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SUMMARY

Logit models with random effects are now widely used in applied Statistics and Econometrics.
They usually lead to intractable likelihood functions, as they involve integrals without closed
form solution. Numerical integration can be used to compute the likelihood and software is
available (Hedeker and Gibbons, 1996). Difficulties can be encountered when the number of
random effect parameters is not very small. With a detailed Monte Carlo experimentation, we
show in this paper that the simulation-based estimators are almost as efficient as maximum
likelihood. They are Simulated Maximum Likelihood (Gouriéroux and Monfort, 1991), Indirect
Inference (Gouriéroux, Monfort and Renault, 1993) using an auxiliary approximated likelihood
estimator, and Indirect Inference using an auxiliary linear probability model. The advantage of
the latter is its great simplicity and computational speed.

1 Introduction

Random effects models are now widely used in applied Statistics and Econometrics. Ap-
plications include the analysis of the educational system (Aitkin and Longford, 1986) and
the labour market (Mealli and Pudney, 1996; Pudney and Shields 2000). For the esti-
mation of such models with binary responses various approximated solutions have been
proposed, which make use of first or second-order Taylor expansion of the model (like
the Marginal Quasi Likelihood estimator, MQL, proposed by Goldstein, 1991; see also
Breslow and Clayton, 1993; Goldstein and Rasbash, 1996) or Approximated Likelihood
proposed by Longford (1988). Numerical integration with Gaussian quadrature (Ander-
son and Aitkin, 1985; Hedeker and Gibbons, 1994) provides ”in principle” an efficient
solution to the estimation problem, but becomes very cumbersome with multiple level
structures and covariates. Also the use of the EM algorithm (Stiratelli at al., 1984), the
use of Gibbs sampling (Zeger and Karim, 1991), and Laplace approximations (Raudem-
bush and Yang, 1998) have been proposed. Recently, Lee and Nelder (1996) introduced
hierarchical or h-likelihood to estimate hierarchical linear models. The dispersion param-
eters are estimated by means of an adjusted profile h-likelihood, avoiding the integration
that is necessary when marginal likelihood is used.

Simulation studies of Rodriguez and Goldman (1995) have shown the occurrence of large
biases when estimation methods based on approximated likelihood are applied, especially
in the binary case; recent works propose second order corrections (Goldstein and Rasbash,
1996) and bootstrap bias correction (Goldstein, 1996) to improve the estimates. Breslow
and Lin (1995) and Lin and Breslow (1996) developed correction procedures for regression
coefficients estimated by Penalized Quasi-Likelihod (PQL).

In this paper we propose three different simulation based estimators, and we compare their
performances with the Maximum Likelihood estimator based on numerical integration
(Anderson and Aitkin, 1985; Hedeker e Gibbons, 1994, 1996). The three methods are:

• Simulated Maximum Likelihood (Gouriéroux and Monfort, 1991);
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• Indirect Inference (Gouriéroux et al. 1993; Gallant and Tauchen, 1996), which uses
simulations performed under the initial model to correct the estimates derived from
the approximated likelihood (MQL) auxiliary model (Longford, 1988; Mealli and
Rampichini, 1999);

• Indirect Inference with a simple linear probability model as an auxiliary model.

Simulation-based methods are widely used in applied research. There is nevertheless a
lack of studies on the relative efficiency of the alternative estimators.

With a detailed Monte Carlo experimentation, we show in this paper that the simulation-
based estimators are almost as efficient as maximum likelihood.

Surprisingly, the indirect inference estimator based on a simple linear probability model
has an excellent performance, with the advantage of great simplicity and computational
speed.

Section 2 briefly illustrates the multilevel logit model. Section 3 describes alternative
estimators for the model presented in section 2. Particularly, section 3.1 introduces the
Maximum Likelihood estimator based on numerical integration, section 3.2 briefly de-
scribes the Simulated Maximum Likelihood estimator, section 3.3 presents the Indirect
Inference estimator, and in particular section 3.3.2 proposes a procedure based on an ap-
proximated likelihood auxiliary estimator, while section 3.3.3 shows how a simple linear
probability model can be used as an auxiliary model in Indirect Inference. In section 4 a
Monte Carlo simulation study shows the performances of the various estimators. Section
5 concludes.

2 Multilevel Logit Models

We consider a two level logistic model. Given a N × 1 vector of binary responses y, with
yik elements, i = 1, · · · , nk; k = 1, · · · , K; N =

∑K
k=1 nk, we assume that, conditional on a

vector of random effects u, the elements of y are independent Bernoulli random variables
with probabilities

pik = Pr{Yik = 1} =
exp(x′ikγ + z′ikuk)

1 + exp(x′ikγ + z′ikuk)
(2.1)

logit(pik) = ln
(

pik

1− pik

)

= x
′

ikγ + z
′

ikuk

where xik is a q-vector of covariates having fixed effects γ, zik is a m-vector of covariates
having random effects uk, and the uk ∼ IID-MN(µ, Ω) are conditionally independent
with the x variables, and Ω is an m×m covariance matrix . The binary response variable
can be represented as the sum of the (2.1) probability and a residual εik: yik = pik + εik.
Note that the residual can assume only the values pik and 1− pik, it has zero mean and,
given the value of the probability pik, his variance is equal to pik(1− pik).

This formulation leads to the following logistic model for the y vector of observations

y = h(Xγ + Zu) + ε (2.2)
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where h(.) = logit −1(.) is the inverse of the link function (Mc Cullagh and Nelder, 1989),
ε is an error term with mean 0 and variance depending on E(y), X is the model matrix
for the fixed effect γ and Z is the model matrix for the random effects u.

Letting yk denote the vector of responses for the nk units nested within the k-th group,
the conditional density function has the binomial form

L(yk | γ,uk) =
nk
∏

i=1
pyik

ik (1− pik)1−yik (2.3)

while the conditional likelihood for all the groups is

L(γ | u) =
K
∏

k=1

L(yk | γ,uk) (2.4)

To obtain the unconditional likelihood we need to integrate out the random effects u.

The marginal density of yk is expressed as the following integral of the density (2.3):

L(yk) =
∫

· · ·
∫

L(yk | γ,uk)φ(uk)du1 · · · dum (2.5)

where φ(.) denotes the multivariate normal density. Considering that observation of
different groups are independent, the unconditional likelihood for all the groups can be
written as the product of the K independent marginal densities (2.5):

L(γ, Ω) =
K
∏

k=1

L(yk) (2.6)

and so the marginal log-likelihood for the K groups becomes:

log L(γ, Ω) =
K

∑

k=1

log L(yk) (2.7)

3 Estimators

The intractable likelihood function (2.6) can be estimated via numerical integration
(Hedeker and Gibbons, 1994, 1996). Numerical Maximum Likelihood (NML) gives con-
sistent and efficient estimates of the parameters, but it becomes very cumbersome with
multiple level structures and covariates. In the recent literature many approximated so-
lutions of the intractable likelihood function (2.6) were proposed, which make use of first
or second-order Taylor expansion of the model (2.2) (Goldstein, 1991, Breslow and Clay-
ton, 1993; Goldstein and Rasbash, 1996), while Longford (1988, 1994) has proposed an
approximation to the likelihood function (2.6).

In this paper we propose three simulation-based estimators: the Simulated Maximum
Likelihood (SML) and two Indirect Inference (II) estimators. SML is, like NML, efficient,
while the II estimators are not. Anyway, II is simpler and computationally less expensive
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than SML, and seems to be almost efficient as the other, as our Monte Carlo simulation
study shows.

Particularly, one of the two proposed Indirect Inference estimators is based on a full-
iteration MQL estimator (II-MQL), while the other is based on a simple linear probability
model as auxiliary model (II-OLS). We show that the II-OLS estimator performs as good
as the more sophisticated II-MQL estimator (Mealli and Rampichini, 1999).

3.1 Maximum Likelihood via numerical integration

The Numerical Maximum Likelihood (NML) estimates of (2.5) can be obtained by means
of a Fisher Scoring solution (Hedeker and Gibbons, 1996). For the scoring solution, the
Cholesky factor of the random effects variance-covariance matrix is estimated, along with
the coefficients of model covariates. In the estimation of the parameters for model (2.2),
the authors suggest to orthogonally transform the response model. Let u = Tα + µ,
where TT′ = Ω is the Choleski decomposition of Ω. The reparametrization of model
(2.2) is then

y = h(Xγ + Z(Tα + µ)) + ε

and the marginal density (2.5) becomes

L(yk) =
∫

· · ·
∫

L(yk | γ, αk)φ(αk)dα1 · · · dαm (3.1)

In order to solve the integrals that appear in the likelihood equations, Hedeker and Gib-
bons (1994) use numerical integration on the transformed α space. For this, Gauss-
Hermite quadrature can be used to approximate the integrals to any practical degree of
accuracy. In Gaussian quadrature, the integration is approximated by a summation on
a specified number of quadrature points Q for each dimension of integration; thus, for
the transformed α space, the summation goes over Qr points, where r is the number of
covariates having random effects.

The MIXOR program (Hedeker and Gibbons, 1996) performs this kind of estimation for
binary and ordinal response variables.

3.2 Simulated Maximum Likelihood

SML is a simulated version of ML. Given the ML estimator of a parameter θ:

θ̂ = arg max
θ

log f(y | X; θ) (3.2)

where f(y | X; θ) is the probability density function (p.d.f.) of y given X, suppose
that, like in our case, this p.d.f. has an intractable form, while each conditional p.d.f.
f(yk,Xk,u; θ), (see eq. 2.3) appearing in the decomposition:

log f(y | X; θ) =
K

∑

k=1

log f(yk | Xk; θ)
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has a tractable form, and that the conditional distribution of u given Xk is known. Then
we may draw independently, for each group k, S simulated values us

k, s = 1, · · · , S of the
random terms u. A simulated maximum likelihood estimator of θ is then obtained by
replacing the unconditional p.d.f. with an unbiased approximation that is an empirical
mean based on the simulated values:

θ̂SK = arg max
θ

K
∑

k=1

log
[

1
S

S
∑

s=1
f(yk,Xk,us

k; θ)
]

(3.3)

The SML estimator is consistent if S and K go to infinity, while the estimator is incon-
sistent if S is fixed and K goes to infinity. In practice, it is sufficient to retain a number
S of replications such that θ̂SK ' limS→∞ θ̂SK , so that θ̂SK is “close enough” to its limit
value, and such a number often is of moderate size (Gourieroux and Monfort, 1996).

Moreover, if S, K → ∞ and
√

K/S → 0, then the SML estimator is asymptotically
equivalent to the ML estimator (Gouriéroux and Monfort, 1991). Other estimators, like
the simulated scores (Stern, 2000) do not require S → ∞ for consistency. Performances
of such an estimator are not examined in this paper and are left to future investigation.

3.3 The Indirect Inference procedure

Indirect Inference is an appropriate and natural procedure when direct inference is in-
tractable, provided that the model of interest can be easily simulated for any fixed pa-
rameter value in the parameter space. According to Indirect Inference, estimation is made
of two iterated steps. In the first one, an approximated (auxiliary) model or an auxiliary
estimator is used to derive estimates of some auxiliary parameter. In the second step,
simulations of the model of interest are used to correct the discrepancy of the auxiliary
parameters from the original ones. We propose an Indirect Inference procedure using as
the auxiliary estimator alternatively the MQL Approximated Maximum Likelihood Es-
timator (Longford, 1994) or the OLS estimator derived from a simple linear probability
model.

3.3.1 The method

Suppose the model of interest be represented as

y = f(θ, e) (3.4)

and assume that values of y (say ỹ) can be easily produced by simulation of (3.4) for any
value of θεΘ, after drawing pseudo-random values of e (say ẽ). This model cannot be
easily estimated, so we replace it with an approximation like

y = q(β, η) (3.5)

which can be easily estimated.
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For any θεΘ, estimation of (3.5) with values ỹ generated from (3.4) leads to an estimator
of β, β(θ), which depends on θ (and of course depends on the random errors, so it would
be more appropriate β(θ, ẽ), but we omit ẽ from notation for simplicity).

The basic idea is to run H simulations of the model of interest, calibrating θ until the
estimates of the auxiliary parameters using simulated data are close, in some metric, to
those using the actual data at hand.

For identification reasons, the dimension of the auxiliary parameter-vector must be at
least as large as that of the parameters of interest. Gourieroux and Monfort (1996) give
some intuitive guidelines on how to choose auxiliary models. The idea is to calibrate the
θ parameters, keeping the drawings ẽ fixed, till we find the value θ̂ so that

θ̂(Σ1) = arg min
θ

[

β̂ − β(θ)
]′

Σ1

[

β̂ − β(θ)
]

(3.6)

where β̂ is the estimate of β using the actual data, and Σ1 is a symmetric positive-
definite matrix, defining the metric. An alternative procedure was proposed by Gallant
and Tauchen (1996)

θ̂(Σ2) = arg min
θ

[

∂ log L(ỹ, β)
∂β′

]

β̂

Σ2

[

∂ log L(ỹ, β)
∂β

]

β̂

(3.7)

where L is the pseudo-likelihood of the auxiliary model, and ỹ are values of y produced by
simulation of (3.4). In our case there is a one-to-one correspondence between the θ and
β parameters (exact identification), so that the estimates θ̂(Σ1) or θ̂(Σ2) do not depend
on Σ1 and Σ2.

In a just-identified context, minimizing (3.6) is equivalent to finding θ̂ so that

β(θ̂) = β̂. (3.8)

At each step β(θ̂) is obtained as the mean of H estimates of β using H independent
simulated data of length N .

As equations (3.8) are only implicitly defined, in the case of exact identification (i.e.
dim(θ)=dim(β)) one can solve them using a search mechanism that defines a new trial of
θ as

θj+1 = θj − β(θj) + β̂. (3.9)

More efficient algorithms can be used, such as

θj+1 = θj + A
[

β(θj)− β̂
]

(3.10)

with a careful choice of matrix A, which should determine the direction and the step size
of the j-th step (An and Liu, 1996). In our application we take A as the identity matrix;
improvements, still under study, involve taking A as the Jacobian matrix of derivatives
of the auxiliary parameters w.r.t. the parameters of interest (see Calzolari, Di Iorio and
Fiorentini, 1998). In the last case the iteration procedure described by the (3.9)-(3.10), is
the well-known Newton-Raphson algorithm for solving a system of non-linear equations.
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As a starting point for the procedure we use θ0 = β̂. This is an obvious choice in our case,
as there is a one-to-one correspondence between the θ and β parameters. Perturbations
of the initial values do not seem to affect the convergence of the procedure.

Minimizing (3.7) as from the method by Gallant and Tauchen (1996) in our just-identified
case is equivalent to finding θ̂ such that [∂ log L(ỹ, β)/∂β]β̂ = 0, where ỹ are produced
by simulation of (3.4) with θ̂ and fixed ẽ. This gives numerically the same result as
minimizing (3.6), but the computational procedure could be even faster, as it simply needs
the computation of the gradient instead of the whole maximization with the simulated
data. However, in this case the A matrix cannot be simply the identity matrix, and
the Jacobian we need to use contains derivatives of the gradient with respect to the θ
parameters (∂[∂ log L/∂β]/∂θ′).

As auxiliary estimators of model (2.2) we used the approximated maximum likelihood (or
Marginal Quasi Likelihood, MQL) by Longford (1994) presented in the following section
3.3.2, and the least squares estimator of the linear probability model of section 3.3.3. In
both cases, there is a straightforward one-to-one correspondence between the θ parameters
(γ fixed coefficients and elements of Ω in the model of interest) and the β parameters
(coefficients and elements of the auxiliary covariance matrix Σ).

3.3.2 Maximizing approximated likelihood as an auxiliary estimator

An approximated solution of (2.6) can be obtained considering a second-order Taylor
series expansion of the logarithm of the conditional likelihood (2.4) about u = 0; the
following approximate log-likelihood is obtained (Longford, 1994)

log L(γ, Ω) ≈ log L(γ | 0)− 1
2

log |G|+ 1
2
e
′
(W0 −V−1

0 )e (3.11)

where G = I + Z′W0ZΩ, e = W−1
0 (y − h0), h0 = logit −1(Xγ), that is the inverse link

evaluated at u = 0, W0 is a diagonal matrix with entries h0(1−h0), V0 = ZΩZ′ +W−1
0 .

Longford proposes to apply a Fisher scoring algorithm using the following derivatives:

1. derivatives of the log-likelihood (3.11) with respect to γ, ignoring the dependence
of W0 on γ

∂(log L)
∂γ

≈ X
′
V−1

0 e (3.12)

−∂2(log L)
∂γ∂γ ′ ≈ X

′
V−1

0 X

2. derivatives of the log-likelihood (3.11) with respect to a parameter ωεΩ

∂(log L)
∂ω

=
1
2

{

e
′
V−1

0
∂V0

∂ω
V−1

0 e− tr
(

V−1
0

∂V0

∂ω

)}

(3.13)

−E
(

∂2 log L
∂ωi∂ωj

)

=
1
2
tr

(

V−1
0

∂V0

∂ωi
V−1

0
∂V0

∂ωj

)
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3. Longford (1994) shows that the expected second mixed partial derivatives are 0.

Rodriguez and Goldman (1995) show that the estimates of fixed effects and variance com-
ponents obtained from Goldstein and Longford approximations are biased whenever the
random effects are sufficiently large or the number of observations within a given level
of clustering is small. Breslow and Clayton (1993) found that first order Marginal Quasi
Likelihood (MQL) proposed by Goldstein is equivalent to the approximations used by
Longford, and that this procedure leads to estimates of fixed and random effects that
are biased towards zero. Goldstein (1995) and Goldstein and Rasbash (1995) have thus
developed improved linearising approximations (PQL), and show that, for model with an
adequate number of level 1 units per level 2 unit, these give satisfactory results. Never-
theless, when the number of level 1 units per level 2 unit is small and for binary responses
as in Rodriguez and Goldman (1995), there is still some underestimation. Goldstein
(1996) proposes an iterative bootstrap procedure that yields asymptotically unbiased and
consistent estimates for such models.

We propose Indirect Inference to correct for the asymptotic bias of the MQL Approxi-
mated Likelihood Estimator.

Using the MQL estimator as an auxiliary estimator for II leads to an asymptotic covariance
matrix which can be consistently estimated as (Mealli and Rampichini, 1999):

Ŵ (H) =
(

1 +
1
H

)

[

∂2 log L
∂θ∂β′

(

ys(θ̂), β̂
)

W−1∂2 log L
∂θ′∂β

(

ys(θ̂), β̂
)

]−1

(3.14)

where

W =
N
S

S
∑

s=1
(Ws − W̄ )(Ws − W̄ )′ (3.15)

with

Ws =
∂ log L

∂β
[ys(θ̂), β̂] (3.16)

W̄ =
1
S

S
∑

s=1
Ws (3.17)

where θ = {γ, Ω} of model (2.2) and β = {γ, Ω} are the auxiliary parameters, θ̂ is the
Indirect Inference estimate of θ and ys(θ̂) a sample of simulated values of y of length N
based on the parameter θ; ∂2logL

∂θ∂β′ [y
s(θ̂), β̂] is the numerical derivative of (3.13) and (3.14)

with respect to θ evaluated at θ̂, and S is the number of replications, usually chosen equal
to H.

3.3.3 OLS of a linear probability model as an auxiliary estimator

In this section, we use a linear probability auxiliary model:
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yik = x′ikδ + z′ikuk + wik (3.18)

There is a straightforward one-to-one correspondence between the parameters of the orig-
inal model (2.2) and the auxiliary model (3.18). An estimate of the coefficients (δ̂) can
be obtained by ordinary least squares, while an estimate of the variance-covariance ma-
trix (say Σ̂) can be computed via a regression of within-group residual products on some
functions of the zik.

Two examples will better illustrate the procedure. Consider the following model with
random intercept

yik = δ0 + δ1xik + uk + wik. (3.19)

where uk ∼ i.i.d.−N(0, σ2) and wik ∼ i.i.d.−N(0, 1).

As for two observation i and i′ from the same group k the cov(uk + wik, uk + wi′k) = σ2,
the mean of within-group covariances is an estimate of the variance of uk, say σ̂2.

As a second example, consider the following model with random intercept and slope:

yik = δ0 + δ1xik + u1kxik + u2k + wik. (3.20)

where (u1k, u2k) ∼ i.i.d.−N2(0, Σ), and Σ has elements σ11, σ12, σ22, and wik as above.

As cov(u1kxik +u2k +wik, u1kxi′k +u2k +wi′k) = σ11xikxi′k +σ12(xik +xi′k)+σ22, estimates
of σ11, σ12, σ22 can be obtained with a OLS regression of the within-group product of the
OLS residuals on the previous regressors.

The asymptotic covariance matrix of the II estimator proposed in this Section is estimated
via the GMM Method (Greene, 2000, sec. 11.5).

Note that the well-known drawback of the linear probability model, that is that the
expected value of Y can be outside the range [0, 1], is not relevant for our purposes. In
fact, we use this auxiliary model “only” to obtain parameters estimates.

4 Simulation study

In order to illustrate the proposed procedures, we consider two specification (Model1 and
Model 2) for the probabilities of the following (two-level) logit model:

yik = logit −1(pik) + εik (4.1)
.yik ∼ Binomial(1, pik)

E(εik) = 0

where yik is the i-th observation of the k-th group, nk is the number of observations of the
k-th group, and the variance of the error terms εik depends on E(yik), with i = 1, 2, · · · , nk,
k = 1, 2, · · · ; K and N =

∑K
k=1 nk.
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Model 1: variance-component model (random intercept)

logit (pik) = γ0 + γ1xik + uk (4.2)
uk ∼ N(0, ω2)

The vector of parameters of interest, θ, thus contains γ0, γ1 and ω2.

Model 2: random slope

logit (pik) = γ0 + (γ1 + u1k)xik + u2k (4.3)
(u1k, u2k) ∼ i.i.d.−N2(0, Ω)

where Ω has elements ω11, ω12 and ω22, and θ contains γ0, γ1, ω11, ω12 and ω22.

Note that the models can alternatively be interpreted as logit models for panel data with
individual random intercept (and slope). In that case yik would be the i−th observation
of the k−th individual, with i = 1, ..., n; k = 1, ..., T ; N = nT .

As auxiliary estimators for the II procedure we used the approximated maximum likeli-
hood (or MQL) by Longford (1994) of section 3.3.2 and the least squares estimator of
the linear probability model of section 3.3.3. In both cases, there is a straightforward
one-to-one correspondence between the θ parameters (fixed coefficients and elements of
Ω in the model of interest) and the β parameters (fixed coefficients and elements of the
auxiliary covariance matrix Σ).

4.1 Simulated Maximum Likelihood algorithm

To apply the Simulated Maximum Likelihood procedure, we have implemented a Fortran
code that does the following steps:

1. Generation of a sample of observations for the dependent variable yik as in equation
(4.1), on the basis of the model probabilities (4.2) or (4.3). This is the sample of
pseudo-observed data.

2. Perform a first order MQL estimation, in order to assign a starting value to θ, where
θ include the fixed parameters γ and the elements of the covariance matrix of the
random effects Ω.

3. Generation of a sample of SK pseudo-random variables (Bianchi et al., 1978) ẽk ∼
IID−N(0, 1) or (ẽ1k, ẽ2k) ∼ IID−N(0, I2), where S is the number of simulations.
The pseudo-random variables ẽk are transformed into the random effects ũk via the
estimated Ω matrix.

4. Computation of the conditional density (2.3).

5. Computation of the integrals in the marginal density (2.5) as average over the S
replications for each group:

L̃(yk) =
1
S

S
∑

s=1
L(yk | γ,us) (4.4)
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6. Computation of the simulated unconditional log-likelihood:

log L̃(γ, Ω) =
K

∑

k=1

log L̃(yk) (4.5)

7. Estimation of the parameters in (4.5) is obtained via the Newton-Raphson method.
Note that steps 3-4 are repeated more than one time at each iteration of the Newton-
Raphson algorithm, in order to obtain the numerical score vector and the numerical
information matrix of the simulated likelihood (4.5).

The implementation of the more efficient algorithm based on analytical derivatives
of the simulated likelihood (4.5) is under study.

4.2 Indirect Inference algorithm

To apply the Indirect Inference procedure, we have implemented a Fortran code that does
the following steps:

1. Generation of a sample of observations for the dependent variable yik as in equation
(4.1), on the basis of the model probabilities (4.2) or (4.3). This is the sample of
pseudo-observed data.

2. Approximated likelihood estimates of the auxiliary parameters β̂ are obtained via
the Fisher scoring algorithm (maximization of (2.6)) in the case of the II-MQL
estimator; for the OLS auxiliary estimator derived from the linear probability model
we used the estimation strategy presented in section 3.3.3.

3. The starting value θ0 for the iterative calibration procedure is chosen equal to the
β̂ value.

4. Generation of a sample of HK pseudo-random variables ẽk i.i.d. N(0, 1) or (ẽ1k, ẽ2k)
i.i.d. N(0, I2) and H samples of length N ṽik i.i.d. Uniform(0, 1) of pseudo-random
terms, where H is the number of simulations. The pseudo-random effects ũk i.i.d.
N(0, ω2) or (ũ1k, ũ2k) i.i.d. N(0, Ω) are obtained transforming the pseudo-random
variables ẽ via the estimated Ω matrix.

5. Computation of the probabilities p̃ik following the model (4.2) or (4.3) and genera-
tion of H samples of length N ỹik ∼ Binomial(1, p̃ik), with

ỹik =
{

1 if ṽik < p̃ik

0 otherwise

6. Estimation of the parameters β(θ) on the sample of NH pseudo-random ỹik via the
Fisher scoring algorithm (maximization of (2.5)) or OLS (estimation of the linear
probability model).
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7. The two vectors of parameters β̂ and β(θ) are compared. If the following condition
holds for a given value of ε, the estimation procedure terminates,

(β̂ − β(θ)) ≤ ε (4.6)

otherwise the values of the θ parameters are modified via the calibration algorithm
shown in (3.9) and a new iteration of the procedure starts again from step 5. It is
important to stress that the pseudo-random effects and the pseudo-random variates
generated at step 4 remain fixed in all iterations. The values of the simulated
samples ỹik are a function of the changing values of the θ parameters.

4.3 Simulation Results

The number of Monte Carlo replications is 1000, for model 1 (Tables 1 and 3) as well
as for model 2 (Tables 2 and 4). In each replication, the total number of observations is
5000. For model 1 the number of groups, K, is set to 500, and the number of observations
per group is constant, nk=10. For model 2 we have adopted 1000 groups (K = 1000),
with nk = 5.

Numerical Integration estimations are obtained via the MIXOR program (Hedeker and
Gibbons, 1996).

In each table, the left hand column displays the true value of the parameters. The other
columns display the estimated parameters by each estimator (the Monte Carlo average
over 1000 replications and the Monte Carlo variances, in square brackets). Monte Carlo
mean of the asymptotic variance estimates of the parameters is reported in round brackets
(equation 3.14 for II-MQL, GMM estimation for the II-OLS, Inverse of the Hessian for
SML).

The II estimates have been performed maximizing the Approximated Likelihood (equiv-
alent to MQL, as noted in section 2) or by OLS applied to the linear probability model
(Tables 2 and 4). The right hand columns of Tables 2 and 4 display the estimated pa-
rameters in the auxiliary model (the Monte Carlo average over 1000 replications and the
Monte Carlo variances, in square brackets).

Several considerations clearly emerge from the results.

• The three simulation-based estimators give almost the same mean of the estimated
parameters and present quite the same Monte Carlo variances of the estimates for
the fixed parameters.

• Maximization of the approximated likelihood leads to biased (inconsistent) esti-
mates, at least as far as the slope and the variance parameters are concerned; this is
evident if we look at the average estimates of γ1 and ω’s in the last but one columns
of Tables 2 and 4.

• With respect to MQL, Indirect Inference and SML reduce the bias (inconsistency).
The price we pay is a considerable enlargement of the variance of the estimates,
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Table 1: Model 1 – SML and NML estimators: mean estim. param.
[Monte-Carlo var.] and (Monte Carlo mean of asymp. var.).

SML NML
Par. True S=100
γ0 0 .22×10−2 -.54×10−2

[.25×10−2] [.18×10−2]
(.20× 10−2) (.15× 10−2)

γ1 1 0.996 0.987
[.18×10−2] [.17×10−2]
(.14×10−2) (.16×10−2)

ω2 0.5 0.492 0.502
[.51×10−2] [.30×10−2]
(.38×10−2) (.28×10−2)

N=5000; K=500 Replications=1000

Table 2: Model 1 –II estimators: mean estim. param.,
[Monte-Carlo var.] and (Monte Carlo mean of asymp. var.).

Auxiliary parameter estimates from approx. lik. and linear prob. model.
II-MQL II-OLS MQL OLS

Par. True H=50 H=50 Par. Par.
γ0 0 -.70×10−3 -.49×10−3 γ0 -.14×10−3 δ0 .500

[.21×10−2] [.21×10−2] [.19×10−2] [.82×10−4]
(.21×10−2) (.21×10−2)

γ1 1 0.987 1.006 γ1 .907 δ1 .191
[.16×10−2] [.16×10−2] [.12×10−2] [.29×10−4]
(.16×10−2) (.19×10−2)

ω2 0.5 0.500 .499 ω2 .327 σ2 .18×10−1

[.57×10−2] [.57×10−2] [.22×10−2] [.50×10−5]
(.53×10−2) (.62×10−2)

N=5000; K=500 Replications=1000

particularly for the variance parameters. Note that although the the SML and II
estimators are consistent, a small bias persists also for quite large samples, as we
can note computing the 95% confidence interval for the point estimates presented
in Tables 3 and 4.

• A small number of replications did not converge, and they have been discarded (less
than 0.5% in each table).

• The OLS estimator of the linear probability model does not seem to be related to the
parameters of interest. Surprisingly, however, it has excellent performances when
it is used as auxiliary estimator in indirect inference. The estimates are no longer
biased (inconsistent: and this is of course what we expected), but the variances are
about the same as those of the indirect estimates based on MQL. And this result
is obtained with a very strong simplification, and a computational time about 20
times shorter
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Table 3: Model 2 – SML and NML estimators: mean estim. param.
[Monte-Carlo var.] and (Monte Carlo mean of asymp. var.)

SML NML
Par. True S=100
γ0 0 -.15×10−1 .44×10−2

[.22×10−2] [.16×10−2]
(.17× 10−2) (.18× 10−2)

γ1 1 0.999 1.00
[.35×10−2] [.26×10−2]
(.30×10−2) (.30×10−2)

ω11 0.5 0.486 0.505
[.48×10−2] [.87×10−2]
(.77×10−2) (.11×10−1)

ω12 0.3 0.305 0.313
[.42×10−2] [.50×10−2]
(.51×10−2) (.52×10−2)

ω22 0.5 0.489 0.509
[.11×10−1] [.11×10−1]
(.12×10−1) (.13×10−1)

N=5000; K=1000 Replications=2000

Table 4: Model 2 – II estimators: mean estim. param.,
[Monte-Carlo var.] and (Monte Carlo mean of asymp. var.).

Auxiliary parameter estimates from approx. lik. and linear prob. model.
II-MQL II-OLS MQL OLS

Par. True H=50 H=50 Par. Par.
γ0 0 -.24×10−2 -.60×10−3 γ0 -.48×10−1 δ0 .488

[.18×10−2] [.18×10−2] [.12×10−2] [.58×10−4]
(.19×10−2) (.18×10−2)

γ1 1 0.998 1.000 γ1 .788 δ1 .172
[.30×10−2] [.33×10−2] [.14×10−2] [.44×10−4]
(.35×10−2) (.35×10−2)

ω11 0.5 0.501 .502 ω11 .255 σ11 .176×10−1

[.83×10−2] [.82×10−2] [.21×10−2] [.70×10−5]
(.88×10−2) (.88×10−2)

ω12 0.3 0.301 .301 ω12 .154 σ12 .743×10−2

[.55×10−2] [.62×10−2] [.12×10−2] [.30×10−5]
(.69×10−2) (.69×10−2)

ω22 0.5 0.501 .506 ω22 .215 σ22 .104×10−1

[.15×10−1] [.18×10−1] [.32×10−2] [.56×10−5]
(.19×10−1) (.19×10−1)

N=5000; K=500 Replications=1000

• As expected, the NML presents the lowest asymptotic variance for the random
parameter. The simulation-based estimators are about as efficient as maximum
likelihood for the fixed parameters.

• The comparison of the two simulation-based estimators with the NML estimator is
promising and clearly indicates the usefulness of these techniques for more compli-
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cated models, where NML is most cumbersome.

• Note that our choice of an unusually large value S = 100 in SML was done only to
show the equivalence with NML, which is ensured only for S →∞.

4.4 Computational remarks

Several problems arise in iterating to convergence the indirect estimation procedure for
the models of this paper. When calibrating parameters, it can happen that a “very small”
change of a θ parameter causes a ”non-small” change in β parameters. This is due to the
discontinuous nature of the data: a simulated value of yik equal to zero can become equal
to one after a small change of θ.

This has two main consequences:

• We cannot compute reliable values of the first derivatives of the auxiliary param-
eters with respect to the parameters of interest. It is therefore very hard to get
convergence of the calibration procedure using the Jacobian matrix, as mentioned
in section 3.1. Also, it is very difficult to apply the method by Gallant and Tauchen
(1996). Thus our results have been obtained with the simple calibration rule of
equation (3.9), even if it is clearly computationally inefficient.

• When the number of simulated data is not very large (5000, in our computations,
when H = 1) it is very hard to ensure convergence with a reasonably tight conver-
gence criterion. We found that it is quite difficult to go beyond the second significant
decimal digit, or even worse: the first digit is usually guaranteed, but not always the
second digit. Thus, results of indirect inference with H = 1 were not very accurate,
and are not displayed here. Things go slightly better if we use a value of H = 10,
as it is used in many practical applications (e.g. Calzolari, Fiorentini and Sentana,
2001). Things go much better when we use large values of H. For example, the
results related to H = 50 have been obtained with a convergence criterion that en-
sures three decimal digits in each replication. Note that the value H = 50 is larger
than values usually adopted in practical applications. With H = 1 the variance
should be about the double than for H = 50, and this was not always clear from
our results. To some extent, only results related to H = 50 are reliable.

5 Concluding remarks

In the paper we consider three simulation-based approaches as a tool to obtain a consistent
estimator for logit models with random effects. The methods appear to be promising; they
could be applied to other typical problematic situations, as is the case of a small number

16



of observations per group, multiple level structures and covariates, usually leading to large
biases.

A remarkable result of this paper is the good performance of the Indirect Inference estima-
tion technique even when a very rough auxiliary estimator is adopted. Our Monte Carlo
experiment has in fact evidenced the same efficiency either when we use an approximated
maximum likelihood (a good, but computationally complex auxiliary estimator), or when
we use a linear probability model estimated by ordinary least squares (very poor, but
computationally quite convenient).

Acknowledgements

This research was supported by the University and Research Ministry of Italy (MURST)
research projects “Stochastic models and simulation methods for dependent data” and
“Evaluating quality, effectiveness and efficiency in individual services”. The authors are
grateful to people who commented the earlier version of the paper, including Bruno Chi-
andotto, Fabrizio Cipollini, Laura Grassini and two anonymous referees.

References

An Y, Liu M. 1996. Using Indirect Inference to Solve the Initial Conditions Problem,
paper presented at the Optimizations Days Conference (Montreal, Quebec, May
13-15).

Aitkin M, Longford N. 1986. Statistical Modelling Issues in School Effectiveness Studies,
Journal of the Royal Statistical Society A 149: 1–43.

Anderson DA, Aitkin M. 1985. Variance component models with binary response: inter-
viewer variability, Journal of the Royal Statistical Society B 47: 203–210.

Bianchi C, Calzolari G, Corsi P. 1978. A program for stochastic simulation of economet-
ric models, Econometrica 46: 235-236.

Breslow NE, Clayton DG. 1993. Approximate inference in generalized linear mixed mod-
els, Journal of the American Statistical Association 88: 9-25.

Breslow NE, Lin X. 1995. Bias Correction in generalized linear mixed models with a sin-
gle component of dispersion, Biometrika 82: 81-91.

Calzolari G, Di Iorio F, Fiorentini G. 1998. Control Variates for Variance Reduction in
Indirect Inference: Interest Rate Models in Continuous Time, Econometrics Journal
1: C100-C112.

17



Calzolari G, Fiorentini G, Sentana E. 2001. Constrained Indirect Inference Estimation,
Discussion Paper 384, Financial Market Group, London School of Economics.

Gallant AR, Tauchen G. 1996. Which Moments to Match?, Econometric Theory 12: 657-
681.

Goldstein H. 1991. Nonlinear multilevel models, with an application to discrete response
data, Biometrika 78: 45-51.

Goldstein H. 1996. Consistent estimators for multilevel generalized linear models using an
iterated bootstrap, Working Paper, Multilevel Models Project (University of Lon-
don).

Goldstein H, Rasbasch J. 1996. Improved approximations for multilevel models with bi-
nary responses, Working Paper, Multilevel Models Project (University of London).

Gori E, Mealli F, Rampichini, C. 1993. Indicatori di Efficienza ed Efficacia per la Valu-
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formativo, 1993/94. Volume 1, Rapporto Regionale, Flash Lavoro, Quaderni 46.

Rodriguez G, Goldman N. 1995. An Assessment of Estimation Procedures for Multilevel
Models with Binary Responses, Journal of the Royal Statistical Society A 158: 73-
89.

Stiratelli R, Laird N, Ware JH. 1984 Random-effects models for serial observations with
binary response, Biometrics 40: 961 - 971.

Stern S. 2000. Simulation-based inference in econometrics: motivation and methods, in
Simulation-based inference in econometrics: methods and applications, Mariano R,
Schuermann T, Melvyn JW Eds., Cambridge: Cambridge University Press.

Yang M, Rasbash J, Goldstein H. 1998. MLwiN macros for advanced multilevel modelling.
Technical Report, Institute of Education, University of London.

Zeger SL, Karim RM. 1991. Generalized linear models with random effects: a Gibbs sam-
pler approach, Journal of the American Statistical Association, 86: 79-86.

19



Copyright © 2001 

Giorgio Calzo lar i ,  Fabr iz ia Meal l i ,  

Car la Rampichin i  


	Giorgio Calzolari, Fabrizia Mealli,
	Carla Rampichini
	�
	Università degli Studi
	di Firenze
	Copyright © 2001

