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History of Test Scoring

• Harold Gulliksen, 1950 — Theory of Mental Tests

• Luis Guttman, 1950 — Psychometrika, Review of Gulliksen’s book

• Fred Lord, 1952, Psychometrika monograph — First to develop a statistical
framework for test scoring.

• Classical Test Theory: linear models, ANOVA + Regression

OBSERVED VARIANCE = TRUE VARIANCE + ERROR

OBSERVED SCORE = TRUE SCORE + ERROR

• Item Response Theory: Scaling Tradition
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Example 1: The Law School Admission Test, Section VI.

The test consisted of 5 items taken by 1000 individuals.

MOST FREQUENT RESPONSE PATTERNS

11 00011 80 10111

16 01011 16 11000

15 01111 56 11001

10 10000 21 11010

29 10001 173 11011

14 10010 11 11100

81 10011 61 11101

28 10101 28 11110

15 10110 298 11111
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MARGINS

ITEM ONES ZEROS MISSINGS

1 0.924 0.076 0.000

2 0.709 0.291 0.000

3 0.553 0.447 0.000

4 0.763 0.237 0.000

5 0.870 0.130 0.000

Aim of the analysis:

• Check whether the five items form a scale.

• Score the individuals based on their responses.
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Example 2: Social life feelings study, Schuessler (1982)

Scale used: Economic self-determination, Sample size: 1490 Germans

Yes or no responses were obtained to the following five questions:

1. Anyone can raise his standard of living if he is willing to work at it.

2. Our country has too many poor people who can do little to raise their standard of living.

3. Individuals are poor because of the lack of effort on their part.

4. Poor people could improve their lot if they tried.

5. Most people have a good deal of freedom in deciding how to live.
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Example 3

Workplace Industrial Relation Survey dealing with management /worker consultation in firms.

Construct: High commitment management.

Sample size: 1005 firms, concerns non-manual workers.

Please consider the most recent change involving the introduction of new plant, machinery and

equipment. Were discussions or consultations of any type on this card held either about the

introduction of the change or about the way it was to be implemented?

1. Informal discussions with individual workers.

2. Meetings with group of workers.

3. Discussions in established joint consultative committee.

4. Discussions in specially constituted committee to consider the change.

5. Discussions with unions representatives at the establishment.

6. Discussions with paid union officials from outside.
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Example 4: Subject marks, n=220 boys

Table 1: Pairwise correlation coefficients between subject marks
Gaelic English History Arithmetic Algebra Geometry

Gaelic 1.00

English 0.44 1.00

History 0.41 0.35 1.00

Arithmetic 0.29 0.35 0.16 1.00

Algebra 0.33 0.32 0.19 0.59 1.00

Geometry 0.25 0.33 0.18 0.47 0.46 1.00

• There is a general tendency for those who do well in one subject to do well in
others.

• What is hidden under those correlations?
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Example 5: The Height test

1. I bump my head quite often

2. The seat of my bicycle is quite low

3. In bed I often suffer from cold feet

4. When the school picture was taken I was always asked to stand at the back

5. As a police office I would not make much of an impression

6. In airplanes, I usually sit comfortably

7. In libraries, I often has to use a ladder to reach books
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Measurement Models

1. Many theories in behavioral and social sciences are formulated in terms of theoretical constructs

that are not directly observed or measured.

Prejudice, ability, radicalism, motivation, wealth.

2. The measurement of a construct is achieved through one or more observable indicators

(questionnaire items).

3. The purpose of a measurement model is to describe how well the observed indicators serve as

a measurement instrument for the constructs also known as latent variables.

4. Measurement models often suggest ways in which the observed measurements can be improved.

5. In some cases, a concept may be represented by a single latent variable, but often they are

multidimensional in nature and so involve more than one latent variable.
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Psychology

Intelligence spelling
Verbal ability writing
Visual Perception word fluency

reading
punctuation

Education

Academic performance children books
library visits
TV watching

Sociology

Socio-economic status
Attitudes towards sex-roles shovelling snow

cleaning the house
washing the car
making beds
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Summarize the objectives

1. Scale construction (Item Response Theory)

2. Study the relationships among a set of observed indicators. Identify the
underlying factors that explain the relationships among the observed items.

3. Reduction of dimensionality

• Fit a latent variable model with one or more factors
• Fit a latent class model with two or more latent classes

4. Scale individuals on the identified latent dimensions
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Latent Variable Models

Manifest variables
Metrical Categorical Mixed

Metrical factor latent trait latent trait
Latent analysis analysis analysis

variables Categorical latent profile latent class latent class
analysis analysis analysis

• Categorical: binary, nominal, ordinal

• Factor analysis: classical normal linear factor model

• Latent Trait analysis (Item Response Theory): took its name from Psychometrics

• Latent Class analysis: model based clustering
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Types of analysis

• Exploratory Latent Variable Analysis (No theory is known in advance about
the data)

• Confirmatory Latent Variable Analysis (validate a theory)
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General ideas

• LVM are closely related to the standard regression model. The regression
relationship is between a manifest variable and the latent variables.

• Distributional assumptions are made about the residual or error terms which
enable us to make inferences.

• The issue is to invert the regression relationships to learn about the latent
variables when the manifest variables are given. Since we can never observe the
latent variables, we can only ever learn about this relationship indirectly.

• Several manifest variables will usually depend on the same latent variable, and
this dependence will induce a correlation between them. The existence of a
correlation between two indicators may be taken as evidence of a common source
of influence. As long as any correlation remains, we may therefore suspect the
existence of a further common source of influence.
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Item Response Theory (IRT)

IRT consists of a family of models that are useful in the design, construction and
evaluation of educational and psychological tests.

1. What IRT models are available? (Rasch Model, Guttman model, Two-
parameter model, Partial Credit model, Three-parameter model, Grade of
membership model, latent class models etc.)

2. How do we estimate model parameters? (E-M algorithm, Newthon-Raphson,
MCMC).

3. How do we assess the fit of the models fitted? (Pearson, Log-likelihood ratio,
Residual analysis, Model selection criteria).
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4. What software can we use? (BILOG, MULTILOG, PARSCAL, GLAMM,
GENLAT)

5. How can we use IRT to construct tests/ select items?

6. How can we use IRT to evaluate the consequences of introducing new items
in a test?

7. How can we compare abilities?

• Use different tests
• Tests might have different difficulty levels (cannot compare across groups)
• Tests might have been calibrated using a group of examinees which is

different for other groups of examinees (group-dependent)
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Characteristics of IRT models

• Measurement Invariance: The instrument used is invariant across groups.
(Ability estimates obtained from different sets of items will be the same, also
parameter estimates for items obtained in different groups of examinees will
be the same).

• Unidimensionality

• Local Independence
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Theoretical Framework

Manifest or observed variables or items are denoted by: x1, x2, . . . , xp.

Latent variables / factors / unobserved constructs are denoted by: y1, y2, . . . , yq.

As only x can be observed any inference must be based on the joint distribution
of x:

f(x) =

∫

Ry

g(x | y)φ(y)dy

φ(y): prior distribution of φ(y)

g(x | y): conditional distribution of x given y.

What we want to know: φ(y | x) = φ(y)g(x | y)/f(x)

φ(y) and g(x | y) are not uniquely determined.
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Conditional Independence

If correlations among the x’s can be explained by a set of latent variables then
when all y’s are accounted for the x’s will be independent.

q must be chosen so that:

g(x | y) =

p
∏

i=1

g(xi | y)

y is sufficient to explain the dependencies among the x variables.

Does f(x) admit the presentation for some small value of q:

f(x) =

∫

Ry

p
∏

i=1

g(xi | y)φ(y)dy
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Conditional Independence: an example

Conditional on the latent variables the responses to items are independent.

Items Same ability
1 2

1 θ
2 θ
. θ
. θ
. θ
N θ

b1 < b2 (difficulty)

Since all individuals have the same ability response to item 1 does not give any
information regarding the response to item 2 in other words there is no systematic
reason why their responses differ.
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Consider the example of children’s writing:

if x1 is foot size, x2 is writing ability and y is the single variable, age, then x1

and x2 are positively correlated, but conditional on y they are uncorrelated:

Corr(x1, x2) > 0,

Corr(x1, x2 | y) = 0.

Differences in age fully account for the apparent correlation between foot size and
writing ability.
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Normal Linear Factor Model for Continuous Responses

x and y continuous.

x = µ + Λy + e

The prior distribution for the latent variables:

y ∼ Nq(0, I)

Assumptions:

e ∼ Np(0,Ψ)

Cov(y, e) = 0

E(xixj | y) = 0
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x | y ∼ Np(µ + Λy,Ψ) (1)

x ∼ Np(µ,ΛΛ′ + Ψ)

• The ΛΛ′ is the part of the variance of the observed items explained by the
factors (communality).

• The Ψ part is the residual or specific variance.

• The covariances between the xs depend only on the factor loadings.

y | x ∼ Nq(Λ
′(ΛΛ′ + Ψ)−1(x − µ), (Λ′Ψ−1Λ + I)−1)
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Arbitrariness of the model

• Note that

f(x) =

∫

Ry

g(x | y)φ(y)dy

is not unique. A one-to-one transformation of the factor space from y to z will
leave the f(x) unchanged but will change both the g and φ functions.

• However, some transformations will be more interpretable than others.

• The indeterminacy of φ leave us free to adopt a metric for y.

• If x is normal there is an important transformation which leaves the form of φ
unchanged and which leaves a degree of arbitrariness for g.
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Suppose q ≥ 2, then the orthogonal transformation z = My, (M′M = I) gives

z ∼ Nq(0, I)

which has the same distribution as y.

The conditional distribution is now:

x | z ∼ Np(µ + ΛM ′z,Ψ)

That model cannot be distinguished from the one with weights ΛM ′. The joint
distribution of x is unaffected. In both cases the covariance matrix is ΛΛ′ + Ψ.

The advantage is that it allows the researcher to choose among different solutions
the most interpretable one.
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Interpretation: naming latent variables

• Look at the magnitude of the factor loadings αij, where (+) large positive
loadings and (.) small loadings

A =
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• Components: Xj =
∑p

i=1 αijui(xi)
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Sufficiency Principle

Aim: Reduce the dimensionality of x from p to q where q is much less than p.

Find q functions of x, X1, X2, . . . , Xq so that the conditional distribution given
X does not depend on y.

Barankin and Maitra (1963):

A necessary and sufficient condition subject to weak regularity conditions is that
at least p − q of the gi shall be of the exponential family.

The Xj, j = 1, . . . , q are called components.
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Sufficiency Principle, continued

All the information about the latent variable in x can be found by the posterior
distribution:

φ(y | x) = φ(y)

p
∏

i=1

gi(xi | y)/f(x)

Substitute the exponential family density for gi(xi | y):

φ(y | x) ∝ φ(y)

[

p
∏

i=1

Gi(θi)

]

exp

q
∑

j=1

yjXj

where Xj =
∑p

i=1 αijui(xi), j = 1, . . . , q.

• The posterior distribution of y depends on x through the q-dimensional vector
X′ = (X1, . . . , Xq), X is a minimal sufficient statistic for y.
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• The reduction does not depend on φ(y).
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Example

xi: Bernoulli random variable, xi = 0 or 1.

g(xi | y) = πxi
i (1 − πi)

1−xi = (1 − πi) exp(xilogitπi).

g(xi | θi) = Fi(xi)Gi(θi) exp(θiui(xi))

θi = logitπi = loge
πi

1−πi
= αi0 + αi1y1 + · · · + αiqyq

Gi(θi) = 1 − πi

ui(xi) = xi

The GLLVM: logitπi = αi0 +
∑q

j=1 αijyj

Components: Xj =
∑p

i=1 αijxi

πi: probability of a positive response given y.
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Model Interpretation

• Covariance between x and y

E(x−µ)y′ = E[E(x−µ)y′ | y] = E[E{(x−µ) | y}y′] = E(Λyy′) = ΛI = Λ

Factor loadings are covariances between individual manifest variables and factors.

The correlations are given by: (diagΣ)−1/2Λ
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Model estimation

The estimation procedure is based on the maximization of the marginal likelihood
of the manifest variables given by:

log f(xh) = log

∫ ∞

−∞

· · ·
∫ ∞

−∞

g(xh | y)φ(y)dy

where xh represents a vector with all the responses to the p manifest variables of
the hth individual.

Here Λ is p × q matrix of factor loadings and Ψ is a p × p diagonal matrix of
specific variances for the continuous items.

The matrix Λp×q contains the covariances between elements of y and x. The
parameters λij can be standardized in order to express the correlation between
the observed variable i and the latent variable j.
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E-M algorithm

Since the latent variables are unobserved we use the E-M algorithm.

For a random sample of size n, the complete likelihood is:

l =
n

∏

h=1

f(xh,yh)

The log-likelihood is:

log l = L =

n
∑

h=1

[log g(xh | yh) + log φ(yh)]
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Using the assumption of conditional independence:

g(x | y) =

p
∏

i=1

g(xi | y)

The E-M algorithm requires to compute the expected value of the score function.
The expectation is taken with respect to the posterior distribution of the latent
variables based on the observed variables. (φ(y | x)).

The score function of the ML are the first derivatives:

E

(

∂L

∂µi

)

=

∫

· · ·
∫

∂L

∂µi
φ(y | x)dy (2)
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E

(

∂L

∂λij

)

=

∫

· · ·
∫

∂L

∂λij
φ(y | x)dy (3)

E

(

∂L

∂Ψi

)

=

∫

· · ·
∫

∂L

∂Ψi
φ(y | x)dy (4)

The integrals can be approximated to any practical degree of accuracy by Gauss-
Hermite quadrature, Laplace approximation, Monte Carlo, Adaptive quadrature.
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E-M steps

1. Give initial values to the model parameters.

2. Compute the expected score functions.

3. Obtain new estimates of the parameters from the MLE using the values of the
expectation step. (M-step)

4. Check convergence.

Initial values of the parameters are chosen ad hoc. Different initial values are
used to check the convergence of the EM algorithm to a global maximum.
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Adequacy of the model and choice of the number of factors

1. Percentage of variance explained by the factors

The communalities (Λ̂′Λ̂) are used to check that the individual observable
variables are adequately explained by the factors.

2. Reproduced correlation matrix

Compare the fitted (reproduced) correlation matrix of the xs with the
correlation matrix computed from the sample data.
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3. Goodness-of-fit test: If q is specified a priori

Ho : Σ = ΛΛ′ + Ψ

H1 : Σ is unconstrained (Σ̂ = S)

Using a likelihood ratio statistic

W = −2{L(Ho) − L(H1)} = n{log |Σ̂| + traceΣ̂−1S − log |S| − p}

where Σ̂ = Λ̂Λ̂′ + Ψ̂
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If Ψ > 0 then −2{L(Ho) − L(H1)} ∼ χ2 with

d.f. =
1

2
p(p + 1) − {pq + p − 1

2
q(q − 1)} =

1

2
{(p − q)2 − (p + q)}

Failure to reject this null hypothesis would imply a good fit.

4. The number of factors, q, must be small enough for the degrees of freedom
[(p − q)2 − (p + q)/2] to be greater than or equal to zero. So when p = 3 or
p = 4, q cannot be greater than one, but when p = 20, q could be as large as
14.
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Factor scores

• Posterior mean for each response pattern:

E(yj | x), j = 1, · · · , q

• Component scores:

Xj =

p
∑

i=1

λij√
Ψii

xi

• Regression scores.
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Example: Subject marks, n=220 boys

Table 2: Pairwise correlation coefficients between subject marks
Gaelic English History Arithmetic Algebra Geometry

Gaelic 1.00

English 0.44 1.00

History 0.41 0.35 1.00

Arithmetic 0.29 0.35 0.16 1.00

Algebra 0.33 0.32 0.19 0.59 1.00

Geometry 0.25 0.33 0.18 0.47 0.46 1.00

• There is a general tendency for those who do well in one subject to do well in
others.
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Factor loadings, subject marks

Subject λ̂i1 λ̂i2

Gaelic 0.56 0.43

English 0.57 0.29

History 0.39 0.45

Arithmetic 0.74 −0.28

Algebra 0.72 −0.21

Geometry 0.60 −0.13

• The first factor measures overall ability in the six subjects.

• The second factor contrasts humanities and mathematics subjects.



Erasmus University of Florence

Communalities, subject marks

Communality of a standardized observable variable is the proportion of the variance that is

explained by the common factors.

Communalities

Gaelic 0.49

English 0.41

History 0.36

Arithmetic 0.62

Algebra 0.56

Geometry 0.37

• 49% of the variance in Gaelic scores is explained by the two common factors (0.562 +0.432 =

0.49).

• The larger the communality, the better does the variable serve as an indicator of the associated

factors.
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• The sum of the communalities is the variance explained by the factor model. For the example

is 2.81 or 47% of 6 which is the total variance for the subject marks data.
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Table 3: Reproduced correlations and communalities (top section) for a linear
two-factor model fitted to the subject marks data, and discrepancies between
observed and reproduced correlations (bottom section), subject marks data

Correlation Gaelic English History Arithmetic Algebra Geometry

Gaelic 0.49 0.44 0.41 0.29 0.31 0.28

English 0.44 0.41 0.35 0.34 0.35 0.30

History 0.41 0.35 0.36 0.16 0.19 0.17

Arithmetic 0.29 0.34 0.16 0.62 0.59 0.48

Algebra 0.31 0.35 0.19 0.59 0.56 0.46

Geometry 0.28 0.30 0.17 0.48 0.46 0.37

Discrepancy

Gaelic 0.00 0.00 0.00 0.02 −0.03

English 0.00 0.00 0.01 −0.03 0.03

History 0.00 0.00 0.00 0.00 0.00

Arithmetic 0.00 0.01 0.00 0.00 0.00

Algebra 0.00 −0.03 0.00 0.00 0.00

Geometry −0.03 0.03 0.00 0.00 0.00
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Rotation in two-factor model

1. Rotation does not change the fit of the model.

2. Rotation does not change the reproduced correlation matrix or the goodness-of-fit test statistic.

3. The communalities remain unchanged.

4. This is because rotation has not changed the relative positions of the loadings.

5. Since rotation alters the loadings, the interpretation of the new factors will be different. Also,

although the overall percentage of variance explained by the common factors remains the

same after rotation, the percentage of variance explained by each factor will change. Rotation

redistributes the explained variance across the factors.
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Ways of doing it

• Orthogonal rotation

Some procedures have been developed to search automatically for a suitable
rotation. For example, the VARIMAX procedure attempts to find an orthogonal
rotation that is close to simple structure by finding factors with few large loadings
and as many near-zero loadings as possible.

• Non-orthogonal (oblique) rotation.

This type of rotation requires us to relax the original assumption of the linear
factor model that the latent variables be uncorrelated. An oblique rotation leads
to correlated factors.
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The correlation between these transformed factors is 0.515.
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Figure 1: Plot of unrotated and rotated factor loadings for the subject marks
data
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Latent Variable Models - Part B

• Factor models for categorical responses

• Applications

• Latent class models

• Applications

• Software and references
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Models for Binary Data - Notation

Suppose there are p items or questions to which the respondent is required to
give a binary response: right/wrong, agree/disagree, yes/no.

With p variables, each having two outcomes, there are 2p different response
patterns which are possible.

The binary observed variables are denoted with (x1, · · · , xp).

xi: independent Bernoulli variables taking values 0 and 1.

The latent variables are denoted with y1, y2, . . . yq where q is much less than p.

The individuals in the sample are denoted with h where h = 1, . . . , n.
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Factor analysis principles

For a given set of response variables x1, . . . , xp one wants to find a set of latent
factors y1, . . . , yq, fewer in number than the observed variables, that contain
essentially the same information.

If both the response variables and the latent factors are normally distributed with
zero means and unit variances, this leads to the model

E(xi | y1, y2, . . . , yq) = λi1y1 + λi2y2 + · · · + λiqyq ,

If the response variables are binary we specify instead the probability of each
response pattern as a function of y1, y2, . . . , yq:

Pr(x1 = a1, x2 = a2, . . . , xp = ap | y1, y2, . . . , yq) = f(y1, y2, . . . , yq)
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Literature Approaches

Approach A

Item Response Theory Approach: response function that gives the probability of
a positive response for an individual with latent position y.

P (xi = 1 | y)
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Approach B:

Underlying variable approach, supposes that the binary x’s have been produced
by dichotomizing underlying continuous variables.

The connection between the binary variable xi and the underlying variable x∗
i is

xi = 0 ⇐⇒ ∞ < x∗
i ≤ τ(i)

xi = 1 ⇐⇒ τ(i) < x∗
i ≤ +∞

The τ are called threshold values.



Erasmus University of Florence

The connection between the ordinal variable xi and the underlying variable x∗
i is

xi = a ⇐⇒ τ
(i)
a−1 < x∗

i ≤ τ (i)
a , a = 1, 2, . . . , mi ,

where
τ

(i)
0 = −∞ , τ

(i)
1 < τ

(i)
2 < . . . < τ

(i)
mi−1 , τ (i)

mi
= +∞ ,

For variable xi with mi categories, there are mi − 1 threshold parameters.

Since only ordinal information is available about x∗
i , the mean and variance of x∗

i

are not identified and are therefore set to zero and one, respectively

Note: Model parameters equivalence exist between the two approaches.
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Underlying Variable Approach - Structural Equation

Modelling

All the variables are treated as metric through assumed underlying and normal
variables and by using ML, GLS or WLS as the estimation method.

Contributors

• Muthén and Muthén (M-Plus)

• Jöreskog and Sörbom (LISREL)

• Bentler (EQS)

Their work covers a wide range of models that allows relationships among the
latent variables, inclusion of exogenous (explanatory) variables, multilevel analysis,
analysis of panel data.
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Item Response Theory Approach

The response function is modelled through a logistic model:

logitπi(y) = αi0 + αi1y1 + αi2y2 + · · · + αiqyq

where
πi(y) = P (xi = 1 | y)

is the response function and y1, y2, . . . , yq are independently and normally
distributed variables with mean 0 and variance 1.

Note: When y is unidimensional, πi(y) is referred to as item characteristic curve
or item response function and the model is known as the two-parameter logistic
model (2PL).
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Figure 2: Item characteristic curves for different values of the discrimination
coefficient αi1 and αi0 = 0.5
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Figure 3: Item characteristic curves for different values of the “difficulty”
parameter αi0 and αi1 = 0.5
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When this model is used for the form of the response function we can show that
the φ(y | x) depends on x through the component:

Xj =

p
∑

i=1

αijxi, j = 1, · · · , q

For the latent variables we choose the standard normal distribution because the
factor axes can be rotated without affecting the model. In other words an
orthogonal transformation of the factor loadings (factor coefficients) will leave
the value of the likelihood unchanged.
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The probit response function: Bock and Aitkin (1981):

x∗
ih = αi1y1 + αi2y2 + · · · + αiqyq + ǫih

where i = 1, . . . , p and h = 1, . . . , n.

The model describes not an observed variable, but an unobservable ‘response
process’. The process generates a positive response for item i from an individual
h when the x∗

ih equals or exceeds a threshold τi and gives a negative response
otherwise.

On the assumption that ǫih ∼ N(0, σ2
i ):
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P (xi = 1 | y) =
1

(2π)1/2σ

∫ ∞

τi

exp







−1

2

(

x∗
i −

∑q
j=1 αijyj

σi

)2






dx∗
i

= Φ

(

−
τi −

∑q
j=1 αijyj

σi

)

= Φ(y).

This is the Normal ogive model. In practice the difference is small:

logit(u) =
π√
3
Φ−1(u)
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Interpretation of Parameters

The coefficient αi0 is the value of logitπi(y) at y = 0. The probability of a
positive response from the median individual.

In educational testing, αi0 is called ‘difficulty’ parameter.

πi(0) = P (xi = 1 | 0) =
exp(αi0)

1 + exp(αi0)

The coefficients αij, j = 1, . . . , q are called ‘discrimination’ coefficients.

αij are the weights used in the component function to weight the individual’s
responses to the p observed items.

They also measure the extent to which the latent variable yj discriminates between
individuals.
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Standardized αij ’s

α∗
ij =

αij
√

∑q
j=1 α2

ij + 1

This standardization brings the interpretation close to factor analysis (factor
loadings express correlation between the observed items and the latent variables).
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Summary of the model

• Assumption of Conditional Independence: Responses to the p observed items
are independent given the vector of the latent variables.

g(x | y) =

p
∏

i=1

g(xi | y)

• Independent latent variables with standard normal distributions:

φ(y) = φ(y1)φ(y2) · · ·φ(yq)

• Bernoulli distribution for xi | y

g(xi | y) = πi(y)xi(1 − πi(y))1−xi
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where πi(y) = P (xi = 1 | y)

• link function: logit or probit

– logitπi(y) = αi0 + αi1z1 + · · · + αiqyq

– Φ−1(πi(y)) = αi0 + αi1y1 + · · · + αiqyq

• Component Scores:
∑p

i=1 αijxi, j = 1, . . . , q.
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Model estimation

The estimation procedure is based on the maximization of the marginal likelihood
of the manifest variables given by:

log f(xh) = log

∫ ∞

−∞

· · ·
∫ ∞

−∞

g(xh | y)φ(y)dy

where xh represents a vector with all the responses to the p manifest variables
of the hth individual and φ(y) is the prior distribution of the latent variables,
assumed to have independent standard normal distributions.

g(xi | y) = [πi(y)]xi[1 − πi(y)]1−xi i = 1, · · · , p

where πi(y) = Pr(xi = 1 | y) is the response function for binary item i.
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For a random sample of n individuals the loglikelihood is written as:

log L =
n

∑

h=1

log f(xh)

The estimation is done with the E-M algorithm.
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Goodness-of-Fit

Compare the observed (O) and expected (E) frequencies of the 2p response
patterns by means of a X2 Pearson Goodness-of-fit or a likelihood ratio test G2.

X2 =

2p
∑

i=1

(Oi − Ei)
2

Ei

G2 = 2

2p
∑

i=1

Oi log
Oi

Ei

When n is large and p small the above statistics follow a chi-square distribution
with degrees of freedom equal to: 2p − p(q + 1) − 1.
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As the number of items increases the chi-square approximation to the distribution
of either goodness-of-fit statistic ceases to be valid. Parameter estimates are still
valid but it is difficult to assess the model.

Example:
p = 10 2p = 1024 n = 1000. With this data we expect that there will be many
response patterns with Ei ≤ 1.0.
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Solutions

1. Group the response patterns with expected frequencies less than 5.0. There is
a danger of being left out with no degrees of freedom.

2. Compute a measure of the total amount of association explained by the model.

G2(Ho) − G2(H1)

G2(Ho)
× 100%

G2(Ho) is the likelihood ratio statistic under the assumption that the responses
are mutually independent and

G2(H1) is the likelihood ratio statistics under the fitted latent variable model.
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3. Examination of residuals.

Compare the observed and expected frequencies for pair and triplets of
responses. If these differences are small it means that the associations
between all pairs of responses are well predicted by the model. Check whether
pairs or triples of responses occur more or less, often than the model predicts.
The above given discrepancy measures can be used to measure discrepancies
in the margins. The residuals are not independent and so not a formal test
can be applied. However, if we consider the distribution of each residual as
a chi-square with 1 degree-of-freedom then a residual with a X2 or G2 value
greater than 4 will indicate a poor fit.

Diagnostics procedures based on residuals:

• Give reasons for poor fit.

• Suggest ways in which the scales may be improved.
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Example 1

The Law School Admission Test, Section VI.

Sample size =1000

This is a classical example in educational testing. The test consisted of 5 items
taken by 1000 individuals. The main interest is whether the 5 items form a scale
or in other words whether their interrelationships can be explained by a single
factor named ability.
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Example 1: Analysis

item α̂i0 s.e. α̂i1 s.e. stα̂i1 π̂i(0)
1 2.77 (0.20) 0.83 (0.25) 0.64 0.94
2 0.99 (0.09) 0.72 (0.19) 0.59 0.73
3 0.25 (0.08) 0.89 (0.23) 0.67 0.56
4 1.28 (0.10) 0.69 (0.19) 0.57 0.78
5 2.05 (0.13) 0.66 (0.20) 0.55 0.89

• All items have similar factor loadings (discrimination power)

• The easiest item is the first one.
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Table 4: Factor scores in increasing order, LSAT data

Observed Expected Ê(y | x) σ̂(y | x) Component Total Response

frequency frequency score (X1) score pattern

3 2.3 −1.90 0.80 0.00 0 00000

6 5.9 −1.47 0.80 0.66 1 00001
2 2.6 −1.45 0.80 0.69 1 00010

1 1.8 −1.43 0.80 0.72 1 01000
10 9.5 −1.37 0.80 0.83 1 10000

1 0.7 −1.32 0.80 0.89 1 00100
11 8.9 −1.03 0.81 1.35 2 00011

8 6.4 −1.01 0.81 1.38 2 01001
29 34.6 −0.94 0.81 1.48 2 10001

16 13.6 −0.55 0.82 2.07 3 01011

81 76.6 −0.48 0.82 2.17 3 10011
56 56.1 −0.46 0.82 2.21 3 11001

21 25.7 −0.44 0.82 2.24 3 11010
28 25.0 −0.35 0.82 2.37 3 10101

15 11.5 −0.33 0.82 2.40 3 10110
11 8.4 −0.30 0.82 2.44 3 11100

173 173.3 0.01 0.83 2.89 4 11011
15 13.9 0.05 0.84 2.96 4 01111

80 83.5 0.13 0.84 3.06 4 10111
61 62.5 0.15 0.84 3.10 4 11101

28 29.1 0.17 0.84 3.13 4 11110
298 296.7 0.65 0.86 3.78 5 11111
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FIRST AND SECOND ORDER OBSERVED AND EXPECTED MARGINS

RESPONSE (1,1) to ITEMS (I,J)

I J OBSER EXPECT OBS-EXP ((O-E)**2)/E

1 1 924 924.0009 -0.0009 0.0000

2 1 664 663.1141 0.8859 0.0012

2 2 709 708.9945 0.0055 0.0000

3 1 524 521.4167 2.5833 0.0128

.. .. ... ........ ...... ......

5 1 806 808.3290 -2.3290 0.0067

5 2 630 626.9241 3.0759 0.0151

5 3 490 494.5676 -4.5676 0.0422

5 4 678 672.4921 5.5079 0.0451

5 5 870 869.9991 0.0009 0.0000
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THIRD ORDER OBSERVED AND EXPECTED MARGINS

RESPONSE (1,1,1) to ITEMS (I,J,J1)

I J J1 OBSER EXPECT OBS-EXP ((O-E)**2)/E

1 2 3 398 396.7774 1.2226 0.0038

1 2 4 520 524.7850 -4.7850 0.0436

1 2 5 588 588.6264 -0.6264 0.0007

1 3 4 421 420.8115 0.1885 0.0001

1 3 5 467 467.7153 -0.7153 0.0011

1 4 5 632 630.0993 1.9007 0.0057

2 3 4 343 341.7304 1.2696 0.0047

2 3 5 377 377.4815 -0.4815 0.0006

2 4 5 502 497.4927 4.5073 0.0408

3 4 5 397 400.0829 -3.0829 0.0238
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Example 2: Women’s mobility in Bangladesh

The particular dimension that we shall focus on here is women’s mobility or social
freedom. Women were asked whether they could engage in the following activities
alone (1=yes, 0=no).

1. Go to any part of the village/town/city.

2. Go outside the village/town/city.

3. Talk to a man you do not know.

4. Go to a cinema/cultural show.

5. Go shopping.

6. Go to a cooperative/mothers’ club/other club.

7. Attend a political meeting.

8. Go to a health centre/hospital.
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Example 2: Goodness-of-fit measures

• The one-factor model gives a G2 equal to 364.5 on 39 degrees of freedom
indicating a bad fit.

• The two-factor model is still rejected based on a G2 equal to 263.41 on 33
degrees of freedom.

• The percentage of G2 explained increases only slightly from 94.98% to 96.92%.
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Table 5: Chi-squared residuals greater than 3 for the second and the (1,1,1) third
order margins for the one-factor model, women’s mobility data

Response Items O E O − E (O − E)2/E

(0,1) 3, 2 187 229.19 −42.19 7.76

7, 6 532 596.04 −64.04 6.88

8, 5 194 245.15 −51.15 10.67

(1,0) 2, 1 52 117.29 -65.29 36.35

5, 1 13 3.02 9.99 32.92

6, 2 274 196.34 77.66 30.71

7, 1 6 1.13 4.87 20.97

7, 2 62 36.82 25.18 17.21

7, 6 41 93.69 −52.69 29.63

8, 1 28 7.15 20.85 60.83

8, 3 38 22.74 15.26 10.24

(1,1) 6, 2 665 756.15 −91.15 10.99

7, 6 407 356.45 50.55 7.17

(1,1,1) 1, 2, 3 2433 2338.67 94.33 3.80

1, 2, 6 659 751.02 −92.02 11.27

2, 4, 6 637 704.12 −67.12 6.40

6, 7, 8 318 267.09 50.91 9.70
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Table 6: Chi-squared residuals greater than 3 for the second and the (1,1,1) third
order margins for the two-factor model, women’s mobility data

Response Items O E O − E (O − E)2/E

(0,1) 8, 5 194 239.58 −45.58 8.67

8, 7 108 137.09 −29.09 6.17

(1,0) 4, 3 226 253.70 −27.70 3.02

5, 1 13 7.12 5.88 4.86

5, 4 19 33.25 −14.25 6.10

6, 1 15 30.37 −15.37 7.78

7, 2 62 78.03 −16.03 3.29

7, 6 41 67.28 −26.28 10.26

8, 1 28 14.42 13.58 12.78

8, 5 340 388.56 −48.56 6.07

(1,1) 8, 5 392 355.73 36.27 3.70

(1,1,1) 1, 5, 8 392 353.37 38.63 4.22

2, 5, 8 351 316.27 34.73 3.81

3, 5, 8 389 348.32 40.68 4.75

4, 5, 8 386 347.28 38.72 4.32

5, 7, 8 276 245.75 30.25 3.72

6, 7, 8 318 287.55 30.45 3.23
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Table 7: Estimated difficulty and discrimination parameters with standard errors
in brackets and standardized factor loadings for the two-factor model, women’s
mobility data

Items α̂i0 s.e. α̂i1 s.e. α̂i2 s.e. stα̂i1 stα̂i2 π̂i(0)

1 2.66 (0.18) 2.46 (0.28) 0.98 (0.17) 0.87 0.34 0.94

2 −1.58 (0.09) 2.48 (0.21) 1.32 (0.15) 0.83 0.44 0.17

3 1.56 (0.05) 1.25 (0.08) 0.86 (0.10) 0.69 0.47 0.83

4 −1.17 (0.06) 1.97 (0.16) 2.26 (0.17) 0.62 0.72 0.24

5 −6.58 (0.30) 1.98 (0.23) 3.57 (0.22) 0.47 0.85 0.00

6 −5.11 (0.27) 1.32 (0.23) 3.60 (0.24) 0.33 0.91 0.01

7 −17.24 (94.82) 2.20 (0.43) 10.01 (58.02) 0.21 0.97 0.00

8 −4.94 (0.17) 1.51 (0.17) 2.80 (0.15) 0.45 0.84 0.01
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Polytomous items, nominal - Multinomial logistic regression

xi(s) =







1, if the response falls in category s,
s = 1, . . . , ci

0, otherwise

where ci denotes the number of categories of variable i

g(xi(s) | y) =

ci
∏

s=1

(πi(s)(y))xi(s)

πi(s)(y) = P (xi(s) = 1 | y)

logitπi(s)(y) = αi0(s) +

q
∑

j=1

αij(s)yj
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Ordinal observed variables - Proportional odds model

To take into account the ordinality property of the items we model the cumulative
probabilities, γi,s(y) = P (xi ≤ s | y).

The response category probabilities are denoted by

πi,s(y) = γi,s(y) − γi,s−1(y), s = 1, . . . , mi

mi the number of categories for the ith item.

The model used is the proportional odds model:

ln

[

γi,s(y)

1 − γi,s(y)

]

= αis −
k

∑

j=1

βijyj
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γi,s(y) = P (xi ≤ s) = πi1(y) + πi2(y) + · · · + πis(y)

The αis: threshold parameters.

αi1 < αi2 · · · < αimi−1
< αimi

= ∞

The βij: factor loadings.

Under the assumption of conditional independence

g(x | y) =

p
∏

i=1

g(xi | y)
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The conditional distribution of xi | y is multinomial:

g(xi | y) =

mi
∏

s=1

πis(y)xi,s

=

mi
∏

s=1

(γi,s − γi,s−1)
xi,s

where xi,s takes the value 1 or 0.

The latent variables are assumed to have independent standard normal
distributions.
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Scoring methods

A. Component scores for different type of items:

Items cj(x), j = 1, . . . , q

Binary
∑p

i αijxi

Polytomous
∑p

i αij(s)xi(s)

Normal
∑p

i
λij

Ψii
xi

Ordinal It does not exist

B. Posterior mean
E(yj | xh), j = 1, . . . , q
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For the one factor model, both scoring methods give the same ranking to the
individuals.
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Latent class model for binary items: examples

1. Educational assessment.

2. Medical diagnosis. Many symptoms can be easily observed, some of which
may point towards one cause and some to another. It would be useful if we
could use observations of an individual’s symptoms to estimate the probability
that the patient has any of the possible conditions. A latent class model may
help us to do this.

3. Selection methods. Aptitude for performing a complex task, like flying an
aircraft, can only be inferred in advance by testing the candidate’s performance
on a variety of tests designed to give an indication of the required skills.
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Objectives of Latent Class Analysis

i) To reduce the complexity of a data set by explaining the associations
between the observed variables in terms of membership of a small number
of unobservable latent classes, and hence to gain understanding of the
interrelationships between the observed variables

ii) To be able to allocate an object to one of these classes.
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Assumptions and other characteristics

• Conditional Independence: conditional on an object belonging to a given class,
the observable variables are independent.

• The difference between latent class models and the factor analysis: FA assumes
that the latent variables are metrical, and possibly normally distributed, whereas
in LCA the single latent variable is categorical.

• In a model with J latent classes, the latent variable, y, can be defined to take
the value 1 for an object in class 1, 2 for an object in class 2, . . . , and J for
an object in class J . The precise labelling is irrelevant.
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Notation

Let πij = Pr(xi = 1 | j) be the probability that a randomly selected object from
class j will answer positively to item i, for (i = 1, . . . , p; j = 1, . . . , J). Thus, πij

is the conditional probability of a positive response to item i, given (or conditional
on) membership of class j.

Let ηj be the proportion of the population in latent class j or equivalently the
probability that a randomly selected object from the population belongs to latent
class j, for (j = 1, . . . , J).
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Model estimation

The joint distribution of the observed responses is written as:

f(x) =

J−1
∑

j=0

ηjg(x | j)

where under the assumption of conditional independence:

g(x | j) =

p
∏

i=1

g(xi | j)
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Since the responses are binary:

g(xi | j) = πxi
ij (1 − πij)

1−xi

The log-likelihood for a random sample of size n is:

L = log f(x) =

n
∑

h=1

log

J
∑

j=1

ηj

p
∏

i=1

g(xih | j)

The log-likelihood function can be maximized using standard optimization
routines.



Erasmus University of Florence

The above log-likelihood can be maximized using an EM algorithm under the
constraint that:

∑k−1
j=0 ηj = 1. Therefore the function to be maximized becomes:

φ = L + θ

k−1
∑

j=0

ηj

where θ is an undetermined multiplier.

Finding partial derivatives:

∂φ

∂ηj
=

n
∑

h=1

[

p
∏

i=1

π
xih
ij (1 − πij)

1−xih/f(xh)

]

+ θ

=

n
∑

h=1

[g(x | j)/f(xh)] + θ, j = 0, . . . , J − 1
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∂φ

∂πij
=

n
∑

h=1

ηj
∂

∂πij
g(xh | j)/f(xh), i = 1, . . . , p; j = 0, . . . , J − 1

Now,

∂g(xh | j)

∂πij
=

∂

∂πij
exp

p
∑

i=1

[xih lnπij + (1 − xih) ln(1 − πij)]

= g(xh | j)

[

xih

πij
− 1 − xih

1 − πij

]

=
(xih − πij)

πij(1 − πij)
g(xh | j)
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Therefore,

∂φ

∂πij
=

ηj

πij(1 − πij)

n
∑

h=1

(xih − πij)g(xh | j)/f(xh)

The derivatives can be simplified by expressing them in terms of the posterior
probabilities phi(j | x):

φ(j | x) = ηjg(xh | j)/f(xh)

Substituting that into the partial derivatives equations and setting them equal to
zero we get:

n
∑

h=1

φ(j | xh) = −θηj
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Summing both sides over j and using
∑

j ηj = 1 we get that

θ = −n

and hence the first and second estimating equations are:

η̂j =
n

∑

h=1

φ(j | xh)/n (5)

π̂ij =

n
∑

h=1

xihφ(j | xh)/(nη̂j) (6)

where, the posterior probability than an individual with response pattern xh will
be in class j, is given by:
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φ(j | xh) = ηjg(xh | j)/f(xh) (7)

The EM algorithm works as follow:

i. Choose initial values for the posterior probabilities φ(j | xh).

ii. Obtain a first approximation for η̂j, π̂ij from the equations (5), (6).

iii. Substitute these in (7) to obtain a new estimate for φ(j | xh).

iv. Return to (ii) and continue until convergence is attained.

The initial allocation of individuals into classes is based on their total score.
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General remarks

• The solution reached will be a local maximum.

• Latent class models are known for multiple maxima.

• Use different starting values.

i) The n objects are a random sample from some population and every object in
that population belongs to just one of the J latent classes

ii) The probability of giving a positive response to a particular item is the same
for all objects in the same class but may be different for objects in different
classes
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Allocation to classes

We solve the problem by estimating the probability that an object with a particular
response pattern falls into a particular class. This probability, sometimes called
the posterior probability, is:

Pr(object is in class j | x1, . . . , xp) (j = 1, . . . , J).
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Example: Macready and Dayton data

Sample size = 142

Results from a test on four items selected at random from a domain of items
each involving the multiplication of a two-digit number by a three- or four-digit
number. Respondents are expected to be divided into two groups: Masters and
Non-Masters.
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Table 8: Observed and predicted frequencies and estimated class probabilities for
the two-class model, Macready and Dayton data

Observed Expected P̂r(master | x) Class Response

frequency frequency pattern

15 14.96 1.00 2 1111

23 19.72 1.00 2 1101

7 6.19 1.00 2 1110

4 4.90 1.00 2 0111

1 4.22 1.00 2 1011

7 8.92 0.91 2 1100

6 6.13 0.90 2 1001

5 6.61 0.98 2 0101

3 1.93 0.90 2 1010

2 2.08 0.97 2 0110

4 1.42 0.97 2 0011

13 12.91 0.18 1 1000

6 5.62 0.47 1 0100

4 4.04 0.45 1 0001

1 1.31 0.44 1 0010

41 41.04 0.02 1 0000
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The X2 = 9.5 and the G2 = 9.0 on six degrees of freedom indicate a near perfect
fit to the data. The percentage of G2 explained is 91%.

Table 9: Estimated conditional probabilities, π̂ij, and prior probabilities, η̂j, with
standard errors in brackets for the two-class model, Macready and Dayton data

Item (i) π̂i1 π̂i2

1 0.21 (0.06) 0.75 (0.06)

2 0.07 (0.06) 0.78 (0.06)

3 0.02 (0.03) 0.43 (0.06)

4 0.05 (0.05) 0.71 (0.06)

η̂j 0.41 (0.06 ) 0.59 (0.06)

Members of the first class have small estimated probabilities of answering items
correctly. This class is clearly the “non-master” one. Members in the second class
have for all items much higher probabilities of answering correctly. This class is
the “master” class.
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Example: Abortion data

1. The woman decides on her own that she does not. [WomanDecide]
2. The couple agree that they do not wish to have the child. [CoupleDecide]
3. The woman is not married and does not wish to marry the man.

[NotMarried]
4. The couple cannot afford any more children. [CannotAfford]

Item (i) π̂i1 = P̂r(xi = 1 | 1) π̂i2 = P̂r(xi = 1 | 2)

WomanDecide 0.01 (0.01) 0.71 (0.03)

CoupleDecide 0.09 (0.03) 0.91 (0.02)

NotMarried 0.12 (0.04) 0.96 (0.02)

CannotAfford 0.15 (0.04) 0.91 (0.02)

η̂j 0.39 (0.03) 0.61 (0.03)
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Items O E O − E (O − E)2/E

Response (0,0) 2, 1 147 137.79 9.21 0.62
3, 1 131 130.16 0.84 0.05

3, 2 117 117.58 −0.58 0.00
4, 1 129 129.12 −0.12 0.00
4, 2 114 114.61 −0.61 0.00

4, 3 116 109.97 6.03 0.33

Response (0,1) 1, 2 66 75.21 −9.21 1.13
1, 3 82 82.84 −0.84 0.01

1, 4 84 83.88 0.12 0.00
2, 1 7 16.21 −9.21 5.24

2, 3 37 36.42 0.58 0.01
2, 4 40 39.39 0.61 0.01

3, 1 7 7.84 −0.84 0.09
3, 2 21 20.42 0.58 0.02
3, 4 22 28.03 −6.03 1.30

4, 1 16 15.88 0.12 0.00
4, 2 31 30.39 0.61 0.01

4, 3 29 35.03 −6.03 1.04

Response (1,1) 2, 1 159 149.79 9.21 0.57
3, 1 159 158.16 0.84 0.01

3, 2 204 204.58 −0.58 0.00
4, 1 150 150.12 −0.12 0.00

4, 2 194 194.61 −0.61 0.00
4, 3 212 205.97 6.03 0.18
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Workplace Industrial Relations Survey, WIRS

The six items measure the amount of consultation that takes place in firms at
different levels of the firm structure.

1. Informal discussion with individual workers.
2. Meetings with groups of workers.
3. Discussions in established joint consultative committee.
4. Discussions in specially constituted committee to consider the change.
5. Discussions with union representatives at the establishment.
6. Discussions with paid union officials from outside.

Items 1 to 6 cover a range of informal to formal types of consultation. The first
two items are less formal practices, and items 3 to 6 are more formal.
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• The latent class analysis aims to group the firms with respect to the patterns
of consultation they are adopting.

• The two-class model fitted to the six items is rejected not only by the overall
goodness-of-fit measures (X2 = 350.28, G2 = 299.12 on 21 degrees of freedom)
but also by the large chi-squared residuals for some of the two and three-way
margins. All the chi-squared residuals with values greater than 3 include item 1.

• The three-class model is still rejected (X2 = 64.89, G2 = 67.78 on 14 degrees
of freedom).

• However, the fit to the two- and three-way margins is very good.
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Items π̂i1 π̂i2 π̂i3

1 0.21 0.95 0.06

2 0.59 0.27 1.00

3 0.08 0.43 0.68

4 0.14 0.19 0.62

5 0.11 0.53 0.85

6 0.02 0.25 0.37

η̂j 0.55 0.26 0.19

Class 1 represents those firms that mainly use informal policies (items 1 and 2).

Class 3 includes those firms that use all the methods but not the first informal
one.

Firms in Class 2 use all methods including that under item 1 (with lower
probabilities than in Class 3 for items 2 to 6)
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Applications in Archaeometry

The metric variables, 25 in total, measure the chemical composition of the ceramic, obtained with

the latest methodologies available such as Neutron Activation Analysis (NAA).

The categorical variables aim to derive information regarding the provenance of the objects.

Recently, a system of 19 categorical variables has been derived in order to objectively describe

the thin sections of the ceramics and use this for reproducible statistical applications. The levels

of each of the 19 variables give information about the amount (if any) of different rock types,

minerals and structure. More specifically the categorical variables are: optical activity, inclusion

orientation, void orientation, texture, special components, plutonic rocks, metamorphic rocks,

sedimentary rocks, quartz, feldspar, plagioclase, pyroxenes, amphiboles, volcanic rocks, micas,

phyllosillicates, carbonates, packing and other constituents.
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Teraccota data set
The 73 sample objects are maiolica vases and floor tiles, manufactured between
the XVI-XVIII centuries. The data set consists of 19 (binary) variables and 21
metric variables.

The metric variables measure the chemical composition of the ceramic. The
categorical variables aim to derive information regarding the provenance of the
objects (petrological analysis).

The groups are:

• Group 1: ceramics from Napoli (n)

• Group 2: ceramics from Caltagirone (c)

• Group 3: ceramics from Palermo (p)
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Results

• The AIC and BIC suggested a three-class solution.

• Class I comprises 33% of the objects, class II 37% and class III 30%.

• The estimated posterior class-membership probabilities was for each object
greater than 0.99.

• The obtained classification was the same as the grouping with respect to
location.

• When the analysis was done separately on the binary and the metric variables
both using hierarchical clustering techniques and latent class analysis the
groups were not as clearly defined suggesting that the method of analysis using
both binary and metric variables is preferable.
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Can Sora Data set

The Can Sora data set comes from a ceramic assemblage found in a cistern at
the Punic and Roman site of Ses Paises de Cala d’Hort in Eivissa.

Variables: 15 binary variables, 3 ordinal and 25 metric. The natural logarithms of
the metric variables were taken first and they were standardized afterwards.

The AIC and BIC suggested a 6-class solution.
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Table 10: Residuals for the second order margins, 5-class model, Can Sora

Response Variable Variable Observed Expected O − E (O − E)2/E
i j frequency frequency

(O) (E)
(0,0) 8 6 4 1.62 2.37 3.46
(0,1) 15.1 5 0 2.37 -2.37 2.37

15.2 5 4 1.62 2.37 3.46
(1,0) 5 15.1 0 2.37 -2.37 2.37

5 15.2 4 1.62 2.37 3.46
(1,1) 15.1 5 4 1.62 2.37 3.46

15.2 5 0 2.37 -2.37 2.37
15.2 15.1 0 2.37 -2.37 2.37
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Table 11: Residuals for the third order margins, 5-class model, response (1,1,1)
to variables (i, j, k), Can Sora

Variable Variable Variable O − E (O − E)2/E

i j k

2 5 15.1 2.37 3.47

2 5 15.2 -2.37 2.37

5 6 18.1 0.75 2.25

5 7 9 2.57 4.67

5 7 10 2.57 4.67

5 7 15.1 3.07 10.27

5 9 15.1 3.07 10.27

5 10 15.1 3.07 10.27

5 13 15.1 2.37 3.47

6 8 15.2 2.79 3.55
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Table 12: Classification of the 22 objects, six-class model, Can Sora

Group Objects
Plutonic CS2, CS3, CS4, CS5, CS6, CS14, CS23
Volcanic CS10, CS11, CS15, CS16, CS17
Muscovite CS18, CS19, CS20
Phyllite CS21, CS22
Pantellerian CS26, CS27
Outliers CS7, CS24, CS25
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Free software for latent class analysis

• The program LATCLASS in LAMI: Bartholomew, Knott, Tzamourani and
deMenezes available in GENLAT.

• LEM: Vermunt, J.K.

Non-free software

• Mplus: Muthen, L. and Muthen, B.O.

• LatentGold: Vermunt, J.K. and Magison, J.

• WinLTA: Collins, L.M. and Flaherty, B.P. and Hyatt, S.L. and Schafer, J.L.


