage and the logarithmic female wage (blue line in the graph)
is compared with the gender gap obtained as difference in the average partial
effects (red line in the graph). The estimation results, after controlling for
some individual specific time-varying variables, highlights to facts. Firstly,
the average wage is still higher for males over 20 years. Wage gender gap,
calculated as difference in average partial effects, is lower than gender gap
calculated as the logarithmic difference between male and female wage. Sec-
ondly, the gender gap is constant between 1985 and 2004. Considering a men
and a women of the same age and with the same skills, working in the same

19To calculate the average partial effects a marginal effect is computed for each case,
and the effects are then averaged.
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industrial sector and in the same geographical area, the men wage is always
higher than the women wage for each time period considered in the analysis.
Furthermore, the wage gap is not shrinking over the time. Therefore the
shrink of the gender gap showed in Fig. 3.9 is not the effect of better wage
conditions for women.

This phenomena could be a consequence of the female dynamic within
the labour market. Tab 3.18 shows the distribution of workers by gender
and skill. Men are concentrated in the blu-collar category both in 1985 and
in 2004. In 1985, 54% of women belong to the blu-collar category while in
2004 this percentage shrinks to about 44%. In the same time the percentage
of women working as white-collar rise from about 40% to in 1985 to 48% in
2004. Between 1985 and 2004, women have increased their skills more than
men while the gender gap remained constant over time. As a consequence it
could be possible to detected a higher growth in average female wage due to
an higher percentage of women working in high-paid job positions.

Table 3.18
Distribution of workers by gender and skills

Men
Skill 1985 1995 2004
Apprentice 4.83 3.91 5.66
Blu-Collar 69.00 66.42 66.67
White-Collar 24.97 28.24 23.96
Cadre and Manager 1.23 1.44 4.31

Women
Skill 1985 1995 2004
Apprentice 6.39 4.10 6.69
Blu-Collar 53.88 42.56 43.78
White-Collar 39.67 47.16 48.00
Cadre and Manager 0.09 0.18 1.57

3.4 Conclusions

This chapter analyzed the wage distribution in Italy between 1985 and 2004.
The preliminary analysis of the data underlines two main changes in the
sample composition between 1985 and 2004. Firstly, in 1985 women repre-
sented the 30% of the total sample, after 20 years this percentage rises at
37%. Secondly, in the twenty years of observation, an ageing of the sample
occurs. Changes in the age distribution from 1985 to 2004 can be the results
of a lagged entry in labour market and/or of an increase of atypical contract
as main contract for young people, and/or of a delayed exit from the labour
market. The analysis of the wage by gender highlights that female average
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daily wage growths more than the male daily wage between 1985 and 2004.
Nevertheless the average daily wage perceived by women is lower than the
males ones for the whole observational period.

The empirical wage distributions (by year and by gender) are fitted with
10 different models with two, three or four parameters. The distributions
are compared on the basis of the likelihood ratio test (for nested models)
and on the basis of other goodness-of-fit measure (such as the chi-square).
For 1985 and 1995 the best fitting model is the GB2 distribution, while in
2004 data are better represented by a skewed-t distribution. For these two
distributions, four inequality indices are calculated.

The analysis of inequality for the whole sample and the men sub-sample
highlights two main facts. On the one hand, the dynamic of daily wage
can be divided in two stages: i) an early stage (between 1985 and early
1990s) characterized by a high increase in inequality indices at the top of the
distribution and a decrease at the bottom; ii) a last stage characterized by a
general decreasing of the inequality indices.

On the other hand, the main changes regard the top of the distribution.
These results agree with the results obtained by other authors (see Brandolini
et al. (2002), Manacorda (2004), Jappelli and Pistaferri (2010) and Devicienti
(2003)). The same analysis on the female sub-sample reveals a different trend
of the inequality. The women inequality measures seems to rise slightly
also after the 1995. This fact could be a consequence of the skill based
technological change (STBC). The different trends of the inequality recorded
within male sub-sample and within female sub-sample suggests to investigate
the dynamics of wage among the two groups defined by the gender. At
a first look seems that the wage gender gap, between 1995 and 2004, was
shrinking but a deeper analysis (performed by the means of a fixed effects
regression model) shows that the shrinking in the difference between men
wage and women wage could be due to an increasing of the percentage of
women working in high-paid job and not to an ”approaching” of the female
wage to the male wage.
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Chapter 4

The Size Growth Relation in
Pharmaceutical Industry

The first formal model of the firm size dynamics dates back to the well known
law of proportionate effects presented by Gibrat in 1931 (Gibrat (1931)). He
argued that the firm size distribution follows a lognormal process, which
implies the independence between size and growth.

As pointed out in Chapter 2, an approach proposed in literature to check
the validity of a stochastic growth model, consists on investigating the deter-
minants of the growth by means of regression methods. Since the 1950s the
Gibrat law of proportionate effects has stimulated a multiplicity of empirical
works1. An early prominent contribution on the investigation of Gibrat’s
Law was made by Mansfield (1962) who presented the law in three versions
and tested its validity accordingly. First, he included all surviving and ex-
iting firms in the sample, setting to −100% the growth rates of firms just
dropped off, and observed a negative relationship in seven of the ten cases.
Mansfield argued that one of the principal reasons of this failure was that
the probability of surviving is lower for smaller firms. Second he consid-
ered only surviving firms and showed that the growth was higher for smaller
firms. Finally he considered only firms exceeding a “minimum efficient size”
2 and found that in this case “results are quite consistent with Gibrat’s Law”
(Mansfield (1962)).

According to the second definition of Mansfield, the majority of empirical
studies has rejected the Gibrat law claiming that small firms grow faster than
larger firms. This negative relation has been found using data for different

1An exhaustive survey on firms growth is provided by Coad (2007).
2The minimum efficient size was first proposed by Simon and Bonini (1958a).

67
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countries3, different level of industrial aggregation4, and different industrial
sectors5. Only few studies find some support in favour of the Gibrat law6.
However, when a specific discrimination between small and large firms is
done, results are somewhat different. While for small firms the negative rela-
tion holds nearly always7, for large firms a flat relation is typically observed
and whenever the Gibrat law is rejected even a positive dependence is found8.

According to Mansfield’s third definition, some studies have tested the
Gibrat law for firms above a certain size threshold. For example Droucopou-
los (1983) focuses on a sample of the world’s largest firms and finds support
for it9. Mowery (1983) analyzes two samples of small and large firms and
finds a negative relation for the former while the Gibrat’s law holds for the
latter. Cefis et al. (2006), for the worldwide pharmaceutical industry, and
Hart and Oulton (1996), for a data set of independent U.K. companies, find
a negative relation for pooled data but once the sample is restricted to only
large firms the dependence vanishes.

The relationship between size and growth can be skewed if essential vari-
ables to explain the size and its evolution over time are no taking into account.
Two of the most relevant determinants of growth are considered the age and
the innovation of firms. Age is an important variable to study firms behav-
ior over time. The study of the relationship between size and age generally
shows that the size distribution of firms varies with firms age. In particular
as firms age, their size distribution shifts towards the right-hand side; the
mode, as well as the thickness of the right tail, increase (Cabral and Mata
(2003), Cirillo (2010)). However, the rate of increase in size generally shrinks
as firms get older. A large number of studies find that age reduces the growth
rate of firms (see Jovanonic (1982), Evans (1987a), Evans (1987b), Dunne
and Hughes (1994), Geroski and Gugler (2004), Yasuda (2005)).

3Dunne and Hughes (1994), Kumar (1985) studied the quoted UK manufacturing firms,
Bottazzi and Secchi (2003), Hall (1987b) the quoted US manufacturing firms, J. Goddard
(2002) the quoted Japanese firms, Gabe and Kraybill (2002) establishments in Ohio.

4Dunne et al. (1989) analyze plant-level data as opposed to typical firm-level data.
5Typically the manufacturing sector but for example Barron et al. (1994) study New

York Credit Unions, Weiss (1998) Austrian farms, Liu et al. (1999) Taiwanese electronic
plants.

6Bottazzi et al. (2005) for French manufacturing firms, Hardwick and Adams (2002)
for UK life insurance companies.

7See Evans (1987a), Evans (1987b), Yasuda (2005), Calvo (2006), McPherson (1996),
Wagner (1992), Almus and Nerlinger (2000). However Audretsch et al. (2004) find results
in favour of the Gibrat’s law for small-scale Dutch services.

8A positive relation was found by early studies of Hart (1962), Samuels (1965), Prais
(1974), Singh and Whittington (1975) on data for UK manufacturing firms.

9See also Becchetti and Trovato (2002), Geroski and Gugler (2004), Lotti et al. (2003).



69

As regards innovation the relation with growth is not as clear as the
relation between age and growth. While the role of innovation is considered
central to the growth of firms (Carden (2005), Hay and Kamshad (1994),
Geroski (2000), Geroski (2005)), empirical studies find difficulties in modeling
such relation. As suggested by Coad (2007), one of the main problems is the
consistent time delay between investments in innovation and the conversion
of investments into economic performance. Mansfield et al. (1977) identified
innovation as a three-stages process, on the ground of which, only those firms
able to get through it are successful innovators. Mansfield (1962) found that
successful innovators grow faster especially if their starting size is small.

Some later studies (Scherer (1965), Geroski and Machin (1992), Geroski
and Toker (1996)) find a positive relationship between innovation and growth,
while others have shown that the relation is not clear (Freel (2000)) or even
absent (Bottazzi et al. (2001)).

Moreover Coad (2007) suggests, according to the literature, that another
problem consists in the definition of innovation itself. Two popular innova-
tion proxies used are the expenditure in R&D and the patents count but,
both these measures have drawbacks though. Expenditure in R&D may not
be well associated with the actual output of an innovative process. Patents
count cannot discriminate between patents with substantial and marginal
economic impact, while it is typically found that the former are a negligi-
ble amount. On the other hand, in many theoretical models, innovation is
represented by the entry in the market of new business opportunities (Ijiri
and Simon (1964), Kalecki (1945), Pammolli et al. (2007). In such a case
the innovation can be proxies both with new product launches and with the
opening of new product lines, divisions, subsidiaries, and plants (Bottazzi
et al. (2001), Pammolli et al. (2007), Growiec et al. (2008)). Unfortunately
is not easy to test empirically the effect of the entry of new business opportu-
nities in the market since it is not so common have available this information
in empirical data.

The purpose of this work is to investigate the size-growth relation and to
test the validity of the Gibrat’s rule. Furthermore we want to explore the
effect of the innovation on the size growth relation. To perform this analysis
we used a set of micro data for firms sales. The data set is an unbalanced
panel of 1,152 USA pharmaceutical firms for the period 1996-2007, developed
by the IMS.

The USA is nowadays the leading country for the pharmaceutical indus-
try: in 2008, 5 of the top 10 pharmaceutical companies in terms of sales was
based in USA. Even if the European population is larger than the American
population, the European pharmaceutical sales are a 10% lower than the
U.S. sales (Daemmrich (2011)). The America leadership in term of sales is
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also a consequence of a less rigid regulation especially for the price system
respect to the Europe

Since the early 1980s the U.S. pharmaceutical sector has been character-
ized by a significative consolidation of large firms as well as the entry into
the R&D process by small and early stage biopharmaceutical firms. From
the middle 1980s the pharmaceutical industry has been experienced also sig-
nificative legislative changes and market developments. The most important
legislative novelty was the Waxman-Hatch Act in 1984 that allowed generic
drug10 to enter the market without the need to do clinical test of safety and
efficacy. Generics can be marketed only by demonstrating bio-equivalence
with existing and patented drugs (Masi et al. (2003)). In the same period,
the market experienced the expiration of patents on major products, the ris-
ing cost of R&D and the rise in price competition for generics. The legislative
changes and the market developments have caused a decline in sales and profit
particularly evident from the middle of 1990s (Grabowski and Kyle (2007)).
Nowadays, one of the main issue regarding the pharmaceutical industry is re-
lated to the R&D and the innovation. In pharmaceutical industry the cost of
innovation is large, the average cost of bringing a new efficacious molecule is
estimated between 800 million dollars11, and risky, to produce a new molecule
it can take 12-13 years and only one out of 10,000 molecules will be marketed.
From the early 2000s a decline in the productivity of innovation is observable:
the annual number of new active substances approved in major markets fell
by 50 percent during the 1990s, while private-sector pharmaceutical R&D
spending tripled (Cockburn (2004)). In last years many authors have dealt
with innovation in pharmaceutical industry (see DiMasi et al. (1991), Masi
et al. (2003), Ornaghi (2006), Comanor and Scherer (2011)) focusing their
research on the relationship between innovation and merges. The literature
claims that conflicting trends confound the pharmaceutical industry. One
the one hand, high R&D real costs and the decline of the rate of innova-
tion have been cited (DiMasi et al. (1991), Masi et al. (2003)) as one of the
main explanation of the concentration trend showed by the pharmaceutical
industry from the 1990s. On the other hand, the increased concentration
brought on by recent mergers may have contributed to the declining rate of
innovation(Comanor and Scherer (2011)).

According to this results our contribution here is to explore whether
the innovation benefits are different for smaller and larger firms. There
are two different levels of innovation related to the firms size: the small

10A generic drug is defined from the U.S. Food and Drug Administration as ”a drug
product that is comparable to brand/reference listed drug in dosage form, strength, route
of administration, quality and performance characteristics, and intended use”

11In year 2000 dollars.
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firms are start-ups using the so called ”genetic engineering” or biotechnolo-
gies while the big pharma companies developed licensing, sponsored R&D
and partnerships with biotech in order to join biotechnological innovation
(Bobulescu and Soulas (2006)). Most of the authors studied the relation-
ship between innovation and size from the point of view of the existence
of scale economies in pharmaceutical industry R&D (Jensen (1987), Graves
and Langowitz (1993),Bobulescu and Soulas (2006), Cockburn and Hender-
son (2001), Miyashige et al. (2007)). The results diverge from one to another
especially in relation to the measure of innovation used, however seems that
scale economies exist in pharmaceutical innovation. Moreover, Masi and A.
(1995) and R.Henderson and Cockburn (1996) showed that R&D costs per
new drug approved in the U.S. decrease with firm size, while sales per new
drug increase with firm size, but the relationship between innovation and
growth by firms size is not investigated.

The paper is organized as follows. Section 4.1 describes the data and
provide some preliminary evidence. Section 4.2 discusses the methodology
employed to estimate the relation between growth and size. In particular,
we apply a growth regression approach to deal with a number of econometric
issues which have been arisen in the literature.

First, the panel dimension allows us to account for the effect of time-
constant unobserved heterogeneity. Then, making use of an instrumental
variables approach, we allow for the violation of the strict exogeneity as-
sumption which comes with the inclusion of size on the right-hand side. This
approach is carried out within a Generalized Method of Moments (GMM)
framework which delivers efficiency gains in estimation. Estimates are also
robust to heteroskedasticity and autocorrelation in the error term. Moreover,
information contained in our data set allow us to control for the age and the
innovation of firms, which are considered the most relevant determinants of
growth. In our model specification we include a variable which proxies the
innovation and attempts to overcome both limits of the other proxies of the
innovation outlined above. In particular this variable synthesizes both the
net inflow of products and the change in Anatomical Therapeutic Chemical
(ATC) classification12. In this way, on the one side we allow for products

12The classification system divides drugs into different groups according to the or-
gan or system on which they act and/or their therapeutic and chemical characteristics.
The anatomical first level of the code contains 14 main groups: Alimentary tract and
metabolism, Blood and blood forming organs, Cardiovascular system, Dermatologicals,
Genito-urinary system and sex hormones, Systemic hormonal preparations, excluding sex
hormones and insulins, Anti-infectives for systemic use, Antineoplastic and immunomod-
ulating agents, Musculo-skeletal system, Nervous system, Antiparasitic products, insecti-
cides and repellents, Respiratory system, Sensory organs, Various.
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which are actually marketed, on the other side it is likely that a change in
ATC captures at least in part the output of the innovation process, unless
associated to a negative inflow, so that the problem of temporal lag should
be mitigated. As further regressors for our model specification we use a
dummy which controls for exiting firms. This is a crude way to account for
the sample selection problem, but at least can purge the size effect on growth
of at least some part of the contribute to large decrements due to firms em-
barking on a final stage of their life cycle. In the related empirical literature
sample selection has been dealt with by using either the Heckman correction
(Harhoff et al. (1998)) or Tobit procedure (Hall (1987b)). Unfortunately it
is a somewhat hard task to apply these techniques in conjunction with IV
panel methods. Anyway, empirical findings point out that when sample se-
lection is accounted for, the Gibrat coefficient changes only modestly and
the negative effect is still supported (Hall (1987b), Evans (1987a)). For the
best of our knowledge, only in other few cases (see Oliveira and Fortunato
(2003), Ribeiro (2007)) the dynamic panel estimators were used to test the
Gibrat’s rule in the industrial context13. Furthermore we are able to insert
in our model important variables usually not available in other models, as
the entry and the exit of products in the market and the level of innovation
of each new product.

Section 4.3 and 4.4 discuss results respectively when the whole sample of
firms is used and when two sub-groups of small and large firms are selected.
Section 4.5 concludes.

4.1 Data and Preliminary Evidence

We draw data from the PHID database, which provides information on sales
of USA pharmaceutical firms and on other dimensions particularly appropri-
ate for the nature of our study. The database provides sales data for different
levels of aggregation. In particular we have information at firm level as well
as product level. The different level of aggregation allows us to analyze, at
the best of our knowledge for the first time, the role of inflows and outflows
of products within the firm, which we will exploit to proxy firm innovation.
Furthermore the data base provides for each product the date of the launch
in the market (in month and year) and this information allows us to analyzed
the role of age.

The data consist in quarterly sales for the US pharmaceutical market at
the smallest level of aggregation from 1997 to 2008. Our window of data

13Soo (2011) used a dynamic panel estimation to test the relation between size and
growth of state population in the United States.
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starts in the 3rd quarter of 1997 and ends in the 2nd quarter of 2008 so we
have 48 quarterly observations. Our unit of observation consists in packs
for a same product. For each unit we have the id of the product and the id
of the firm, so we recover products data by aggregation of sales at the unit
level and firms data by aggregation at the product level. The data provide
information on the launch date of the unit so we can define the age of both
products and firms according to it. First, we define the age of the unit as
the time elapsed in days from the launch date, then days are divided by 365.
Then we define the age of each product as the age of the oldest unit, and the
age of the firm as the age of the oldest product. Firms quarterly sales are
collapsed by age to yield yearly sales.

Sales data for units which do not have all the four quarterly observations
are dropped in order to prevent that in the yearly aggregation some units
have yearly sales which derive from the sum of 3 or less quarterly sales. In
particular, first, for units born before 1/7/1996, we delete for units born in
the 4th, 1st, 2nd quarter respectively 1, 2 and 3 quarterly observations at
the beginning of our window of data, and 3, 2 or 1 quarterly observations
at the end of our window of data. Second, for units born after 1/7/1996,
we delete for units born in the 2nd, 1st and 4th quarter respectively 1, 2
and 3 quarterly observations at the end of our window of data. Anyway,
the problems of yearly sales as sum of 3 or less quarterly sales remains both
for units which die during the sample window (with regards to the year of
death), and for units born again after a death during the sample window
(with regards to the year of birth). It is important to remark that, in the
light of this data cleaning, we are sure that this underestimation of the yearly
sales does not apply to the first year of life (but can apply to the last year of
life and to others). Moreover this problem of within-sample death and rebirth
is less important for firms14. At this stage we aggregate quarterly sales data
to have yearly sales. The same issue of aggregation described above applies
here. Then, firms with gaps in yearly observations are removed from the
sample.

We report some descriptive statistics on the relation between the sales
growth and both sales and age.

Fig 4.1 shows the pattern of growth distribution by sales classes. First of
all, it is clear that the importance of extreme growth bins drops as the sales
increase, which is in accordance with the typical finding that the variance
of growth rates is higher for smaller sales. Moreover, though the portion of

14We remark that in order to have this hierarchical model we have treated a given
product belonging to 2 or more different firms as 2 or 3 different products (yet this happens
for only a small portion of cases).
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Figure 4.1
Growth distribution by size (thousands of pounds)
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1. The growth is calculated as logarithmic difference between yearly sales. The total observations
are divided in 4 growth bins with approximately equal frequencies. Then for each growth bin,
observations are distributed over six bins of sales.

positive growths for the first class of sales is higher than the second class, it
definitely increases as sales increase. Apparently, the sales growth relation-
ship is negative only for very small sales value, but above a certain threshold
it turns out to be positive. As regards the growth distribution by age classes
(Fig. 4.2), the portion of positive growths exhibits an hump-shaped move-
ment, in that it shrinks when firms are young, but then increases for firms
above 20. The pattern of the portion of growth mid bins is instead more
similar to the sales pattern since it is thinner for higher classes.

The data provide the product ATC code which we can use to identify
firms patterns in innovation. We attach to each firm the ATC code of the
most important products in term of sales share and we interpret variations
in ATC in conjunction with changes in the number of products as proxies for
firms innovation15. Our definition of firm’s main ATC may be criticized as
for firms with a highly fragmented products portfolio the largest sales share
may be small and not representative of the firm. However in our data this
problem arises only for a small number of cases. As Fig. 4.3 shows, for less
than 20% of firms the share is below 50%, and for less than 10% the share is

15The idea to look simultaneously at changes in ATC and changes in number of products
is due to the modest variation over time of the first.
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Figure 4.2
Growth distribution by age
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are divided in 4 growth bins with approximately equal frequencies. Then for each growth bin,
observations are distributed over six bins of age.

below 30%.

Table 4.1
Mean Growth by Innovation Patterns

Mean Std. Dev. Min Max Obs.

k+,c 0.67 1.30 -3.41 11.20 335
k=,c -0.10 1.35 -9.06 7.78 286
k−,c -0.76 1.53 -7.86 4.98 335
k+,nc 0.30 0.78 -2.97 8.20 1,031
k=,nc -0.15 1.05 -10.37 8.91 3,919
k−,nc -0.27 0.97 -8.81 5.12 1,033

Notes:

1. The kp,q variables are dummies which indicate firms whose number of products can increase
(k+,q), be constant (k=,q) or decrease (k−,q) between two consecutive years, and whose ATC
code can simultaneously either change (kp,c) or not (kp,nc).

2. The growth is calculated as logarithmic difference between yearly sales.

An increase in the number of products may be an important signal of
innovation of a firm, but when this does not come with a change in the
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Figure 4.3
Size of the largest ATC sales share within firms
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ATC it may represent just marginal innovations. However, when a change in
products comes with a change in ATC it is likely that some structural inno-
vations are taking place within the firm. Thus we create a discrete variable
which capture simultaneously the sign of variation in the number of products
(∆k ∈ {+,=,−}) and whether the ATC change ({c, nc}). Specifically, the
variable can take on six values which represent all possible combinations, and
we define the following six dummies accordingly: k+,c, k=,c, k−,c, k+,nc, k=,nc,
k−,nc.

In Table 4.1 we see that the mean growth in the U.S pharmacy industry is
higher and positive for firms that increase the number of products between
two consecutive years. Out of these, the growth is higher for firms which
also change ATC code. Then we observe a slightly negative growth for firms
which have a zero net flow. The lowest means are for firms which lose some
products, where the worst performance is for firms which also change ATC.
From Table 4.2 it is evident that firms about to exit from the market have a
far lower growth. Interestingly, the mean growth for surviving firms is just
below zero which suggests that overall the growth in our database is negative.
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Table 4.2
The exit effect on the mean growth

Mean Std. Dev. Min Max Obs.

exit = 0 -0.03 1.00 -9.06 11.20 6,716
exit = 1 -1.38 2.14 -10.37 7.78 333

Notes:

1. Exit = 1 for firms in the last year before exit.

2. The growth is calculated as logarithmic difference between yearly sales.

4.2 Econometrics Methodology

In this section we employ an econometric approach to test for the dependence
between growth and size. We model the expected growth as a function of
lagged sales and of some other covariates which proxy the age and innovation
pattern of U.S. pharmaceutical firms. This approach allows to purge the
size/growth relation of the effect due to other relevant economic variables
which we can observe in our dataset. Moreover, we make use of dynamic
panel data estimators in order to identify the coefficient of lagged sales in
the growth regression. In fact, this strategy allows us also to remove the
confounding effects due to unobserved determinants of growth and to the
correlation between lagged sales and the idiosyncratic error (Arellano and
Bond (1991), Arellano and Bover (1995)).

The model we develop to test the Gibrat’s rule (Jovanonic (1982)) is as
follows:

ln(Si,t)− ln(Si,t−1) = βln(Si,t−1) +Xi,tδ + µi + ui,t, (4.1)

where Si are cross sections of firms yearly sales which span, at maximum,
the period 1996-2007. The composite error term νi,t = µi + ui,t consists of a
time constant unobserved heterogeneity µi and of an idiosyncratic component
ui,t. Xit is a matrix of regressors which can correlate with µi and ui,t and
can contain time dummies.

The coefficient β is the “Gibrat coefficient” in the sense that evidence of
β = 0 supports the Gibrat’s law, while evidence of either positive or negative
β is at odds with it. If β = 0 the growth rate at time t (i.e. ln(Si,t)−ln(Si,t−1))
will be independent on the size at time t−1 (i.e. Si,t−1). An estimated value
of β < 0 means that the mean growth rate at time t is dependent on the size
at time t − 1 and that this relation is negative (i.e. the small firms growth
faster than the big firms). Conversely, an estimated value β > 0 means that a
relationship between size and growth exists and that big firms are associated
with higher growth rate than the small firms. Equation 4.1 can be rewritten
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as
si,t = β̃si,t−1 +Xi,tδ + µi + ui,t, (4.2)

where β̃ = 1 + β, and si,t = ln(Si,t). We estimate this equation but interpre-
tation of parameters can more easily recovered from equation 4.1. Estimates
of parameters δ are to be interpreted as regressors effects on the sales growth
since are estimated in equation 4.2 for given si,t−1. Testing for β̃ = (>,<)1
is equivalent to testing for β = (>,<)0.

In details we estimate the following model:

si,t = β̃si,t−1 + δ1lagei,t + δ2exiti,t+

δ3k
+,c
i,t + δ4k

=,c
i,t + δ5k

+,nc
i,t + δ6k

=,nc
i,t + δ7k

−,nc
i,t +

γtyt + µi + ui,t,

(4.3)

where si,t−1 is the logarithm of sales at time t− 1, lagei,t is the logarithm of
the age at time t, exiti,t is a dummy variable which takes value 1 the last year
of existence of the i-th firm, k.,. are dummies that capture simultaneously the
sign of variation in number of products and whether the ATC change, and
yt are yearly dummies. To estimate the model described in eq. 4.2 we used
a Generalized Method of Moments (GMM) as described in Section 2.2.

In the next section we report results of both Arellano-Bond and system
GMM estimators.

4.3 Results

In Table 4.3 we report estimates of equation 4.2 when we ignore endogeneity
of lagged sales. Coefficients of both the pooled OLS and the fixed effects must
be biased, anyway we report them for the purpose of indicating, respectively,
a higher threshold and a lower threshold within which, or at least close to
which, the unbiased coefficient of lagged sales should fall. As Bond (2002)
points out this interval can be used for a first broad-brush inspection of the
reliability of consistent estimators. The matrix of regressors Xi,t contains
logarithmic age, the dummy exit, which indicates the last year before exit,
the k(.,.) dummies and yearly dummies. Point estimates of the pooled OLS
and the fixed effects are respectively 0.997, with a 95% confidence interval
0.988 < β̃ < 1.007, and 0.721, with a 95% confidence interval 0.672 < β̃ <
0.769. It appears that while in the pooled OLS model the Gibrat law is not
rejected, in the fixed-effects model it is.
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Table 4.4 reports results of the GMM Arellano-Bond and system estima-
tors which do allow for endogeneity, instead. In both cases data are trans-
formed using orthogonal deviations (Arellano and Bover (1995)). With this
method, the transformed observation is obtained as difference between the
current and the average of all future available observations, instead of dif-
ferencing with respect to the the previous one. On balanced panels the two
transforms yield numerically identical coefficients. When the panel is unbal-
anced and with gaps, orthogonal deviations is preferred to first-differences
since it saves sample size given that, unlike the latter, it is computable for
all observations except one regardless of the gaps (see Arellano and Bover
(1995)). However, when there are no gaps in the panel, as it is our case, this
gain is lost. In our data set the orthogonal deviations transform performs
slightly better so we will focus on it16

Both estimators are built on the assumption that errors are only corre-
lated within firms, not across them. Since errors are assumed i.i.d across
firms, Roodman (2009a) recommends to include time dummies in order to
remove universal time-related shocks from the error. As covariance matrix
for the idiosyncratic error in the first step of GMM we choose the identity
matrix.

When choosing instruments we should keep in mind that they must be
uncorrelated with the transformed error in the transformed equation. Thus
lags of the endogenous and predetermined variables can be valid instruments
as long as they are not correlated either with ui,t or with ui,t−1. For lagged
sales, the first lag of sales in levels is correlated with ui,t−1 but from second
lag to the last available they may not be correlated so they are all good candi-
dates. We use in total (T −2)(T −1)/2 = 55 instruments for sales. Similarly,
for predetermined variables, lags from the first up to the last available can be
valid instruments. Since we treat the k.,. dummies as predetermined, in the
instruments count we use 55 instruments for each so in total they account
for 55 ∗ 5 = 275 instruments17. In fact, it is likely that past unobserved sales
shocks affect firms strategies with regards both to the launch or phasing off
of products, and to the positioning of its products within the market. Even if
we think that exit may be a predetermined variable too, we cannot include its
lags as instruments for the transformed equation since the variable is always
zero apart from the last observation available for firms which do not exit
during the sample window. Anyway, for the system GMM we can include 10
first differences of exit in the levels equation, as well as 10 first differences of

16Estimates and diagnostics using first-differences are available upon request
17We stress that for each k.,., unlike sales, we can use also the first lag as instrument, but

the first observation is missing by construction, so we have 55− 10 + 10 = 55 instruments
just like sales.
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the k.,. dummies. Strictly exogenous variables such as ln(age−1) and yearly
dummies are used as instruments in the transformed equation and in the
levels equation for system GMM.

In Table 4.4 we report the estimated coefficients for the Arellano-Bond
GMM and for the system GMM. The coefficients of lagged sales are 0.725,
with a 95% confidence interval 1.056 < β̃ < 1.084 for the Arellano-Bond
GMM and 1.056, with a 95% confidence interval 0.618 < β̃ < 0.833, for
the system GMM, so in both cases the Gibrat hypothesis is rejected, but
surprisingly the effect on the growth is negative in the former while positive in
the latter. However, while the point estimate delivered by the Arellano-Bond
method is plausible, the coefficient of the system GMM is higher than the
confidence interval of the pooled OLS coefficient, which is likely to represent
an upper threshold for consistent estimates.
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In this framework, diagnostic tests represent an important guide to select
among models. In Table 4.5 we report four kinds of tests: the Arellano-
Bond test for autocorrelation in disturbances, the Sargan and Hansen tests
of overidentifying restrictions, and the difference-in-Hansen test of exogeneity
of instrument subsets.

The Arellano-Bond statistic tests for autocorrelation in the ui,t by looking
at first-differenced residuals u∗i,t. The test cannot be applied to residuals of
the transformed equation when orthogonal deviations are used, since in such
case residuals are all interrelated by construction (Roodman (2009a)), so,
regardless of the transform used, the test is always applied to first-differences.
AR(1) is expected in first differences if ui,t are actually uncorrelated. Since
the test is applied to the first difference, we have: ∆ei,t = ei,t − ei,t−1 and
∆ei,t−1 = et−1−et−2 and both have ei,t−1. So to check for AR(1) in levels, we
must look for AR(2) in differences. In our models this test works fine since
AR(1) is present as expected but AR(2) is not at a conventional threshold
of 5% both for the Arellano-Bond GMM and for the system GMM

The Sargan and Hansen (see Sargan (1958) and Hansen (1982)) statis-
tics are tests of over-identifying restrictions, i.e. of whether instruments, as
a group, appear exogenous. The Sargan statistic is the minimized value of
the one-step GMM criterion function, while the Hansen statistic is the min-
imized value of the two-step GMM criterion function, thus, unlike the first,
the second is robust to heteroskedasticity or autocorrelation. Anyway the
Hansen test, unlike the Sargan, may be weakened by instruments prolifera-
tion (see Roodman (2009a) and Roodman (2009b)). Both tests assume under
the null that the instruments are jointly valid, thus rejection suggests that
they are not valid. In the Arellano-Bond GMM estimates, both the Sargan
and Hansen tests cannot reject the hypothesis that instruments are jointly
valid. In the system GMM, while the Hansen test works fine, the Sargan test
suggests that instruments are not valid, since the null hypothesis is rejected.

The difference-in-Hansen statistic tests for whether subsets of instruments
are valid. We report both the test of the difference in statistics when they are
included and the test when they are excluded. Rejections of these tests sug-
gest, respectively, that instruments in the subset and the others are jointly
not valid. The test is not vulnerable to instrument proliferation but it re-
quires homoskedastic errors for consistency. In the Arellano-Bond model,
GMM-type instruments turn out to be alone jointly valid as well as strictly
exogenous variables. Again, in the system GMM the null hypothesis is re-
jected both for strictly exogenous variables and for GMM instruments in the
levels equation. An overall interpretation of diagnostic tests, in conjunction
with an implausible high coefficient of lagged sales for the system GMM, lead
us to select the Arellano-Bond GMM as best model.
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Thus, we can conclude that in our data there is evidence against the
Gibrat law in the sense that smaller U.S. pharmaceutical firms grow faster.
In particular (see Table 4.4), the estimated effect of lagged logarithmic sales
is β̃ = 0.725, which means that, ceteris paribus, a one-percent rise in sales
of yesterday increases today’s sales by 0.725%. This effect is significantly
lower than 1, as the 95% confidence interval for s−1 displays, so the growth
effect , i.e. β in eq. 4.1, (β̃ − 1) = −0.275 is significantly less than zero. In
particular, a one-percent rise in sales of yesterday reduces the growth rate
(St−St−1

St−1
) by 0.275 St

St−1
percentage points. For example, a growth rate of 5%

would drop to 4.714% and a growth rate of 10% would drop to 9.698%.

Moreover, coefficients of the other regressors are plausible in sign and
magnitude. Older firms in U.S. pharmaceutical sector grow slower than
younger as expected (Jovanonic (1982)). In particular, one year more drops
sales by 0.035% for firms aged 10 and by 0.007% for firms aged 50. Expected
sales for firms in the second year of life are 0.345% lower due to the age affect.
Sales of firms in the last year of life are 1.426% lower, ceteris paribus18.

As regards kp,q dummies, they are all positive and significant, which
means that firms whose net flow of products is negative and whose ATC
simultaneously does not change (the base category), have the lowest growth
rates on average. Table 4.6 looks more closely at this point displaying com-
parisons between firms with different innovation patterns. An increase in the
number of products is always an important key for higher growth. In par-
ticular we see that firms with positive net flow grow faster than firms with
zero or negative flow, either when they both change the ATC or when they
do not. Anyway, in the former case the difference is striking while in the lat-
ter it far lower and significant only in relation to firms which lose products.
Of course, since we define the ATC code for a firm as the ATC of products
with the highest share of sales out of the firm’s total, it is very likely that
either an increase or a decrease in the number of products is more substantial
when it comes with a variation in ATC code, which may explain most of the
difference in effects. When the focus is on firms with the same sign in ∆k,
a change in ATC comes with a substantial increase in growth (0.207) when
the net flow of products is positive and with a substantial decrease (−0.298)
when the flow is negative. These coefficients may pick up, as above, the
effect of a larger variation in ∆K when the ATC is changed. However, these
coefficients are also likely to pick up the positive growth effect of a change in
ATC per se, unless it is the result of a relevant products phasing off which

18When the dummy exit is omitted, the negative size impact gets substantially larger
suggesting that the variable plays the expected role in purging the Gibrat coefficient of
the effect due to exiting firms.
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translates in a shrinkage of the firm. The positive effect when there is no
variation in the number of products (0.038) confirms that this is the case
though the effect is modest and not significant, which suggests that it may
take time (at least more than one year) to be sensible.

Table 4.6
Comparisons in Innovation Patterns

Coeff. P-value

Different pattern in ATC - Same sign in ∆K
k+,c − k+,nc 0.207** 0.005
k=,c − k=,nc 0.038 0.631
k−,c − k−,nc -0.298** 0.009
Different sign in ∆K - Same pattern in ATC (constant)
k+,c − k=,c 0.224 0.057
k=,c − k−,c 0.373* 0.012
k+,c − k−,c 0.597** 0.000
Different sign in ∆K - Same pattern in ATC (varying)
k+,nc − k=,nc 0.055 0.125
k=,nc − k−,nc 0.036 0.370
k+,nc − k−,nc 0.092* 0.038

Notes:

1. ** Significant at 1%, * significant at 5%.

2. Calculations are from Arellano-Bond GMM estimates of Table 4.4.

3. The kp,q variables are dummies which indicate firms whose number of products can increase
(k+,q), be constant (k=,q) or decrease (k−,q) between two consecutive years, and whose ATC
code can simultaneously either change (kp,c) or not (kp,nc).

4.4 Results: Small versus Large Firms

Results obtained in the previous section are in line with most of the empirical
literature on the Gibrat law which found that smaller firms grow faster.
However, it is also interesting to investigate whether this finding applies to all
firms or whether this can change with size. In fact, some early studies found
that for large firms the opposite may be true19. Therefore we replicate the
same analysis as above splitting our samples in two sub-samples of “small”

19Hart (1962), Samuels (1965), Prais (1974), Singh and Whittington (1975) found this
result for UK manufacturing firms.
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and “large” firms. In particular we identify an upper threshold of 100,000£
for the former, and a lower threshold of 400,000£ for the latter. Thresholds
are chosen trading-off two requirements: a sufficient gap in size between large
and small firms in order to keep groups well separated and a sufficient number
of observations to obtain reliable estimates.

Tables 4.7 and 4.9 show results for small and large firms respectively.
Tables 4.8 and 4.10 show the relative diagnostics. For both samples we use
the Arellano-Bond GMM estimator for the purpose of comparing results with
our preferred model for the whole sample20. Results point out that both small
and large firms grow slower as the size increases, but while the size effect on
growth is somewhat large for small firms, 0.49, the slope of large ones is less
than the half, 0.22. Reliable intervals for consistent estimates indicated by
the pooled OLS and the fixed effects are 0.20−0.51 for small and −0.01−0.23
for large firms. Confidence intervals for both coefficients suggest that the
difference is statistically significant. This result is also consistent with the
logarithmic specification we used for lagged sales. In fact that implies a
monotonically decreasing convex relation between growth and size in level so
that also large firms grow slower the larger they are, but at a lower rate than
small firms. These results are consistent with most of the empirical literature
which compared small and large firms where it is typically found that the
negative growth effect is larger for the former. However, while several studies
found no relation for large firms (or even positive), our estimations support a
significant negative relation also for those. This difference may be explained
by the fact that data constraints force us to use a sales threshold above which
some firms may not be considered actually “large”.

Estimates of the effects of the covariates point out that while age is still
an important determinant of growth rates for large firms, it has no effect
for small firms. Small firms about to exit the market grow far less than
surviving firms. The dummy exit is not included in the large firms analysis
since the number of large firms which exit the market is negligible as one
would expect21.

Tables 4.11 and 4.12 report estimates of differences in innovation patterns.
A positive net flow of products has always a positive impact on growth, but
the impact is far larger for small firms.

This result has an immediate mathematic explanation as small firms have
typically fewer products than large firms so when the number increases, the
rise in sales should be proportionally higher for the former unless the increase

20Anyway, several checks were employed with the system GMM estimator but even in
this case estimates are not as reliable and robust as those of the Arellano-Bond.

21Only 4 out of 558 in the sample of large firms exit in our sample window.
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Table 4.7
Size Growth Regression. GMM estimates for Small Firms

(< 100, 000£)

Arellano-Bond GMM (orthogonal deviations)
s Coeff. Std. Err. P-value [95% Conf. Interval]
s−1 0.513** 0.0851 0.000 0.346 0.680
ln(age)−1 -0.139 0.1467 0.345 -0.426 0.149
exit -1.099** 0.1591 0.000 -1.411 -0.787
k+,c 1.290** 0.3447 0.000 0.615 1.966
k=,c 0.663* 0.3340 0.047 0.008 1.318
k+,nc 0.948** 0.2536 0.000 0.450 1.445
k=,nc 0.489 0.2588 0.059 -0.018 0.997
k−,nc 0.558* 0.2519 0.027 0.064 1.052
yearly dummies X
Observations 1,619
Firms 401
Nr. of instruments 318

Notes:

1. ** Significant at 1%, * significant at 5%. Notes to Table 4.4 apply here. However better diagnostics
led us to exclude the first lag of lagged sales as GMM-style instrument.

Table 4.8
Diagnostics for GMM estimates. Small Firms (< 100, 000£)

Arellano-Bond GMM

1 Arellano-Bond test for AR in first differences
test for AR(1): z = −3.17 Pr > z = 0.002
test for AR(2): z = 0.46 Pr > z = 0.649

2 Sargan test of overidentifying restrictions:
χ2(300) = 290.23 Pr > χ2 = 0.647

3 Hansen test of overidentifying restrictions:
χ2(300) = 240.82 Pr > χ2 = 0.995

4 Difference-in-Hansen tests of exogeneity of instrument subsets
i.v.: ln(age)−1, yearly dummies

Hansen test excluding group: χ2(289) = 229.26 Pr > χ2 = 0.996
Difference (null H = exogenous): χ2(11) = 11.56 Pr > χ2 = 0.398

Notes:

1. Diagnostics refer to Table 4.7. Notes to Table 4.5 apply here.
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Table 4.9
Size Growth Regression. GMM estimates for Large Firms

(> 400, 000£)

Arellano-Bond GMM (orthogonal deviations)
s Coeff. Std. Err. P-value [95% Conf. Interval]
s−1 0.781** 0.0401 0.000 0.702 0.860
ln(age)−1 -0.187** 0.0646 0.004 -0.314 -0.060
exit
k+,c 0.393** 0.0892 0.000 0.219 0.568
k=,c 0.293** 0.0931 0.002 0.111 0.476
k+,nc 0.336** 0.0775 0.000 0.184 0.488
k=,nc 0.352** 0.0835 0.000 0.188 0.515
k−,nc 0.271** 0.0711 0.000 0.132 0.411
yearly dummies X
Observations 2,975
Firms 445
Nr. of instruments 331

Notes:

1. ** Significant at 1%, * significant at 5%. Notes to Table 4.4 apply here. However better diagnostics
led us to exclude the first lag of lagged sales as GMM-style instrument.

Table 4.10
Diagnostics for GMM estimates. Large Firms (> 400, 000£)

Arellano-Bond GMM

1 Arellano-Bond test for AR in first differences
test for AR(1): z = −4.74 Pr > z = 0.000
test for AR(2): z = −1.04 Pr > z = 0.296

2 Sargan test of overidentifying restrictions:
χ2(314) = 291.27 Pr > χ2 = 0.817

3 Hansen test of overidentifying restrictions:
χ2(314) = 323.30 Pr > χ2 = 0.347

4 Difference-in-Hansen tests of exogeneity of instrument subsets
i.v.: ln(age)−1, yearly dummies

Hansen test excluding group: χ2(303) = 310.43 Pr > χ2 = 0.372
Difference (null H = exogenous): χ2(11) = 12.87 Pr > χ2 = 0.302

Notes:

1. Diagnostics refer to Table 4.9. Notes to Table 4.5 apply here.
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Table 4.11
Comparisons in Innovation Patterns. Small Firms (< 100, 000£)

Coeff. P-value

Different pattern in ATC - Same sign in ∆K
k+,c − k+,nc 0.343 0.1835
k=,c − k=,nc 0.174 0.4286
k−,c − k−,nc -0.558* 0.0270
Different sign in ∆K - Same pattern in ATC (constant)
k+,c − k=,c 0.627 0.0654
k=,c − k−,c 0.663* 0.0471
k+,c − k−,c 1.290** 0.0002
Different sign in ∆K - Same pattern in ATC (varying)
k+,nc − k=,nc 0.458** 0.0038
k=,nc − k−,nc -0.068 0.5519
k+,nc − k−,nc 0.390** 0.0076

Notes:

1. ** Significant at 1%, * significant at 5%. Notes to Table 4.6 apply here.

2. Calculations are from Arellano-Bond GMM estimates of Table 4.7.

Table 4.12
Comparisons in Innovation Patterns. Large Firms (> 400, 000£)

Coeff. P-value

Different pattern in ATC - Same sign in ∆K
k+,c − k+,nc 0.058 0.1751
k=,c − k=,nc -0.058 0.3414
k−,c − k−,nc -0.271** 0.0000
Different sign in ∆K - Same pattern in ATC (constant)
k+,c − k=,c 0.100 0.2050
k=,c − k−,c 0.293** 0.0016
k+,c − k−,c 0.393** 0.0000
Different sign in ∆K - Same pattern in ATC (varying)
k+,nc − k=,nc -0.016 0.4988
k=,nc − k−,nc 0.080** 0.0028
k+,nc − k−,nc 0.064** 0.0084

Notes:

1. ** Significant at 1%, * significant at 5%. Notes to Table 4.6 apply here.

2. Calculations are from Arellano-Bond GMM estimates of Table 4.9.

in K is proportionally higher for firms with more products. The latter oc-
currence can be reasonably ruled out, however. We provide evidence that
in U.S. pharmaceutical industry a negative relation between size and growth
seems to apply also to the number of product. Table 4.13 shows that this
the case for the whole sample, though the negative effect is weaker than for
sales, and Tables 4.15 and 4.17 show a negative dependence for both small
and large firms (in terms of sales). Moreover, the negative effect is smaller
for large firms as in the analysis of sales. Diagnostics reported in Tables 4.14,
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4.16 and 4.18 show that these estimates are quite reliable.

Table 4.13
GMM estimates. Whole Sample

Arellano-Bond GMM (orthogonal deviations)
k Coeff. Std. Err. P-value [95% Conf. Interval]
k−1 0.841** 0.0685 0.000 0.707 0.975
ln(age)−1 -0.037 0.0329 0.263 -0.101 0.028
exit -0.274* 0.1384 0.048 -0.546 -0.003
yearly dummies X
Observations 6,046
Firms 921
Nr. of instruments 47

Notes:

1. ** Significant at 1%, * significant at 5%. Notes to Table 4.4 apply here. However better diagnostics
led us to exclude the first and second lag of k−1 as GMM-style instrument. The reliable interval
for consistent estimates indicated by the fixed effects and pooled OLS is 0.741− 0.987.

Table 4.14
Diagnostics for GMM estimates

Arellano-Bond GMM

1 Arellano-Bond test for AR in first differences
test for AR(1): z = −7.43 Pr > z = 0.000
test for AR(2): z = 0.26 Pr > z = 0.791

2 Sargan test of overidentifying restrictions:
χ2(34) = 37.98 Pr > χ2 = 0.293

3 Hansen test of overidentifying restrictions:
χ2(34) = 38.21 Pr > χ2 = 0.284

4 Difference-in-Hansen tests of exogeneity of instrument subsets
i.v.: ln(age)−1, yearly dummies

Hansen test excluding group: χ2(23) = 21.69 Pr > χ2 = 0.539
Difference (null H = exogenous): χ2(11) = 16.52 Pr > χ2 = 0.123

Notes:

1. Diagnostics refer to Table 4.13. Notes to Table 4.5 apply here.

For given sign in ∆K, Tables 4.11 and 4.12 suggest that a change in ATC
has a larger impact (in absolute terms) on growth for small firms. This is a
genuine innovation effect since the role played by variation in the number of
products should be of minor importance here. One may argue that a variation
in ∆K can have a more important impact for small firms for the same reason
outlined above, thus explaining also this finding, at least to some extent.
But, since here we are controlling for small and large firms which do change
ATC both, we can expect that the variation in products, either positive or
negative, is important also for large firms. Given our firm ATC definition,
what matters is the largest “ATC share” so when a large firm changes ATC
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Table 4.15
GMM estimates. Small Firms (< 100, 000£)

Arellano-Bond GMM (orthogonal deviations)
k Coeff. Std. Err. P-value [95% Conf. Interval]
k−1 0.671** 0.1132 0.000 0.449 0.893
ln(age)−1 0.020 0.0465 0.660 -0.071 0.112
exit -0.434** 0.1612 0.007 -0.750 -0.118
yearly dummies X
Observations 1,691
Firms 417
Nr. of instruments 56

Notes:

1. ** Significant at 1%, * significant at 5%. Notes to Table 4.4 apply here. However better diagnostics
led us to exclude the first lag of k−1 as GMM-style instrument. The reliable interval for consistent
estimates indicated by the fixed effects and pooled OLS is 0.432− 0.808.

Table 4.16
Diagnostics for GMM estimates. Small Firms (< 100, 000£)

Arellano-Bond GMM

1 Arellano-Bond test for AR in first differences
test for AR(1): z = −5.15 Pr > z = 0.000
test for AR(2): z = 0.86 Pr > z = 0.388

2 Sargan test of overidentifying restrictions:
χ2(43) = 69.21 Pr > χ2 = 0.007

3 Hansen test of overidentifying restrictions:
χ2(43) = 40.92 Pr > χ2 = 0.562

4 Difference-in-Hansen tests of exogeneity of instrument subsets
i.v.: ln(age)−1, yearly dummies

Hansen test excluding group: χ2(32) = 23.38 Pr > χ2 = 0.866
Difference (null H = exogenous): χ2(11) = 17.55 Pr > χ2 = 0.093

Notes:

1. Diagnostics refer to Table 4.15. Notes to Table 4.5 apply here.

there is no reason to expect that its variation in the number of products
would be less relevant than its smaller counterpart. Moreover, if we focus on
firms which do not change the number of products, a change in ATC yields
an effect on growth of 0.17 points for small firms, and slightly negative for
large. Though these effects are not always statistically significant, differences
in point estimates between small and large firms are typically large enough
to give at least some support on our argument that innovation is worthwhile
especially for small firms.
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Table 4.17
GMM estimates. Large Firms (> 400, 000£)

Arellano-Bond GMM (orthogonal deviations)
k Coeff. Std. Err. P-value [95% Conf. Interval]
k−1 0.852** 0.0622 0.000 0.730 0.974
ln(age)−1 -0.004 0.0313 0.890 -0.066 0.057
exit
yearly dummies X
Observations 2,987
Firms 448
Nr. of instruments 47

Notes:

1. ** Significant at 1%, * significant at 5%. Notes to Table 4.4 apply here. However better diagnostics
led us to exclude the first and second lag of k−1 as GMM-style instrument. The reliable interval
for consistent estimates indicated by the fixed effects and pooled OLS is 0.803− 0.996.

Table 4.18
Diagnostics for GMM estimates. Large Firms (> 400, 000£)

Arellano-Bond GMM
1 Arellano-Bond test for AR in first differences

test for AR(1): z = −6.80 Pr > z = 0.000
test for AR(2): z = −0.09 Pr > z = 0.926

2 Sargan test of overidentifying restrictions:
χ2(35) = 32.15 Pr > χ2 = 0.606

3 Hansen test of overidentifying restrictions:
χ2(35) = 39.56 Pr > χ2 = 0.274

4 Difference-in-Hansen tests of exogeneity of instrument subsets
i.v.: ln(age)−1, yearly dummies

Hansen test excluding group: χ2(24) = 23.29 Pr > χ2 = 0.503
Difference (null H = exogenous): χ2(11) = 16.27 Pr > χ2 = 0.131

Notes:

1. Diagnostics refer to Table 4.17. Notes to Table 4.5 apply here.

4.5 Conclusions

In this chapter we investigated the relation between size and growth for a
panel of US pharmaceutical firms over the period 1997-2008. Since the early
1980s the U.S. pharmaceutical sector has been characterized by a significative
consolidation of large firms as well as the entry into the R&D process by
small and early stage biopharmaceutical firms. From the middle 1980s the
pharmaceutical industry has been experienced also significative legislative
changes and market developments that have caused a decline in sales and
profit particularly evident from the middle of 1990s.

Within a GMM framework, we estimate a dynamic panel growth equation
to control for time-constant unobserved heterogeneity and endogeneity in the
idiosyncratic error term. Estimates are also robust to heteroskedasticity and
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autocorrelation in the error term. Information contained in our data set
allows us to use controls for the age of firm and for innovation, which are
considered the most important determinants of growth. We include also a
dummy which captures exit of firms. Arellano-Bond GMM estimates confirm
for the U.S. pharmaceutical industry the typical finding that growth decreases
both with size and age. We replicate the analysis for two sub-groups of small
and large firms (< 100, 000£ and > 400, 000£ respectively) in order to test
whether the Gibrat law may hold at least for firms above a certain threshold
(as pointed aut by Hart (1962), Samuels (1965), Prais (1974), Singh and
Whittington (1975)). We found that, within the U.S. pharmaceutical market,
the size effect on growth is lower for the sample of large firms, but it is still
significant suggesting that the Gibrat law does not hold in our sample even
for large firms.

Furthermore we focused our analysis on the role of innovation on the
growth. In pharmaceutical industry the cost of innovation is large, the av-
erage cost of bringing a new efficacious molecule is estimated between 800
million dollars, and risky, to produce a new molecule it can take 12-13 years
and only one out of 10,000 molecules will be marketed. In last years many au-
thors have dealt with innovation in pharmaceutical industry (see DiMasi et al.
(1991), Masi et al. (2003), Ornaghi (2006), Comanor and Scherer (2011)) fo-
cusing their research on the relationship between innovation and merges, or
on the relationship between innovation and size from the point of view of the
existence of scale economies in pharmaceutical industry R&D (Jensen (1987),
Graves and Langowitz (1993),Bobulescu and Soulas (2006), Cockburn and
Henderson (2001), Miyashige et al. (2007)). According to these results our
contribution here is to explore whether the innovation benefits are different
for smaller and larger firms. In our dataset, the innovation, as captured by
net inflows of product and change in the ATC code, plays a significant role
in boosting growth rates. In U.S. pharmaceutical industry, the differences
between small and large firms in point estimates of the innovation coefficients
are typically large enough to give at least some support on our argument that
innovation is worthwhile especially for small firms.
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Conclusions

The general aims of our research project can be summarized in the following
points: analyze the size distributions of economic phenomena and investigate
the relationship between size and growth. These two analysis correspond to
two different approaches usually used in literature for testing the coherence
of growth models to empirical data. As regards to the first approach we have
analyzed the size distribution of wage in Italy between 1985 and 2004. The
preliminary analysis of the data underlines two main changes in the sample
composition between 1985 and 2004. Firstly, in 1985 women represented
the 30% of the total sample, after 20 years this percentage rises at 37%.
Secondly, in the twenty years of observation, an ageing of the sample occurs.
Changes in the age distribution from 1985 to 2004 can be the results of a
lagged entry in labour market and/or of an increase of atypical contract as
main contract for young people, and/or of a delayed exit from the labour
market. The analysis of the wage by gender highlights that female average
daily wage growths more than the male daily wage between 1985 and 2004.
Nevertheless the average daily wage perceived by women is lower than the
males ones for the whole observational period.

The empirical wage distributions (by year and by gender) are fitted with
10 different models with two, three or four parameters. The distributions
are compared on the basis of the likelihood ratio test (for nested models)
and on the basis of other goodness-of-fit measure (such as the chi-square).
For 1985 and 1995 the best fitting model is the GB2 distribution, while in
2004 data are better represented by a skewed-t distribution. For these two
distributions, four inequality indices are calculated.

The analysis of inequality for the whole sample and the men sub-sample
highlights two main facts. On the one hand, the dynamic of daily wage
can be divided in two stages: i) an early stage (between 1985 and early
1990s) characterized by a high increase in inequality indices at the top of the
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distribution and a decrease at the bottom; ii) a last stage characterized by
a general decreasing of the inequality indices. On the other hand, the main
changes regard the top of the distribution. These results agree with the
results obtained by other authors (see Brandolini et al. (2002), Manacorda
(2004), Jappelli and Pistaferri (2010) and Devicienti (2003)). The same
analysis on the female sub-sample reveals a different trend of the inequality.
The women inequality measures seems to rise slightly also after the 1995.
This fact could be a consequence of the skill based technological change
(STBC). The different trends of the inequality recorded within male sub-
sample and within female sub-sample suggests to investigate the dynamics
of wage among the two groups defined by the gender. At a first look seems
that the wage gender gap, between 1995 and 2004, was shrinking but a deeper
analysis (performed by the means of a fixed effects regression model) shows
that the shrinking in the difference between men wage and women wage could
be due to an increasing of the percentage of women working in high-paid job
and not to an ”approaching” of the female wage to the male wage.

After the analysis of the size distribution we focused on the second ap-
proach proposed in literature for testing the growth models. We test the va-
lidity of the Gibrat model by testing the size-growth relation in the context
of the pharmaceutical industry. The relation between size and growth is in-
vestigated for a panel of US pharmaceutical firms over the period 1997-2008.
Within a GMM framework, we estimate a dynamic panel growth equation
to control for time-constant unobserved heterogeneity and endogeneity in
the idiosyncratic error term. Estimates are also robust to heteroskedasticity
and autocorrelation in the error term. Information contained in our data set
allows us to use controls for the age of firm and for innovation, which are
considered the most important determinants of growth. We include also a
dummy which captures exit of firms. Arellano-Bond GMM estimates con-
firm for the U.S. pharmaceutical industry the typical finding that growth
decreases both with size and age. We replicate the analysis for two sub-
groups of small and large firms (< 100, 000£ and > 400, 000£ respectively)
in order to test whether the Gibrat law may hold at least for firms above
a certain threshold (as pointed aut by Hart (1962), Samuels (1965), Prais
(1974), Singh and Whittington (1975)). We found that, within the U.S.
pharmaceutical market, the size effect on growth is lower for the sample of
large firms, but it is still significant suggesting that the Gibrat law does not
hold in our sample even for large firms.

Furthermore we focused our analysis on the role of innovation on the
growth. In pharmaceutical industry the cost of innovation is large, the av-
erage cost of bringing a new efficacious molecule is estimated between 800
million dollars, and risky, to produce a new molecule it can take 12-13 years
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and only one out of 10,000 molecules will be marketed. In last years many au-
thors have dealt with innovation in pharmaceutical industry (see DiMasi et al.
(1991), Masi et al. (2003), Ornaghi (2006), Comanor and Scherer (2011)) fo-
cusing their research on the relationship between innovation and merges, or
on the relationship between innovation and size from the point of view of the
existence of scale economies in pharmaceutical industry R&D (Jensen (1987),
Graves and Langowitz (1993),Bobulescu and Soulas (2006), Cockburn and
Henderson (2001), Miyashige et al. (2007)). According to these results our
contribution here is to explore whether the innovation benefits are different
for smaller and larger firms. In our dataset, the innovation, as captured by
net inflows of product and change in the ATC code, plays a significant role
in boosting growth rates. In U.S. pharmaceutical industry, the differences
between small and large firms in point estimates of the innovation coefficients
are typically large enough to give at least some support on our argument that
innovation is worthwhile especially for small firms.
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