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ABSTRACT

Simulation estimators, such as indirect inference or simulated maximum likelihood, are

successfully employed for estimating models where the likelihood function does not have

a simple analytical expression. They adjust for the bias (inconsistency) produced by the

estimation of an auxiliary model that can be manageable, but is essentially misspecified.

The price to be paid is an increased variance of the estimated parameters. A component of

the variance depends on the stochastic simulation involved in the estimation procedure. To

reduce this undesirable effect, one should properly increase the number of simulations (or

the length of each simulation) and thus the computational cost. Alternatively, this paper

shows how variance reduction can be achieved, at virtually no additional computational

cost, by use of control variates. This technique can be easily applied in the just-identified

context, that is when the number of parameters is the same in the econometric model (the

model of interest) and the auxiliary model. This is a case which often occurs in practical

applications. Several models are explicitly considered and experimented with: moving

average model, Arma model, stochastic differential equations, dynamic Tobit model,

discrete time stochastic volatility models, logit models with random effects. Monte Carlo

experiments show, in some cases, a global efficiency gain up to almost 50% over the

simplest indirect estimator, obtained at about the same computational cost.
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1 Introduction

A wide part of the modern econometric models is associated with non trivial computa-

tional problems. Classical inference procedures, typically based on likelihood function,

often lead to intractable numerical problems. To provide nevertheless a solution, several

alternative procedures have been proposed, as the Pseudo-Maximum-Likelihood or the

Generalized Method of Moments. In recent years, since the contribution of McFadden

(1989), great interest has been shown in simulation-based procedures.

An interesting class of simulation-based estimation procedures includes the Simulated

Maximum Likelihood (Smith, 1993), the Efficient Method of Moments (Gallant and

Tauchen, 1996), the Indirect Inference (Gourieroux, Monfort and Renault, 1993). The

basic idea of these techniques is to adjust the parameters of interest by a calibration pro-

cedure, in order to get similar characteristics for the observed endogenous variables and

for the simulated ones.

There are many econometric fields where these methods can be usefully employed: contin-

uous time finance (Gourieroux, Monfort and Renault, 1993; Broze, Scaillet and Zaköıan,

1995, 1998; Pastorello, Renault and Touzi, 1994; Bianchi, Cesari and Panattoni, 1994;

Bianchi and Cleur 1996; Di Iorio and Fiorentini 1996; Calzolari, Di Iorio and Fiorentini

1998); limited dependent variables with non-spherical disturbances (Calzolari and Fioren-

tini, 1996; Gourieroux and Monfort, 1996; Mealli and Rampichini, 1999); latent variables

dynamic models (Gourieroux, Monfort and Renault, 1993 ; Billio, Monfort and Robert,

1998); switching regimes models (for a survey see Gourieroux and Monfort, 1996).

Some aspects must be taken into account when indirect inference methods are used. The

first aspect is the choice of a favourable calibration criterion in order to obtain consistent

estimates. In fact, even if from the methodological point of view there are not many

restrictions in the choice of the calibration criterion, the performance of indirect estimators

is not independent of the calibration criterion chosen (see Di Iorio and Fiorentini, 1996;

Monfardini 1998; Calzolari, Di Iorio and Fiorentini, 1998; Mealli and Rampichini, 1999).

The second aspect is an increased variance of the estimated parameters involved, in gen-

eral, in all simulation-based methods. On the one hand, in fact, the variance is due to the

intrinsic stochastic nature of the data and to the approximations adopted; on the other

hand, it also depends on the stochastic simulation involved in the estimation procedure.

This latter component is, in some sense, an undesirable additional experimental variance,

which can be made arbitrarily small by properly enlarging the number of simulations at

the cost of a bigger computational effort. Therefore a trade-off arises between variance

reduction and computational cost.

The first goal of this paper is to provide a simple description of the indirect inference

method through several examples (that can be used for teaching purposes), and to develop

a simplified derivation of the asymptotic distribution of the estimators.
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A second important goal is the implementation of an efficient software package.

The third and most important goal is to present a useful procedure to reduce the variance

of the estimated parameters of just-identified models.

Efficient Monte Carlo techniques may be helpful in reducing experimental variance, thus

providing a reduction of the global variance of the estimator and, therefore, an overall

improvement of the efficiency, without increasing the computational cost. There is a wide

literature on efficient Monte Carlo techniques, such as stratified sampling, importance

sampling, antithetic variates, control variates, etc., that started many years ago (e.g.

Kahn, 1956, Moy, 1971, Simon, 1976), or Hendry (1984), and, more recently, Newton

(1994), Geweke (1994), Richard (1996), and others.

For instance, a simple method like antithetic variates proved to be effective in evaluating

the small sample bias of estimators for simultaneous equations (e.g. Hendry and Harrison,

1974, or Mikhail, 1975), or the simulation bias in nonlinear macroeconometric models (e.g.

Calzolari, 1979).

With slightly more complex implementation requirements, the method of control variates

proved to be even more effective (Sterbenz and Calzolari, 1990). This method also is

suitable for evaluating variances, where antithetic variates fail (Calzolari and Sterbenz,

1986).

An earlier paper of the authors (1998) applied a control variate technique to the indirect

estimation of stochastic differential equations. Here, we develop the theoretical approach

to cover in a more general way the just-identified case; that is when the number of param-

eters is the same for the model of interest and for the auxiliary model, even when no clear

one-to-one correspondence between them can be established. Although not completely

general, this is a case that occurs very often in practical applications.

Several models are explicitly considered and experimented with:

1. Ma(1) model, with a simple Ar(1) model used as auxiliary model;

2. Arma(1,1) model, with an Ar(2) auxiliary model;

3. the Ornstein-Uhlenbeck stochastic differential equation, used in Vasicek (1977) to

model the short term interest rate in continuous time, with an Ar(1) model on

discrete data used as auxiliary model;

4. the square root stochastic differential equation, used in Cox, Ingersoll and Ross

(1985), with an Ar(1) auxiliary model applied to discrete data (after some trans-

formation);

5. the stochastic differential equation with unrestricted variance elasticity, used in

Chan et alii (1992), Di Iorio and Fiorentini (1996), and Nowman (1997), with a
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nonlinear auxiliary model (applied to discrete data) that can be estimated by max-

imum likelihood iterating an instrumental variables procedure;

6. a dynamic Tobit model, with a simple Ar(1) auxiliary model;

7. a discrete time stochastic volatility model, with two Ar(10)-distributed-lag auxiliary

models;

8. a two level logit model with random effects, with a linear probability auxiliary model.

The performance of the indirect estimator and the control variate procedures are verified

by a set of Monte Carlo experiments.

Results of the Monte Carlo experiments show that, for some parameters of interest, the

variance component due to simulation can be reduced from 3 up to 20 times at about

the same computational cost. This implies a global efficiency gain up to almost 50%

over the simplest indirect estimator (reduction of the global variance), at about the same

computational cost.

For case 3 and 4, the control variates are the same already used in Calzolari, Di Iorio

and Fiorentini (1998): we present here results related to a different choice of the param-

eter values. Moreover, for most of the models, we experiment also an estimator for the

variance-covariance matrix.

The paper is organized as follows. In section two we present the indirect inference com-

putational procedure. In section three we present the procedures to reduce the variance

proposed by Gourieroux, Monfort and Renault (1993), based on replicated simulations.

In section four we describe the Indirect inference procedure with control variates. In sec-

tion five we report the results of the Monte Carlo experiments conducted for the cases

described above. Conclusions and final remarks are in sections six and seven.

2 Indirect Inference

Indirect inference methods were first proposed by Gourieroux, Monfort and Renault (1993)

and Gallant and Tauchen (1996).

The basic idea can be summarised as follows: suppose an econometric model be defined

by:

yt = f(yt−1, xt, et, θ) (2.1)

where f is a known function, xt are exogenous variables, θ ∈ Θ is the vector of param-

eters of interest, et are disturbances with known probability function, yt are endogenous

variables and yt−1 are lagged endogenous variables. We assume that this model can be
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simulated; that is we can produce values of yt conditional on xt, et, θ and initial val-

ues. However, this model may not be estimated, or estimation can be so complex and

discouraging that econometricians replace it with an approximation, like

yt = g(yt−1, xt, β, η) (2.2)

where g is a function, β ∈ B is a parameter vector, η are random terms. Assume

that parameters β can be easily estimated (for example, by least squares, or maximum

likelihood). This will be called the auxiliary model.

A simple estimation of the auxiliary model, drawn on the observed variables yt, leads

to biased (inconsistent) estimates β̂. Similar estimates, noted as β̃, can be obtained

using simulated values of the endogenous variables, conditional on xt, et and θ (let these

simulated values be ỹt(θ), t = 1, 2, ...T , and β̃(θ) the estimated parameters). If β̂ and β̃

are not too far in some sense, we can assume that the θ values, that have produced the

simulated endogenous ỹt, are good estimates of the parameter of interest.

The indirect inference estimate of θ proposed by Gourieroux, Monfort and Renault (1993)

is

θ̂ = argminθ [β̂ − β̃(θ)]′Ω1
−1[β̂ − β̃(θ)] (2.3)

where Ω1 is a positive definite matrix.

Gallant and Tauchen (1996) proposed a modified version of (2.3) defined by

θ̂ = argminθ
∂L

∂β′
[
ỹ(θ); β̂

]
Ω2

−1∂L

∂β

[
ỹ(θ); β̂

]
(2.4)

where Ω2 is a positive definite matrix and ∂L
∂β

(ỹ(θ); β̂) is the score function of the auxiliary

model calculated on the simulated values ỹ(θ).

Estimators (2.3) and (2.4), associated with optimal choice of the weighting matrices Ω1

and Ω2, have the same asymptotic efficiency (see, for example, Gourieroux and Monfort,

1996).

2.1 Simple indirect estimation of just-identified models

The econometric model and the auxiliary one can have a different number of parameters.

When the number of parameters is the same, the indirect estimation procedure can take

advantage of the equal dimension of the θ and the β parameters. This is a case of

exact identification, and the results are unaffected by the choice of the matrix of weights

usually involved in this type of estimator (moreover, they would be identical to those of
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the simulated Ml, Smith, 1993). Minimization of the quadratic forms (2.3) and (2.4) is

in fact simply obtained when β̃ = β̂.

For simplicity, we omit from our notation exogenous variables, initial values (which are

supposed to be asymptotically not influent), and the distribution of the error terms (which

is supposed to be known, for example i.i.d. standard normal). So we represent the

econometric model (or model of interest) as

y = f(θ, e) (2.5)

while the auxiliary model can be written as

y = g(β, η) (2.6)

We assume that the econometric model can be easily simulated, that is we can produce

values of y conditional on θ, by entering random values of e.

The procedure for the indirect inference can be implemented in the following steps.

1) The available series of observations for the dependent variable yt, t = 1, 2, ..., T , is

assumed to have been generated as in equation (2.5). In applied work, this is the series of

observed data. In Monte Carlo studies, this will be really generated by simulation of (2.5),

with known true parameters θ0; we are so building one replication of pseudo-observed data.

2) Naive estimation (e.g. least squares, maximum likelihood, etc.) of the parameters β̂ is

obtained, using the observed data in the auxiliary model (2.6).

3) A tentative value for the true model parameters is chosen. We call it θ̃. It is used as a

starting point for the iterative calibration procedure.

4) A sample of pseudo-random error terms ẽt i.i.d. N(0, 1) is generated. In all our

experiments we have adopted a sample length T , equal to the length of the observable

time series. Possible lengths multiple of T (that is HT ) can be adopted (see section 3).

5) The ẽt’s and θ̃ are plugged into equation (2.5). The equation is solved to produce the

pseudo-random series ỹt.

6) Naive estimation of equation (2.6) is performed on the series of pseudo-random ỹt,

obtaining a vector of parameters β̃.

7) The two vectors of parameters β̂ and β̃ are compared. If they are equal (or very

close to each other) the estimation procedure has come to its end, otherwise the tentative

values of the parameters θ̃ are modified (calibrated) and a new iteration of the procedure

starts again from step 5. Notice that the pseudo-random errors ẽt generated at step 4

must not be re-generated, they must remain fixed in all iterations until convergence of

the procedure. The values of the series ỹt change across iterations only as an effect of

changing θ̃.
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8) When convergence is achieved, the last value of the tentative parameters is the simple

indirect estimate of the parameters of interest. This vector will be called θ̂.

2.2 The parameter estimation error

In order to study the properties of the simple indirect estimator, we need a more precise

notation for the estimator of the β parameters of the auxiliary model (2.6). The yt data

are produced by simulation of the econometric model (2.5) (or supposed to have been

generated by 2.5). So we can use the notation β(θ, e) for the estimator of the parameters

of (2.6) conducted on yt values generated by (2.5) for any θ ∈ Θ and for a given probability

distribution for e. Standard regularity conditions ensure that this estimator converges, for

T →∞, to a well defined and regular binding function b(θ), for any θεΘ (as in Gourieroux,

Monfort and Renault, 1993).

In finite samples, obviously the estimator will differ from its limit value, the difference

being the finite sample estimation error of parameters. Thus, in the finite sample case,

for any θεΘ an estimator of the parameters in (2.6) will be equal to the binding function

b(θ) plus the parameter estimation error (peer), which is a random vector due to the

particular finite sample of error terms e. These error terms are assumed to have a known

distribution (i.i.d. standard normal in most of our experiments, a uniform distribution

in (0,1) in some cases), as the distributional parameters (i.e. the variance) are already

included in the parameter vector θ

β(θ, e) = b(θ) + peer(θ, e) (2.7)

The parameter estimation error peer(θ, e) is a random vector asymptotically vanishing

and regularity conditions ensure for
√

T peer(θ, e) an asymptotic zero mean normal

distribution with variance-covariance matrix that will be denoted Σ(θ)

√
T peer(θ, e) −→ N(0, Σ(θ)) (2.8)

Since the covariance matrix is obtained from the auxiliary model (2.6), which is misspec-

ified, it is well known from White (1982) and Newey and West (1987) that an expression

for Σ(θ) would involve both the Hessian and the matrix (or matrices) of outer prod-

ucts of the first derivatives of the log-likelihoods (that should be more properly called

quasi-log-likelihoods, being the model misspecified)

Σ(θ) = H−1
1 J1H

−1
1 (2.9)

In this equation, H1 and J1 are the probability limits of the auxiliary model’s Hessian

and outer-product matrices, computed at b(θ), when the values of y are produced by the

econometric model (2.5).
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Of course, an estimate of these matrices can be obtained performing the computation of

derivatives in the available estimate of the auxiliary model’s parameters. In particular,

the estimate of J1 involves the computation of products and cross products of the first

derivatives of the log-likelihoods at different time lags, when data are autocorrelated

(Newey and West, 1987).

Let’s now consider the actually observed values of y. If the model of interest (2.5) really

is the data generating process, the actually observed y are a function of the true vector

of parameters, say θ0, as well as of the unobservable error terms, say e0. Therefore, the

estimate of the β parameters (called β̂ in the previous section) turns out to be a function

of θ0 and of the unobservable error terms e0

β(θ0, e0) = b(θ0) + peer(θ0, e0) (2.10)

By entering a tentative vector of parameters θ, say θ̃, and pseudo-random error terms ẽ

into the econometric model (2.5), we generate by simulation pseudo-random values ỹ that

are introduced into the auxiliary model (2.6). The auxiliary model (2.6) is estimated,

obtaining a vector of parameters β(θ̃, ẽ). The sample size can be, of course, of any length,

being data produced by simulation (at least, in absence of exogenous variables), but we

keep for the moment the same sample length as for the actually observed data, say T .

Notice that ẽ are generated from “the same” distribution as the unobservable actual error

terms e0. Thus

β(θ̃, ẽ) = b(θ̃) + peer(θ̃, ẽ) (2.11)

We can now take advantage of the exact identification, that is when θ and β have the

same number of parameters. We calibrate the θ̃ parameters (keeping ẽ fixed) till we find

the same vector of estimated β from both the simulated ỹ and the actually observed y.

In other words we look for the values of θ̃ that solve the system of equations

β(θ̃, ẽ) = β(θ0, e0) (2.12)

The calibration procedure thus aims at solving the system of equations (2.12). These

equations are only implicitly defined, and usually cannot be expressed in closed form. It

is usually possible to solve the system only in the just-identified case, because there is the

same number of unknowns (θ̃) as of equations (dimension of β).

The solution vector will be called θ̂; this is the simple indirect estimator of the econometric

model’s parameter vector θ0. Thus, at solution, we have

β(θ̂, ẽ) = β(θ0, e0) (2.13)

and, from eq. (2.11)

9



β(θ̂, ẽ) = b(θ̂) + peer(θ̂, ẽ) (2.14)

Conditions that ensure consistency and asymptotic normality of this estimator can be

found in Gourieroux, Monfort and Renault (1993) in the general context of overidentified

models (in our context, if estimation of the auxiliary model (2.6) is performed by quasi-

maximum-likelihood, the estimator turns out to be identical to the simulated Ml, Smith,

1993, and to the efficient method of moments, Gallant and Tauchen, 1996).

2.3 The variance of the simple indirect estimator

We now observe that the left hand sides of equation (2.10) and (2.14) are equal (eq. 2.13);

thus equating the right hand sides and multiplying by
√

T we get

√
Tb(θ0) +

√
T peer(θ0, e0) =

√
Tb(θ̂) +

√
T peer(θ̂, ẽ) (2.15)

and therefore

√
T

[
b(θ̂)− b(θ0)

]
=
√

T peer(θ0, e0)−
√

T peer(θ̂, ẽ) (2.16)

As θ̂ converges to θ0 (for T → ∞), regularity conditions ensure that, asymptotically, we

can replace the random vector
√

T peer(θ̂, ẽ) with
√

T peer(θ0, ẽ). Thus, asymptotically

√
T

[
b(θ̂)− b(θ0)

]
'
√

T peer(θ0, e0)−
√

T peer(θ0, ẽ) (2.17)

The random error terms e0 and ẽ are obviously independent, as the former are the unob-

servable errors in the process that produced the actually observed data, while the latter

are generated by simulation. Thus variances must be summed. As the distribution of e0

and ẽ is the same by assumption (i.i.d. N(0,1), in most of our experiments), the variance

turns out to be simply double. Thus the right hand side of (2.17) will be N(0, 2Σ(θ0)),

asymptotically.

Applying the “δ-method” (e.g. Rao, 1973, p.388) the left hand side of (2.16) is asymp-

totically

√
T

[
b(θ̂)− b(θ0)

]
' R0

√
T (θ̂ − θ0) R0 =

[
∂b(θ)

∂θ′

]

θ0

(2.18)

In our just-identification context there is the same number of θ and β parameters; thus, the

Jacobian R0 is a square matrix. Assuming that it is nonsingular in some neighbourhood

of θ0, we invert the Jacobian obtaining, asymptotically
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√
T (θ̂ − θ0) ' R0

−1
√

T peer(θ0, e0)−R0
−1
√

T peer(θ0, ẽ) (2.19)

Thus, asymptotically the variance-covariance matrix of the simple indirect estimator is

equal to

V ar
[√

T (θ̂ − θ0)
]

= R0
−12Σ(θ0)R

′
0
−1

(2.20)

The fact that Σ(θ0) is doubled is clearly due to the independence between e0 and ẽ in

equation (2.19).

Somewhere in the following sections, we do not need the full notation β(θ0, e0) for the

estimator of the auxiliary model parameters using the actually observed data. So, when

the full notation is not strictly necessary, we shall resort to the simplified notation β̂

(already used in sections 2 and 2.1), where

β̂ = β(θ0, e0) (2.21)

3 Reducing variance with replicated simulations

It is well known that the variance of indirect estimators can be reduced, with a larger

computational cost.

In fact, let us replace the single simulation-calibration of θ̂ with the average of H replicated

simulations-calibrations, say θ̂h, h = 1, ..., H. Each θ̂h is the value of θ̃ that solves the

system

β(θ̃, ẽh) = β(θ0, e0) (3.22)

with ẽh independently drawn across different replications. Repeating the procedure above,

we have

β(θ0, e0) = b(θ0) + peer(θ0, e0) (3.23)

β(θ̂h, ẽh) = b(θ̂h) + peer(θ̂h, ẽh) h = 1, 2, ..., H (3.24)

where each θ̂h is calibrated till β(θ̂h, ẽh) = β(θ0, e0), that is till the left hand sides of (3.23)

and (3.24) are equal.

Finally all θ̂h are averaged to produce
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θ̂ =
1

H

H∑

h=1

θ̂h (3.25)

Instead of equation (2.19), we have in this case, asymptotically

√
T (θ̂ − θ0) ' R0

−1

[√
T peer(θ0, e0)− 1

H

H∑

h=1

√
T peer(θ0, ẽh)

]
(3.26)

where the asymptotic variance-covariance matrix of the term in square brackets is now

(1 + 1/H)Σ(θ0), being the ẽh independent of each other and of e0.

The variance reduction corresponding to a multiplying factor (1 + 1/H) instead of 2 is

obtained at the cost of H calibration procedures instead of just one.

In absence of exogenous variables, the same result would be obtained if the H procedures

with T data were replaced by one procedure with HT simulated data (Gourieroux, Mon-

fort and Renault, 1993, section 2.3). The computational cost would be about the same, if

the estimator of the auxiliary model has a closed form expression, and therefore the num-

ber of elementary arithmetic operations is roughly proportional to HT (as in the models

considered in Calzolari, Di Iorio and Fiorentini, 1998). Otherwise, the computational cost

of a single estimation with HT data would be usually lower than replicating H estima-

tions with T data, when the auxiliary model needs an iterative estimation procedure (the

number of iterations to convergence usually decreases as the sample length increases).

Equations like (2.19) or (3.26) quite clearly put into evidence the two components that

contribute to the variance of the indirect estimator. The first component on the right

hand side of both equations depends on e0 and R0. Thus, it is irreducible, given the data,

the auxiliary model adopted and the estimation method used for the auxiliary model.

The second component on the right hand sides of (2.19) and (3.26) depends entirely on

simulation, and can be made arbitrarily small, at the cost of a large simulation effort.

4 Reducing variance with control variates

In a recent paper, the authors (1998) proposed a control variate method capable of re-

ducing the variance with (almost) no additional computational cost. They applied the

method to two financial models, based on stochastic differential equations. In this paper,

we apply a similar technique to a wider class of models.

The control variate procedure is based on the simulation-estimation of the auxiliary model

(2.6). It aims at producing an estimation error that should be strongly correlated with√
T peer(θ̂, ẽ) of equation (2.16).

We need an additional assumption, beyond those required by simple indirect estimation.

12



We assume that the auxiliary model (2.6) can be simulated using the same pseudo-random

errors ẽ used to simulate the econometric model (2.5). If it is not possible to use directly

ẽ inside model (2.6), it must be possible to use pseudo-random errors η̃ obtained by

transformation of ẽ, that is η̃ = η(ẽ).

This is not a strong assumption, as it is usually fulfilled in the cases of practical interest.

Suppose now we simulate the auxiliary model (2.6) with a given value of β, denoted β̇,

and pseudo-random errors η̃ = η(ẽ), and then re-estimate its parameters. Since this is

direct estimation of β, not indirect estimation of θ, the usual regularity conditions will

ensure that the estimator, ˜̇β say, will be asymptotically normally distributed around β̇,

without the need of further assumptions (there is no need here of introducing a binding

function, as it is simply the identity function)

˜̇β = β̇ + npeer(β̇, η(ẽ)) (4.27)

The new parameter estimation error (npeer) is such that
√

T npeer(β̇, η(ẽ)) is asymp-

totically zero mean normal. It is a random vector controlled by the experimenter, as it is

simply the difference between the estimated parameters and the parameter values intro-

duced into the model. We must note that npeer is the estimation error of a correctly

specified model, thus its variance, asymptotically, is simply obtained from the Hessian of

the auxiliary model, when the values of y are produced by the auxiliary model itself. We

call this matrix H2 to distinguish it from the H1 of equation (2.9).

To construct the control variate estimator we start by taking β̇ = β̂ = β(θ0, e0), the actual

estimate. We enter it into the auxiliary model (2.6), as well as η(ẽ), and with the series

y produced by simulation of (2.6) we re-estimate the β parameters and obtain
˜̂
β. Thus,

using equation (4.27) with (2.13), (2.14) and (2.21), the vector npeer can be written as

˜̂
β − β̂ = npeer(β̂, η(ẽ)) = npeer

{[
b(θ̂) + peer(θ̂, ẽ)

]
, η(ẽ)

}
(4.28)

We finally use this npeer to adjust the simple indirect estimator θ̂

θ̂cv = θ̂ + R̂−1(
˜̂
β − β̂) = θ̂ + R̂−1 npeer(β̂, η(ẽ)) (4.29)

where θ̂cv is called the control variate estimator of θ0 and the Jacobian R̂ is a feasible

estimator of ∂b(θ)/∂θ′, that is

R̂ =

[
∂β(θ, ẽ)

∂θ′

]

θ̂

(4.30)

As θ̂ converges to θ0 (for T →∞), regularity conditions ensure that
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plim R̂ = R0 =

[
∂b(θ)

∂θ′

]

θ0

(4.31)

and that, asymptotically

√
T npeer(β̂, η(ẽ)) '

√
T npeer[b(θ0), η(ẽ)] (4.32)

Thus, from (2.19) and (4.29) we get, asymptotically

√
T (θ̂cv − θ0) =

√
T

[
(θ̂ − θ0) + (θ̂cv − θ̂)

]
(4.33)

' R0
−1
√

T peer(θ0, e0) + R0
−1

{√
T npeer[b(θ0), η(ẽ)]−√T peer(θ0, ẽ)

}

Given the independence between e0 and ẽ, the asymptotic variance-covariance matrix of

the control variate estimator will be the sum of the covariance matrices of the two compo-

nents. The first component in equation (4.33) is exactly the same as the irreducible part

in the simple indirect estimator, as in equation (2.19). The second component in equation

(4.33), in braces, is the difference between two random vectors presumably quite close to

each other (strong positive correlation and similar variance-covariance matrix). There-

fore, it is quite reasonable to expect a large variance reduction in this second component,

when compared with the second term on the right hand side of (2.19).

The additional simulation-estimation is performed just once, at the end of the calibration

procedure that has produced the simple indirect estimator θ̂: no further parameter cali-

bration is required. Therefore, the additional cost of the computation is quite small and

almost negligible when compared with the cost of computing the indirect estimator.

The additional software code required to implement the control variate procedure is very

little: just the simulation of the auxiliary model, being any other algorithm already re-

quired by the simple indirect estimator (estimation, calibration, etc.). It should also be

noted that the control variates can be applied even when the indirect inference is per-

formed with H > 1, and still it may produce some variance reduction with respect to the

last term on the right hand side of equation (3.26).

4.1 A clarifying example

A simple example might be helpful to fix ideas. For this example, estimation can be

performed with the standard econometric methods, so that indirect inference would ob-

viously be unnecessary. Let us suppose one is dealing with a linear regression model with

nonrandom exogenous regressors, under standard textbook conditions

y = Xθ + e (4.34)
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with the additional condition that the variance of the i.i.d. e’s is known and equal to 1

(not helpful for estimation of θ, as well known).

The econometric and auxiliary models are coincident, so there is no need of distinguishing

the η from the e error terms. Using Ols we get

β(θ, e) = (X ′X)−1X ′y = θ + (X ′X)−1X ′e (4.35)

thus b(θ) = θ (the binding function is the identity function), peer(θ, e) = (X ′X)−1X ′e
(not a function of θ, and asymptotically vanishing), and asymptotically

√
T peer(θ, e) →

N [0, lim(X ′X/T )−1].

In this simple example, the Jacobian is the unit matrix. Thus, asymptotically, if we

perform simulation with H = 1 (see eq. 2.19)

√
T (θ̂ − θ0) '

√
T (X ′X)−1X ′e0 −

√
T (X ′X)−1X ′ẽ (4.36)

The two components, in the equation above, are independent random vectors, each of

which has a variance-covariance matrix equal to (X ′X/T )−1. So the asymptotic variance-

covariance matrix of the indirect estimator will simply be the double of that of the Ols

estimator, that is 2lim(X ′X/T )−1.

If simulation is performed with H replications, from eq. (3.25) it follows that the asymp-

totic variance-covariance matrix of the indirect estimator will be (1 + 1/H) times that of

the Ols estimator, (1 + 1/H)lim(X ′X/T )−1.

Let us now apply the control variate procedure, with H = 1.

˜̂
β = β̂ + (X ′X)−1X ′ẽ (4.37)

npeer(β̂, ẽ) = (X ′X)−1X ′ẽ (4.38)

This is exactly equal to peer(θ̂, ẽ).

θ̂cv = θ̂ + npeer(β̂, ẽ) = θ̂ + (X ′X)−1X ′ẽ (4.39)

√
T (θ̂cv − θ0) =

√
T

[
(θ̂ − θ0) + (θ̂cv − θ̂)

]
(4.40)

=
√

T (X ′X)−1X ′e0 +
{√

T (X ′X)−1X ′ẽ−√T (X ′X)−1X ′ẽ
}

The term in braces is zero. Therefore, the control variate indirect estimator turns out

to have the same variance as the Ols estimator; that is, half the variance of the simple

indirect estimator.
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4.2 The variance of the control variate estimator

In general, it is not straightforward to predict the efficiency gain produced by the control

variates. Intuitively, if the econometric model (2.5) and the auxiliary model (2.6) are

quite close to each other, the last component in braces on the right hand side of equation

(4.33) should give very little contribution to the variance of the estimator. In the extreme

case of the two models being coincident, such a component disappears and the variance

of the estimator would be exactly the same as the variance of the direct estimator; for the

simple indirect estimator the variance would be double. Of course, this extreme case is an

example where indirect inference is completely useless, like the example in the previous

section.

The asymptotic variance-covariance matrix of the control variate indirect estimator can

be derived as follows.

From equation (4.33), given the independence between e0 and ẽ and since
√

Tpeer and√
Tnpeer have asymptotically zero expected value, we can write asymptotically

V ar
(√

T (θ̂cv − θ0)
)

= R−1
0

{
V ar

[√
Tpeer(θ0, e0)

]
+ V ar

[√
Tpeer(θ0, ẽ)

]

+V ar
[√

Tnpeer(b(θ0), η(ẽ))
]
− E

[√
Tpeer(θ0, ẽ) ∗

√
Tnpeer′(b(θ0), η(ẽ))

]

−E
[√

Tnpeer(b(θ0), η(ẽ)) ∗ √Tpeer′(θ0, ẽ)
]}

R′−1
0 (4.41)

The first two terms give the variance of the simple indirect estimator (cfr. equation 2.20).

The third term is easily computable, being the variance of a correctly specified model. We

have already observed just after equation (4.27) that it is asymptotically

V ar
[√

Tnpeer(b(θ0), η(ẽ))
]

= H−1
2 (4.42)

being H2 the Hessian of the auxiliary model, when the values of y are produced by the

auxiliary model itself.

Asymptotically, the expected value of the products which are the last terms of equation

(4.41) is obtained combining the inverted Hessians and the outer product matrices of the

auxiliary model when the y data are produced alternatively by the econometric model or

by the auxiliary model. The final result will be

V ar
(√

T (θ̂cv − θ0)
)

= R−1
0

{
2H−1

1 J1H
−1
1 + H−1

2 −H−1
1 J1,2H

−1
2 −H−1

2 J2,1H
−1
1

}
R′−1

0 (4.43)

H1 and J1 are the probability limits of the auxiliary model’s Hessian and outer-product

matrices, computed at b(θ0), when the values of y are produced by the econometric model,
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as in equation (2.9). H2 is again the probability limit of the Hessian of the auxiliary model

(2.6). when the y data have been produced by the auxiliary model itself.

J1,2 is the probability limit of the cross-products matrix of first derivatives, when the y

data have been first produced by the econometric model, and then by the auxiliary model.

Finally, J2,1 is the transpose of J1,2.

The proof of equation (4.43) is completed in appendix A.

For cases of practical interest, the performance of the control variate estimator and of its

variance-covariance matrix can be evaluated by means of Monte Carlo experiments. This

will be done in the examples of section 5.

4.3 Computational procedure for control variates

After the simple indirect estimator θ̂ has been computed (step 8 of section 2.1 ), with

the value β̂ and the η-transformation of the pseudo-random error terms ẽ (step 4 of the

section 2.1) we simulate the auxiliary model (2.6). With the simulated series of y we

re-estimate the same model (2.6), obtaining an estimate that we call
˜̂
β. Now,

˜̂
β − β̂ is

the new parameter estimation error, npeer(β̂, η(ẽ)), that produces the control variates.

Thus, the indirect estimator with control variates will be

θ̂cv = θ̂ + R̂−1 npeer(β̂, η(ẽ)) = θ̂ + R̂−1(
˜̂
β − β̂) (4.44)

where the Jacobian R̂ is computed with numerical differentiation as

R̂ =

[
∂β(θ, ẽ)

∂θ′

]

θ̂

(4.45)

The estimate of the variance-covariance matrix of θ̂cv can be obtained using equation

(4.43), where R0 is replaced by R̂ of equation (4.45). The matrices H1 and J1 are computed

in β̂ with the y data produced by simulation of the econometric model, while H2 is

computed also in β̂, but using the y data produced by simulation of the auxiliary model.

Both sets of y data must be used to compute the cross-products matrix J1,2 and its

transpose J2,1.

4.4 Remark

Concerning the solution of the implicit system of equations (which are not written in

closed form) that yields the indirect estimator, little is reported in the literature (see, for

example, An and Liu, 1996). Since an analytic solution does not exist, the problem must

be solved numerically. We have adopted the following updating equation
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θ̃(j) = θ̃(j−1) + λA−1
(j−1)(β̃(j−1) − β̂) (4.46)

where θ̃(j) is the value of the calibrated parameters after j iterations, A(j−1) is a matrix

that determines the direction of the jth step, and λ is a real number (scalar) which

determines the stepsize in the given direction. In most of our applications we alternate

one “complicated” (Newton) iteration taking A equal to the Jacobian matrix of derivatives

of the auxiliary parameters with respect to the parameters of interest (R̂ of equation 4.30)

with some “simple” iterations (typically three to four) without changing A. This heuristic

switching rule is maintained until convergence is reached. Only for some models (when

the θ and β parameters are essentially the same, even if plugged into different models) we

could also perform iterations using the identity matrix (Jacobi solution method, or “fine

tuning”, using the terminology of An and Liu, 1996, or Mealli and Rampichini, 1999).

5 Models and Monte Carlo results

The design of the Monte Carlo is as follows. The econometric models and their true

parameters are kept fixed in all experiments. For each of the models considered in this

section we present a table of results, each table being related to a Monte Carlo experiment

with 10 000 replications (only 2000 for one of the stochastic volatility models, where the

time series are particularly long). In each table, a row displays:

1) The true value of a θ0 parameter (used in all Monte Carlo replications to generate the

pseudo-observed data).

2) The Monte Carlo mean of the simple indirect estimates of the parameter, computed

across 10 000 replications.

3) The Monte Carlo mean of the control variate indirect estimate of the parameter.

4) The Monte Carlo mean of the naive estimates of a parameter in the auxiliary model (in

some cases, it will be the β parameter that “reasonably” corresponds to the θ parameter).

Under each mean, in square brackets, we display the Monte Carlo variance of the param-

eter, computed across the 10 000 replications. In parentheses, we display the mean of the

estimated variance of the parameter, computed across the same replications.

In each replication, the variance of the naive estimator is computed as in White (1982),

being the auxiliary model misspecified. There are cases where White’s estimator is inap-

propriate, for the presence of autocorrelation. In these cases, the Newey and West (1987)

estimator has been used.

The estimated variance-covariance matrix of the simple indirect estimator is computed as

in section 2.3.

For the indirect estimator with control variates, the estimate of the variance-covariance
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matrix is computed as in section 4.2.

5.1 Moving average process

Let us consider a moving average process of order 1

yt = εt + θεt−1 εt ∼ N(0, σ2) (5.47)

The parameters of the econometric model are therefore θ and σ2. With tentative values

of the parameters, the model can be easily simulated generating pseudo-random errors ε̃t

= σ̃ẽt, where ẽt are i.i.d.N(0, 1).

Table 1: Ma(1) – mean estim. param. and (var.), [Monte-Carlo var.]

Ind.Inf Ind.Inf Least Sqr.
Par. True H=1 Cntr.Var. Par.

θ 0.5 0.501 0.500 β 0.400
(.11*10−2)[.11*10−2] (.59*10−3)[.59*10−3] (.13*10−3)[.13*10−3]

σ2 1.0 0.999 1.00 ψ2 1.05
(.99*10−3)[.10*10−2] (.53*10−3)[.53*10−3] (.47*10−3)[.46*10−3]

T=5000 Replications=10 000

As auxiliary model, we adopt a rough approximation based on an autoregressive model

of order 1, where parameters are β and ψ2.

yt = βyt−1 + ψηt ηt ∼ N(0, 1) (5.48)

The coefficient β and the residual variance ψ2 are easily estimated by least squares. This

is a simple textbook case that well exemplifies the performance of indirect inference (see

Gourieroux and Monfort, 1996, pp.71-73). To produce the control variates, we use the

auxiliary model (5.48). After the simple indirect estimates have been computed (θ̂, σ̂2), we

can simulate model (5.48) using β̂ and ψ̂2 and generating additive pseudo-random errors

as ψ̂ẽt, where ẽt are the same pseudo-random errors N(0, 1) used to simulate (5.47). With

these simulated data we re-estimate model (5.48), obtaining
˜̂
β and

˜̂
ψ2, and finally we use

the differences
˜̂
β− β̂ and

˜̂
ψ2− ψ̂2 to adjust the simple indirect estimates and produce the

control variate estimates θ̂cv and σ̂2
cv.

Results are given in Table 1.

The least squares estimator of the auxiliary model shows a quite evident bias for both

parameters. Indirect inference (with or without control variates) adjusts for the bias

(inconsistency): the mean estimated parameter is very close to the true value.
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For the simple indirect estimator, the mean of the estimated variances is remarkably close

to the Monte Carlo variance; the Newey-West matrix has been used in the estimation.

Control variates produce a remarkable reduction of the variance of the two parameter

estimates, with respect to simple indirect estimates. The result is almost striking. Vari-

ance is reduced by almost 50%. In other words, the enlargement of the variance due to

simulation is practically negligible. A similar result could be obtained by simple indirect

estimation, using H = 20 or more, thus at much higher computational cost.

5.2 Autoregressive moving average process

Let us consider an Arma(1,1) process

yt = φyt−1 + εt + θεt−1 εt ∼ N(0, σ2) (5.49)

The econometric parameters of interest are φ, θ and σ2. With tentative values of the

parameters, the model can be easily simulated generating pseudo-random errors ε̃t = σ̃ẽt,

where ẽt are i.i.d.N(0, 1).

Table 2: Arma(1,1) – mean estim. param. and (var.), [Monte-Carlo var.]

Ind.Inf Ind.Inf Least Sqr.
Par. True H=1 Cntr.Var. Par.

φ 0.4 0.399 0.401 β1 0.772
(.93*10−3)[.99*10−3] (.51*10−3)[.51*10−3] (.17*10−3)[.17*10−3]

θ 0.4 0.402 0.399 β2 -0.233
(.14*10−2)[.14*10−2] (.74*10−3)[.74*10−3] (.16*10−3)[.16*10−3]

σ2 1.0 1.00 1.00 ψ2 1.014
(.84*10−3)[.83*10−3] (.42*10−3)[.42*10−3] (.41*10−3)[.39*10−3]

T=5000 Replications=10 000

As auxiliary model, we adopt a rough approximation based on autoregressive model of

order 2, whose coefficients β1 and β2 are quite simple to estimate by least squares, as well

as the residual variance ψ2

yt = β1yt−1 + β2yt−2 + ψηt (5.50)

Although slightly more complex than the previous case, this is again a rather simple

example of the performance of indirect inference. To produce the control variates, we use

the auxiliary model (5.50), which can be simulated using β̂1, β̂2 and generating additive

pseudo-random errors ψ̂ẽt, where ẽt are the same N(0, 1) used to simulate (5.49).

Results are given in Table 2.
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As for the previous model, the quite evident bias (inconsistency) of the least squares

estimator is adjusted by Indirect inference (with or without control variates). The results

are quite similar to those of the previous model. The reduction of the variance of all

parameter estimates is even more striking. Control variates reduce by almost 50% the

global variance of the simple indirect estimator. A similar result could be obtained by

simple indirect estimation, using H = 30 or more, thus at much higher computational

cost.

5.3 Ornstein-Uhlenbeck process

As econometric model let us now consider the stochastic differential equation employed by

Vasicek (1977) to explain the behaviour of short-term interest rates (Ornstein-Uhlenbeck

process)

dyt = k(a− yt)dt + σdWt (5.51)

where yt is the spot interest rate, Wt is a Wiener process.

Table 3: O.U. – mean estim. param. and (var.), [Monte-Carlo var.]

Ind.Inf Ind.Inf Least Sqr.
Par. True H=1 Cntr.Var. Par.

a 0.1 0.0998 0.1001 a 0.0999
(.40*10−4)[.41*10−4] (.22*10−4)[.22*10−4] (.20*10−4)[.19*10−4]

k 0.5 0.5020 0.5009 k 0.3985
(.16*10−2)[.17*10−2] (.92*10−3)[.90*10−3] (.35*10−3)[.34*10−3]

σ2 0.01 0.0100 0.0100 σ2 0.0064
(.31*10−6)[.30*10−6] (.17*10−6)[.17*10−6] (.39*10−7)[.40*10−7]

T=2000 Replications=10 000

In many empirical works, simulation of model (5.51) is performed by resorting to a dis-

cretization, at very small time intervals. Examples can be found in Bianchi and Cleur

(1996), Broze, Scaillet and Zaköıan (1995, 1998), Di Iorio (1996), Pastorello, Renault and

Touzi (1994). Particularly simple is the so-called Euler scheme, which is adopted in this

paper. Other types of approximations could be adopted, like those proposed by Mihlstein

and by Talay (see, for example, Kloeden and Platen, 1992), or the explicit order 2 weak

scheme of Gallant and Tauchen (1995). Using the Euler scheme, the discretized model

used for simulation instead of (5.51) is

yt − yt−δ = kaδ − kyt−δδ +
√

δσ2 et (5.52)

where et are Gaussian error terms. With the notation of the previous sections, the vector
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of parameters of interest is θ = (a, k, σ2)′.

Simulation can be made with arbitrarily small time intervals δ, and regularity conditions

can ensure that the discretized model, with a conveniently small δ, exhibits negligible

differences from the corresponding continuous time model. For our purposes, a value

δ ≤ 0.1 proved to be sufficiently accurate (we have used δ = 0.05; see on this problem

also the empirical applications in Bianchi, Cesari and Panattoni, 1994, Broze, Scaillet

and Zaköıan, 1998, and Bianchi and Cleur, 1996). So model (5.52) can be considered the

econometric model of interest.

A time unit corresponds to the frequency of actually observed data. Thus if data are

daily, t and t−1 refer to consecutive days, and δ = 0.05 (or 1/δ = 20) means that 20 data

are generated to produce one daily simulated value. So t and t − δ refer to consecutive

generated data, while consecutive days will be t and t− 20δ.

Since actual data are observed at discrete time intervals (unit time intervals), a simple

empirical estimation in most available applications is performed on the following auxiliary

model

yt − yt−1 = ka− kyt−1 + σηt (5.53)

where Et−1(ηt) = 0 and Et−1(η
2
t ) = 1. There is such an obvious correspondence between

the θ and the β parameters, that we can keep also for the parameters of the auxiliary

model the same symbols as for the econometric model: β = (a, k, σ2)′.

A naive estimator of the discretized model (5.53) is easily obtained by least squares.

The results presented in Table 3 are related to a sample period length T = 2000 (for

analogous results related to T = 1000 see Calzolari, Di Iorio and Fiorentini, 1998). This

also is the length of the simulated series (H = 1, HT = T ). The simulation step is

δ = 0.05 (thus T/δ = 40 000).

To obtain the control variates, we simulate the auxiliary model (5.53), using β̂ and a

vector of i.i.d. N(0, 1) pseudo-random errors η̃ = η(ẽ) of length T , whose tth element is

η̃t =
√

δ(ẽt−1+δ + ẽt−1+2δ + · · ·+ ẽt−δ + ẽt).

5.4 Square-root process

The so called square-root process has been used by Cox, Ingersoll and Ross (1985) for

modelling the behaviour of the short term interest rate

dyt = k(a− yt)dt + σ
√

ytdWt (5.54)

where Wt is a Wiener process.

The discretized model used for simulation instead of (5.54) is
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Table 4: Sq.rt. – mean estim. param. and (var.), [Monte-Carlo var.]

Ind.Inf Ind.Inf Least Sqr.
Par. True H=1 Cntr.Var. Par.

a 0.1 0.1000 0.1000 a 0.1000
(.41*10−5)[.41*10−5] (.21*10−5)[.22*10−5] (.20*10−5)[.19*10−5]

k 0.5 0.5003 0.5002 k 0.3986
(.17*10−2)[.18*10−2] (.95*10−3)[.97*10−3] (.35*10−3)[.34*10−3]

σ2 0.01 0.0100 0.0100 σ2 0.0066
(.30*10−6)[.32*10−6] (.16*10−6)[.17*10−6] (.50*10−7)[.51*10−7]

T=2000 Replications=10 000

yt − yt−δ = kaδ − kyt−δδ +
√

yt−δ

√
δσ2 et (5.55)

where et are a Gaussian error terms. With the same considerations as in the previous

subsection, (5.55) will be considered as the econometric model of interest.

The auxiliary model we use is

yt − yt−1 = ka− kyt−1 +
√

yt−1 σηt (5.56)

where Et−1(ηt) = 0 and Et−1(η
2
t ) = 1.

The vector of parameters of interest is θ = (a, k, σ2)′. The parameters of the auxiliary

model are the same as for the econometric model: β = (a, k, σ2)′ (strict correspondence

between the θ and the β parameters).

A naive estimator of the discretized model (5.56) is easily obtained by weighted least

squares, that is least squares after data have been divided by
√

yt−1.

To obtain the control variates, we simulate the auxiliary model (5.56), using β̂ and a

vector of i.i.d. N(0, 1) pseudo-random errors η̃ = η(ẽ) of length T , whose tth element is

η̃t =
√

δ(ẽt−1+δ + ẽt−1+2δ + · · ·+ ẽt−δ + ẽt).

Results are displayed in Table 4.

5.5 Stochastic differential equation with unrestricted variance

elasticity

The model of interest is the same as in Chan, Karolyi, Longstaff and Sanders (1992; Ckls

hereinafter):

dyt = k(a− yt)dt + σyγ
t dWt , (5.57)

whereWt is a Wiener process and θ = (a, k, σ, γ)′ is the vector of all parameters of interest.
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Table 5: Ckls – mean estim. param. and (var.), [Monte-Carlo var.]

Ind.Inf Ind.Inf Nlfiml
Par. True H=1 Cntr.Var. Par.

a 0.1 .1001 .0999 a .0999
(.41*10−5)[.43*10−5] (.21*10−5)[.22*10−5] (.20*10−5)[.21*10−5]

k 0.5 .5021 .5024 k .3988
(.17*10−2)[.17*10−2] (.96*10−3)[.97*10−3] (.33*10−3)[.33*10−3]

γ 0.5 0.4992 0.5019 γ 0.3675
(.87*10−2)[.95*10−2] (.54*10−2)[.59*10−2] (.27*10−2)[.25*10−2]

σ2 0.01 0.0110 0.0105 σ2 0.0036
(.28*10−4)[.27*10−4] (.18*10−4)[.17*10−4] (.82*10−6)[.86*10−6]

T=2000 Replications=10 000

With the same considerations for the square root process and the Ornstein-Uhlenbeck

process, the discretized model used for simulation instead of (5.57) is

yt − yt−δ = kaδ − kyt−δ + yγ
t−δ

√
δσ2 et (5.58)

where et are i.i.d. standard normal disturbances. A natural choice for the auxiliary model

is

yt − yt−1 = ka− kyt−1 + yγ
t−1 σ ηt (5.59)

where Et−1(ηt) = 0 and Et−1(η
2
t ) = 1.

Even in this case the parameters of the auxiliary model are the same of the econometric

model. In this case the performance of indirect inference estimators depends on the

maximization criterion chosen for the auxiliary model. In fact, some experiments have

shown that the main difficulty is the estimation of γ.

In this case, we follow an approach similar to that proposed by Calzolari and Fiorentini

(1994) for systems of nonlinear simultaneous equations with Arch errors. The auxiliary

model can be seen as a nonlinear implicit equation, and written as

yty
−γ
t−1 − kay−γ

t−1 + (k − 1)y1−γ
t−1 = σηt (5.60)

where we also assume ηt ∼ N(0, 1). Using the notation in Amemiya (1977), we can write

f(yt, yt−1, α) = ut

where α = (k, a, γ)′ (and therefore β = (α′, σ2)′ is the whole vector of auxiliary parame-

ters).
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The maximum likelihood estimation can be conducted by iterating to convergence an

instrumental variables method (Nlfiml, following Amemiya, 1977), that is

α̂(m+1) = α̂(m) − [Ĝ′
(m)G(m)]

−1Ĝ′
(m)û(m) m = 1, 2... (5.61)

where the matrix G′
(m) has columns gt,(m) = ∂f

∂α
|α̂(m)

, and the matrix Ĝ′
(m) has columns

ĝt,(m) = gt,(m) −
(

1

T

T∑

s=1

∂gs,(m)

∂us

)
ût,(m) (5.62)

with all derivatives evaluated at α̂(m). The estimator of σ2 is obtained from the residuals

ût = f(yt, yt−1, α̂).

This procedure usually achieves convergence after very few iterations (typically 5-10).

Control variates are obtained from simulation of the auxiliary model, with a technique

quite similar to what adopted for the previous differential equation models.

Results are displayed in Table 5.

5.6 Dynamic Tobit model

Let us consider the following dynamic Tobit model

y∗t = θ1 + θ2 y∗t−1 + εt εt ∼ N(0, σ2)

yt = max(y∗t , 0)
(5.63)

The econometric parameters of interest are θ1, θ2 and σ2. With tentative values of the

parameters, the model can be easily simulated generating pseudo-random errors ε̃t = σ̃ẽt,

where ẽt are i.i.d.N(0, 1).

Table 6: Dyn.Tobit – mean estim. param. and [Monte-Carlo var.] – 50% censored

Ind.Inf Ind.Inf Least Sqr.
Par. True H=1 Cntr.Var. Par.

θ1 0.0 -0.104*10−2 -0.209*10−2 β1 0.265
[.29*10−2] [.19*10−2] [.47*10−3]

θ2 0.5 0.501 0.499 β2 0.423
[.29*10−2] [.25*10−3] [.14*10−2]

σ2 1.0 1.01 1.01 ψ2 0.371
[.13*10−1] [.10*10−1] [.94*10−3]

T=5000 Replications=10 000

As auxiliary model, we adopt the autoregressive equation of order 1, treating the zeroes

as regular values of the dependent variable
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yt = β1 + β2 yt−1 + ψηt (5.64)

Coefficients β1 and β2 are quite simple to estimate by least squares, as well as the residual

variance ψ2.

To produce the control variates, we use the auxiliary model (5.64), which can be simulated

using β̂1, β̂2 and generating additive pseudo-random errors ψ̂ẽt, where ẽt are the same

N(0, 1) used to simulate (5.63).

Results are given in Table 6. In this example, the percentage of censored values is 50%.

We display in the table only the Monte Carlo variances and not the average estimated vari-

ances (whose computation has encountered several numerical problems that need further

investigation).

For results with different simulation-based estimators, see Billio, Monfort, and Robert

(1998).

5.7 Discrete time stochastic volatility model

The econometric model is the simplest among the dynamic stochastic volatility models

in discrete time, considered in Danielsson (1994). Its major properties are discussed in

Taylor (1986, 1994). Detailed results on indirect inference for this model are presented in

Monfardini (1998). We represent the model as

yt = e
1
2
ht rt

ht = θ1 + θ2ht−1 + σ vt

(5.65)

where yt is the observed variable, ht is unobservable, et = (rt, vt)
′ are i.i.d. N(0, I) vectors.

Table 7: S.V. – mean estim. param. and [Monte-Carlo var.]

Ind.Inf Ind.Inf Least Sqr.
Par. True H=1 Cntr.Var. Par.

θ1 0.0 -.31*10−3 -.18*10−4 β1 -.59*10−3

[.28*10−5] [.25*10−5] [.77*10−4]

θ2 0.9 .901 .899 β2 .345
[.44*10−3] [.25*10−3] [.50*10−4]

σ2 0.1 0.099 .099 ψ2 0.401
[.82*10−3] [.46*10−3] [.99*10−3]

T=100 000-Aux.mod.1 Replications=2000

Transforming the observed variable as log(y2
t ) we get the sum of an Ar(1) process (ht) and

a non-Gaussian white noise (log(r2
t )). Monfardini (1998) observes that, if both processes

were Gaussian, the result would be Gaussian Arma(1,1); being non-Gaussian, a Gaussian
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Table 8: S.V. – mean estim. param. and [Monte-Carlo var.]

Ind.Inf Ind.Inf Least Sqr.
Par. True H=1 Cntr.Var. Par.

θ1 0.0 -0.24*10−3 0.41*10−4 β1 0.26*10−2

[.15*10−4] [.13*10−4] [.33*10−3]

θ2 0.9 .899 .900 β2 .343
[.72*10−3] [.48*10−3] [.36*10−3]

σ2 0.1 0.099 .100 ψ2 0.402
[.85*10−3] [.54*10−3] [.86*10−3]

T=20 000-Aux.mod.2 Replications=10 000

Arma(1,1) or some high order Ar model (such as an Ar(10)) could nevertheless be used

as auxiliary model in indirect estimation.

We adopt an Ar(10) auxiliary model, but to remain in a just-identified context we impose

constraints on the distributed-lag coefficients. So, as auxiliary model, we use an Ar(10)-

distributed-lag model on xt = log(y2
t ) − E[log(r2

t )] (where E[log(r2
t )] is known). The

weights of the distributed lags are assumed linearly decreasing from lag-1 to lag-10.

xt = β1 + β2[w1xt−1 + w2xt−2 + .... + w10xt−10] + ut (5.66)

We estimate by least squares the first two parameters of the auxiliary model, β̂1 and β̂2,

and from the residual variance we subtract the variance of log(r2
t ) (which is known) to

produce the third parameter estimate, ψ̂2.

To produce the control variates, we use (5.66), simulated using β̂1 and β̂2, and pseudo--

random errors ũt = log(r̃2
t )−E[log(r2

t )]+ ψ̂ṽt, where E[log(r2
t )] is known, and (r̃t, ṽt)

′ = ẽt

are the same pseudo-random errors used to simulate the econometric model (5.65). After

simulation, we estimate by least squares the two coefficients, and the estimate of the

third parameter is obtained from the residual variance, subtracting the variance of log(r2
t )

(which is known).

Results are displayed in Table 7 for a huge sample size (100 000 observations). Such an

unrealistically large number of observations is presented here only for comparison with

an application to the same model, but using a slightly different auxiliary model.

We still use 10 lags in the distributed-lag Ols estimation, with weights that decrease

linearly, so the estimation procedure for β1 and β2 is the same as before. But we derive

the estimate ψ̂2 in a different way. To each least squares residual, we add E[log(r2
t )]

(known), exponentiate the result, average over the sample, and finally take the double of

the logarithm of the average.

The results in Table 8 show that, with 20000 observations, the variance of the simple

indirect estimator is, for the second and third parameter, not much larger than in the
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previous case (that had five times more observations). This well shows that even small

improvements in the auxiliary model may lead to big improvements in the quality of the

indirect estimates.

In both cases the gain due to the use of control variates is remarkable. We display in the

tables only the Monte Carlo variances and not the average estimated variances (whose

computation has encountered several numerical problems that need further investigation).

5.8 Two level logit model with random effects

We consider a two level logit model with random effects (also known as logit variance

component model). Given a N × 1 vector of binary responses y, with yik element being

the response for the i−th individual in the k−th group (i = 1, ..., nk; k = 1, ..., K;

N =
∑K

k=1 nk), we assume that, conditional on a K × 1 vector of random effects ε, the

elements of y are independent Bernoulli variables with probabilities1

Pik = Pr(yik = 1) =
exp(θ1 + θ2xik + εk)

1 + exp(θ1 + θ2xik + εk)
(5.67)

We assume εk = σvk i.i.d. N(0, σ2).

Table 9: Logit with random effects – mean estim. param. and [Monte-Carlo var.]

Ind.Inf Ind.Inf Least Sqr.
Par. True H=1 Cntr.Var. Par.

θ1 0.5 .502 .500 β1 .607
[.65*10−2] [.33*10−2] [.13*10−3]

θ2 0.5 .501 .499 β2 .098
[.12*10−2] [.81*10−3] [.22*10−4]

σ2 0.5 0.507 .497 ψ2 .019
[.88*10−2] [.50*10−2] [.50*10−5]

N=10 000;K=200 Replications=10 000

The model may be complicated by including a multiple level structure.

The conditional likelihood function is

L(θ1, θ2|ε) =
K∏

k=1

nk∏

i=1

P yik
ik (1− Pik)

1−yik (5.68)

To obtain the unconditional likelihood we need to integrate out the random effects ε, that

is

1Alternatively, the model can be interpreted as a logit model for panel data with individual random
effects. In that case yik would be the k−th observation of the i−th individual, with i = 1, ..., n; k =
1, ..., T ; N = nT .
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L(θ1, θ2, σ
2) =

∫
...

∫
L(θ1, θ2|ε)φ(ε)dε (5.69)

where φ is the normal density.

Some difficulties arising in the computation of (5.69) have led to various approximated

solutions, which make use of pseudo-likelihood functions, or first/second order Taylor ex-

pansion of model (5.67) (Goldstein, 1991, Longford, 1994). An indirect inference approach

is presented in Mealli and Rampichini (1999).

As auxiliary model, here we use a simple linear probability model

yik = β1 + β2xik + uk + wik (5.70)

where the coefficients are estimated by least squares, while the variance of uk, say ψ̂, is

estimated as the mean of within-group covariances (the residual wik is ignored).

To produce the values of ỹik, we generate a K × 1 vector ṽ of i.i.d. standard normals,

and use the available estimate of σ2 to produce ε̃ = σṽ. Then we generate r̃ik uniform

in (0,1), compare its value with the probability (5.67), and assign a 0 or 1 value to ỹik

accordingly. In the general notation used in this paper, the pseudo-random error ẽik, for

each individual, is a bivariate random vector with independent components ṽk (normal,

the same for all individuals of group k) and r̃ik (uniform).

To produce the control variates, we simulate the auxiliary model (5.70). We use ũk = ψ̂ṽk

(the same ṽ as before), compute the value on the right hand side of (5.70) (ignoring

wik), compare the value with r̃ik (the same as before), and assign a 0 or 1 value to ˜̂yik

accordingly. If the linear probability value is less than zero or greater than one, its value

is directly assigned to ˜̂yik, instead of 0 or 1. Finally, coefficients are computed by least

squares, and the variance of uk is estimated as the mean of within-group covariances.

In our Monte Carlo experiment, the covariates xik are generated as independent N(.5, 1),

fixed in all replications.

Results are displayed in Table 9. Indirect estimation adjusts the huge bias (inconsistency)

of the naive least squares estimator of the auxiliary model. Control variates reduce con-

siderably the variance (we display in the table only the Monte Carlo variances and not

the average estimated variances, whose computation has encountered several numerical

problems that need further investigation).

6 Summary comments

For those models where there is a strict correspondence between θ and β parameters, the

bias (inconsistency) of the naive estimator is quite evident for most parameters. Indirect
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estimation (with or without control variates) adjusts for the bias (inconsistency): the

mean estimated parameter is practically equal to the true value. This last consideration

holds also for those models where the strict correspondence between θ and β parameters

is not too obvious (and so we could not properly speak of a bias for the naive estimator).

Control variates produce a remarkable reduction of the variance of some parameter es-

timates, with respect to simple indirect estimates. There are cases where the reduction

is almost 50%, which means that the additional variance due to simulation is practically

cancelled, as it would happen by performing simulations with a large value of H. But

a large value of H would cause a big growth of the computationl costs. Thus, control

variates strongly increase the computational efficiency.

There are case where the reduction is lower than 50%, which means that the improvement

of the computational efficiency is not as large as before, but is still remarkable.

For most models we have also estimated, at each Monte Carlo replication, the variance

of the estimated parameters, both for the simple indirect estimator and for the control

variate estimator. The sample average of the estimated variances is usually quite close

to the Monte Carlo variance. This is, first of all, a good guarantee of the correctness of

numerical results. Moreover, the proposed estimator of the variances (not available in

Calzolari, Di Iorio and Fiorentini, 1998) makes our control variates completely applicable

also to problems with real data.

A general Fortran program has been implemented to perform the experiments of this

paper.

Some specific subroutines must be prepared for each model, following the rules and con-

straints of the general framework. In particular, model specific subroutines must be

provided for the simulation of the econometric model, for the estimation of the auxiliary

model, for the simulation of the auxiliary model, and for computing the pseudo-likelihood

function of the auxiliary model.

7 Conclusion

We have shown in this paper why and how control variates can help in improving the

efficiency of indirect estimators. The paper has shown in some detail how the control

variates can act on that part of the variance that depends on the simulation. At about

the same computational cost (that is, computation time), an indirect estimator with

control variates can be as efficient as a simple indirect estimator based on much longer

simulated series that, therefore, involves a much higher cost.

A large set of Monte Carlo experiments on a variety of different models has shown the

magnitude of the efficiency gain.
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A Appendix: The variance of the control variate in-

direct estimator

In this appendix we provide the proof for the control variate covariance matrix estima-

tor described in section 4.2. For the control variate indirect estimator, the asymptotic

covariance matrix is

V ar
(√

T (θ̂cv − θ0)
)

= R−1
0

{
V ar

[√
Tpeer(θ0, e0)

]
+ V ar

[√
Tpeer(θ0, ẽ)

]

+V ar
[√

Tnpeer(b(θ0), η(ẽ))
]
− E

[√
Tpeer(θ0, ẽ) ∗

√
Tnpeer′(b(θ0), η(ẽ))

]

−E
[√

Tnpeer(b(θ0), η(ẽ)) ∗ √Tpeer′(θ0, ẽ)
]}

R′−1
0 (1.71)

The first three terms on the right hand side have been fully discussed in section 4.2. We

prove here equation (4.43) as far as the last two terms are concerned.

As in Gourieroux, Monfort and Renault (1993), we assume that the auxiliary model’s

parameters (β) can be estimated by maximizing the function QT (y, β) To simplify the

exposition, we consider QT as (1/T times) the log-likelihood of the auxiliary model (there-

fore misspecified or quasi log-likelihood). The estimator of the β parameters sets to zero

the first derivatives of QT . We can now perform Taylor’s expansion of the first derivatives

around b(θ0), analogously to the standard proof of ML asymptotic normality (e.g. Theil,

1971, p.395), and we get

√
Tpeer(θ0, ẽ) ' −H−1

1

√
T

∂QT

∂β
[y = f(θ0, ẽ), β = b(θ0)] (1.72)

where H1 = plimT→∞
∂2QT

∂β∂β′ (the Hessian matrix).

It must be noted that the above notation indicates that the y data are produced by the

econometric model (2.5).

In the same way, when the y data are produced by the auxiliary model (2.6), we can

expand the first derivatives of QT around b(θ0) and obtain

√
Tnpeer(b(θ0), η(ẽ)) ' −H−1

2

√
T

∂QT

∂β
[y = g(b(θ0), η(ẽ)), β = b(θ0)] (1.73)

where H2 = plimT→∞
∂2QT

∂β∂β′ . We must note that, this time, QT is the true log-likelihood

function, as the y data are produced by the auxiliary model (2.6).

From (1.72) and (1.73) we have (asymptotically)

31



E
[√

Tpeer(θ0, ẽ) ∗
√

Tnpeer′(b(θ0), η(ẽ))
]

=

H−1
1 E

{[√
T ∂QT

∂β
(y = f(θ0, ẽ), β = b(θ0))

] [√
T ∂QT

∂β′ (y = g(b(θ0), η(ẽ)), β = b(θ0))
]}

H−1
2

(1.74)

The intermediate matrix involves cross-products of the first derivatives of the quasi log-

likelihoods and log-likelihoods when the y data are produced by the econometric model

(2.5) and auxiliary model (2.6), respectively. Asymptotically, we indicate it as J1,2 and

J2,1 its transpose.

This completes the proof.

To estimate J1,2 we use something similar to the Newey and West (1987) estimator of

J1, discussed in section 2.2. In particular, we need cross-products of first derivatives at

different time-lags.
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ance Option Pricing”, Università di Padova, Dipartimento di Scienze Economiche,

Quaderno No. 31.

Rao, C. R. (1973): Linear Statistical Inference and its Applications. New York: John

Wiley & Sons, Inc.

Richard, J. F. (1996): “Simulation Techniques”, in The Econometrics of Panel Data,

ed. by Laszlo Matya and Patrick Sevestre. Dordrecht: Kluwer Academic Publishers,

613-638.

Simon, G. (1976): “Computer Simulation Swindles, with Applications to Estimates of

Location and Dispersion”, Applied Statistics, Journal of the Royal Statistical Society,

series C 25, 266-274.

Smith, A. A. Jr. (1993): “Estimating Nonlinear Time-Series Models Using Simulated

Vector Autoregressions”, Journal of Applied Econometrics 8, S63-S84.

Sterbenz, F. P., and G. Calzolari (1990): “Alternative Specifications of the Error Process in

the Stochastic Simulation of Econometric Models”, Journal of Applied Econometrics

5, 137-150.

Taylor, S. J. (1986): Modelling Financial Time Series. Chichester: John Wiley & Sons

Ltd.

Taylor, S. J. (1994): “Modelling Stochastic Volatility”, Mathematical Finance 4, 183-204.

Theil, H. (1971): Principles of Econometrics. New York: John Wiley & Sons, Inc.

Vasicek, O.A. (1977): “An Equilibrium Characterization of the Term Structure”, Journal

of Financial Economics 5, 177-88.

White, H. (1982): “Maximum Likelihood Estimation of Misspecified Models”, Economet-

rica 50, 1-25.

35



 
Copyright © 1999 

Giorgio Calzo lar i ,  Francesca Di  Ior io,  

Gabr ie le F iorent in i  


	G. Calzolari, F. Di Iorio,
	G. Fiorentini
	�
	Università degli Studi
	di Firenze
	Copyright © 1999
	Gabriele Fiorentini

