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1. Introduction  

Structural equations methods are predominant in economics for modeling, identifying, 

and estimating causal effects of interest. The early work of the Cowles Commission by 

Tinbergen, Frisch, Koopmans, Haavelmo, Marschak, Simon, Wold, Strotz, and others 

studied identification and estimation of causal effects (e.g. Haavelmo, 1943, 1944; 

Simon, 1953, 1954; Strotz and Wold, 1960; Fisher 1966). This literature also introduced 

notions of “endogeneity” and “exogeneity.” Textbooks typically define these respectively 

as the correlation or lack thereof between a structural equation’s observed explanatory 

variables and its unobserved “errors.” With the introduction of these concepts, it became 

evident that standard methods of estimation such as least squares regression fail to 

provide a consistent estimator for the effect of interest in the endogeneous regressor case. 

Reiersøl (1945) formalized the method of “instrumental variables” (IV), originally 

introduced by Philip Wright (1928) building on Sewall Wright’s (1921, 1923) work on 

“path analysis”, within the structural equations framework. Ever since, this method has 

played a central role in handling issues of endogeneity (e.g. Hausman and Taylor 1983; 

Heckman, 1997; Angrist and Krueger, 2001; Heckman, Urzua, and Vytlacil, 2005). In the 

familiar case of linear structural equations, “proper” IVs (variables that are “exogenous” 

or “valid,” i.e., uncorrelated with the equation’s error; and “relevant”, i.e. correlated with 

the included explanatory variables) can deliver consistent estimates of effects. 

Over the years, advances across a variety of disciplines have resulted in alternative 

approaches to identifying and estimating causal effects in the presence of endogeneity. 

In particular, developments in labor economics (Roy 1951; Heckman and Robb, 

1985; Hahn, 1998; Heckman, Ichimura, and Todd, 1998; Heckman, LaLonde, and Smith, 

1999; Hirano, Imbens, and Ridder, 2003; Hirano and Imbens, 2004; Heckman and 

Vytlacil, 2005, etc.) have yielded a variety of methods, such as those based on matching 

and the propensity score, that permit this identification and estimation.  

An extensive statistical literature on observational studies (e.g. Rubin, 1974; 

Rosenbaum, 2002) also emerged, building on the experimental design work of R.A. 

Fisher, Cox, Neymann, Kempthorne, and others. This “treatment effect” literature 

introduced the “potential outcome model” and notions of “ignorability” and “propensity 
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score” for measuring causal effects (e.g., Rosenbaum and Rubin, 1983; Holland, 1986). 

Angrist, Imbens, and Rubin (1996) (AIR) relate this approach to IV methods. 

Another line of research has emerged in the machine learning literature in the work of 

Pearl (1988, 1993a, 1993b, 1995, 2000), Spirtes, Glymour, and Scheines (1993), and 

Dawid (2002) among others. In particular, Pearl (1995) introduced two methods related 

to the labor economics and treatment effect literatures, the “back door” and “front door” 

methods. A distinctive feature of this literature is the use of directed acyclic graphs 

(DAGs) to represent causal relations and of graphical criteria to determine if particular 

causal effects are identifiable, with less attention to the estimation of these causal effects.   

White (2006) and White and Chalak (2006a) (WC) propose the “settable system” 

framework as a means of unifying these various approaches. There, particular attention is 

paid to identifying and estimating causal effects in a setting closest to that of exogenous 

regressors. Here we broaden our focus and apply this framework to analyze identification 

and estimation of causal effects in the presence of endogenous regressors generally. 

Consistent with Dawid (1979, 2000), the methods that emerge, including all those above, 

require one or more independence or conditional independence relationships to hold 

between the observed and unobserved variables of the system.  

Specifically, our contribution here is to provide a novel and detailed examination of 

the ways in which causal structures can yield observed variables other than the cause or 

treatment of interest that can play an instrumental role in identifying and estimating 

causal effects. We thus extend the standard concept of instrumental variables to 

accommodate variables that are not necessarily uncorrelated with unobserved causes of a 

response of interest but that are nevertheless instrumental in recovering causal effects.  

Consider, for example, the following structural system, where X, Y, and Z are 

variables with observed realizations, Ux, Uy and Uz are unobserved causes of X, Y, and Z 

respectively, αo is an unknown vector, and γo and δo are unknown scalars such that:   

          (1)  X 
c
= Ux’α o 

          (2)  Z 
c
=  γo X + Uz 

          (3)  Y 
c
=  δo Z + Uy. 
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We use “
c
= ” instead of the usual equality to emphasize the causal nature of the structural 

equations. As in Dawid (1979), “ ⊥ ” denotes independence between random variables 

and “ ⊥/ ” denotes dependence. Here, we assume that Ux ⊥/  Uy, Ux ⊥  Uz, and Uy ⊥  Uz. 

Consider measuring the total causal effect of X on Y. Substituting (2) into (3) gives:     

          (3’)  Y 
c
=  βo X + δo Uz + Uy, 

where βo ≡  γo δo is the total causal effect of X on Y. 

Clearly, since Ux ⊥/  Uy, the least squares estimator for βo, say β̂ , is inconsistent, as X 

is endogenous. Further, Z is an invalid instrument, as it is correlated with the unobserved 

term in (3’): from (2) we have Z correlated with Uz; also, since X causes Z from (2) and 

X and Uy are correlated, we have Z correlated with Uy.  

This presents a situation where it might seem that the causal effect of X on Y cannot 

be consistently estimated. Nevertheless, results of Section 4.1.2 demonstrate that, under 

mild conditions, a consistent estimator for the total causal effect of X on Y is given by: 
-1 -1 -1 -1{( ) ( )} {[ ( ( ) ) ] [ ( ( ) ) ]}β = ×X'X X'Z Z' I - X X'X X' Z Z' I - X X'X X' Y , 

where X, Y, and Z each denote n× 1 vectors. As discussed below, this system permits use 

of Pearl’s (1995) “front-door” method. The variable Z is instrumental in the recovery of 

the causal effect of X on Y even though it is an “invalid” instrument in the standard sense. 

We can also view this example as one in which identification is achieved by 

combining exclusion and covariance restrictions as in Hausman and Taylor (1983). But 

Sections 4.1.1 and 4.2 provide further examples where Hausman and Taylor’s necessary 

conditions fail, yet identification still holds. In fact, our results provide an extension of 

those of Hausman and Taylor in which identification is achieved not solely by exclusion 

and covariance restrictions, but may also rely on conditional covariance (or 

independence) restrictions involving not just unobservables but also observables. 

A main goal of this paper is thus to show that by extending the standard notion of 

instrumental variables, we achieve a framework that not only incorporates classical 

identification results such as those of Hausman and Taylor, but that also enables 

identification and estimation of clearly defined causal effects in the endogenous regressor 

case for a wide array of situations in which standard methods fail. As it turns out, these 

methods extend readily to the general case in which structural equations are not separable 
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between observables and unobservables. Classical methods are less tractable in this way. 

Specifically, by focusing on conditional exogeneity rather than strict exogeneity, we 

obtain a class of extended instrumental variables (EIV) methods that permit identification 

and estimation of causal effects. These methods are characterized by alternative moment 

conditions and exclusion restrictions that parallel those in the standard case. This paper 

begins a systematic exploration of these methods and their interrelations. 

In Section 2, we discuss the data generating structural equations systems of interest 

here. In Section 3, we use the framework of Section 2 to provide a fully explicit causal 

account of standard regression and IV methods, extending AIR and setting the stage for 

subsequent results. Section 3.1 examines the case of exogenous regressors (XR). In 

Section 3.2, we study causal identification via standard exogenous instruments (XI) Z. 

Appendix B describes how causal identification fails when standard IV methods fail. 

Section 4 begins our study of EIV methods, where the use of conditional instruments 

Z, conditioning instruments W, or both together permits identification of the causal effect 

of endogenous X. Section 4.1 treats single EIV methods, which use either conditioning 

EIV or conditional EIV but not both to identify causal effects. Section 4.1.1 introduces 

the method of conditionally exogenous regressors given conditioning instruments 

(CXR|I), relating this to matching, Rosenbaum and Rubin’s (1983) ignorability condition, 

Pearl’s (1995) back door, and White’s (2006) predictive proxies. Section 4.1.2 introduces 

the method of conditionally exogenous instruments given regressors (CXI|R). We relate 

these to standard IV and to Pearl’s (1995) front door method.  

In Section 4.2, we discuss double EIV methods where joint use of conditional and 

conditioning EIV identifies effects of interest. We introduce the methods of conditionally 

exogenous instruments given conditioning instruments (CXI|I), conditionally exogenous 

instruments and regressors given conditioning instruments (CXIR|I), and conditionally 

exogenous instruments given regressors and conditioning instruments (CXI|RI).  

Section 5 states a “master theorem” that provides necessary and sufficient conditions 

for identification of causal effects via EIV methods. Section 6 discusses the use of causal 

matrices to characterize the cases where identification holds by EIV. We illustrate by 

showing that CXR|I and CXI|R exhaust the possibilities for identification using a single 

EIV. Section 7 states conditions ensuring consistency and asymptotic normality for the 
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EIV estimators considered here. Section 8 concludes, with final remarks and a discussion 

of directions for future research. Proofs of formal results are gathered into Appendix A. 
 
2. Causal Data Generating Systems  

Economists have long understood the distinction between predictive and causal inquiries 

and in particular the dictum that correlation need not imply causation. Goldberger (1991, 

p. 337) states, “the causal requirement that in regression the x’s have to be the variables 

that actually determine y does not appear in the specification of the [classical regression] 

model: nothing in the [classical regression] model requires that the x’s cause y.” Thus, 

economists have been concerned with developing methods to measure causal effects 

beyond predictive linear regression (see, e.g., Angrist and Krueger, 1999; Heckman, 

LaLonde, and Smith, 1999; Heckman, 2000; and Hoover, 2001). 

Here we employ a familiar structural equation system to represent a causal structure, 

S. In particular, we consider data generated as a special case of the recursive system  

X1 
c
=  r1 (X0) 

X2 
c
=  r2 (X1, X0) 

 

XJ 
c
=  rJ (XJ-1, …, X1, X0), 

where X0 is a random vector, and for j = 1, …, J, Xj is a random variable and rj is an 

unknown scalar-valued response function. 

We use the notation 
c
=  to emphasize that the structural equations of S are neither 

equations nor regressions. Instead, they represent directional “causal links” (Goldberger, 

1972, p.979). In particular, the right hand side variables mechanistically determine the 

value of the corresponding left hand side variable, but the converse is not true. The 

structural equations are thus directional autonomous mechanisms describing how every 

variable in the system is generated (Haavelmo 1943, 1944; Strotz and Wold, 1960; Pearl, 

2000; WC). Conceptually, these can be manipulated without modifying any of the other 

relations. This enables definition of causal effects by means of hypothetical interventions 

where Xj is set to some different value, Xj*. WC provides a rigorous formalization. 

Observe that X0 does not appear on the left hand side of any causal relation. If the 
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system affords a complete description of the causal structure, then X0 is not caused by any 

other variables of the system. Following WC, we call such variables fundamental. 

Formally, we work with the following structures. 

Assumption A.1(a): Data Generation: For j = 1, …, J, let Uj be random vectors with 

unobserved realizations, and let the response functions rj be unknown real-valued 

measurable functions such that observable random variables X1, …, XJ are generated as:  

X1 
c
=  r1 (U1) 

X2 
c
=  r2 (X1, U2) 

 

    XJ 
c
=  rJ (XJ-1, …, X1, UJ).           � 

 
The Uj’s may have differing dimensions. We collect them together as X0 ≡  (U1’, …, 

UJ’)’. The data are thus generated by the system S ≡  (X0, r1, …, rJ).  

We formally view S as a settable system as defined by WC, so references here to 

notions of setting, response, cause, and effect are as formally defined there. Given A.1(a), 

the following working definition of causality (always relative to S) suffices. Specifically, 

Xj does not cause Xk when j ≥ k (including k = 0). For j < k, we say that Xj does not cause 

Xk if rk (Xk-1, …, X1, Uk) defines a function constant in Xj. Otherwise, we say that Xj 

causes Xk. This corresponds to “direct” or “immediate” causality as defined by Pearl 

(2000). We take Uk to be a cause of Xk, whereas Uj does not cause Xk for j ≠ k.  

In this structure, all variables have causal status. For conciseness, we do not introduce 

attributes, that is, non-causal response modifiers (see WC). A key role played by 

attributes is to introduce heterogeneity into the system, an essential aspect of economic 

reality (see, e.g., Heckman, 1997; Heckman, Urzua, and Vytlacil, 2005; and Heckman 

and Vytlacil, 2005). The structures we consider can be straightforwardly generalized to 

handle this, but we refrain from doing so here to maintain a sharp focus for our analysis. 

The vector X0 accommodates either the unobservability of known determinants of a 

given response, the researcher’s ignorance of the full set of relevant causes, or both. In 

A.1(a) we do not specify X0 as fundamental, so A.1(a) does not completely specify the 

causal structure. In particular, dependence among elements of X0 may arise from causal 
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relations among these elements; this then entails dependence between the observed and 

unobserved causes (endogeneity) in a given structural equation. 

To describe further restrictions placed on X0, we now write U ≡  X0 and X ≡  (X1, …, 

XJ) and let V ≡   (V1, …, VG) ≡  (X, U ) denote the vector of all observed and 

unobserved variables in the system. We also use the fact that every settable system S has 

an associated “causal matrix,” CS = [cgh]. This is an adjacency matrix in which every 

observed and unobserved variable has a corresponding row and a corresponding column. 

Thus CS is a G× G matrix. An entry cgh = 1 indicates that Vg is an immediate cause of Vh. 

An entry cgh = 0 indicates that Vg does not immediately cause Vh. We impose the 

convention that a variable does not cause itself, so cgg = 0 for g = 1, …, G. 

For example, when the unobservables are scalar, CS has the form 

       X1 … XJ U1 … UJ 
      X1 0   0 …  0 
              
 CS   =  

1SC  
2SC =  XJ 0  … 0 0 …  0 

   
3SC  

4SC  U1 1 0 … 0 0   
       0      
             
      UJ 0 … 0 1    0 

 
The recursivity in A.1(a) makes 

1SC  upper triangular with zeros along the diagonal. 

Blank entries in 
1SC indicate elements taking either the values 0 or 1, reflecting that Xj 

may or may not cause Xk when j < k. Assumption A.1(a) further specifies that none of the 

X’s cause any U’s. Thus 
2SC  is a J ×  J zero matrix. We also have that Uk does not cause 

Xj for j ≠ k. Thus, 
3SC  is a J ×  J identity matrix. We permit Uk to cause Uj, leaving 

4SC unspecified, apart from the zero diagonal. Consequently, 
1SC  and 

4SC  determine CS. 

A causal matrix explicitly specifies all causal relationships, including those holding 

among the unobserved variables, but these are unspecified in A.1(a). In order to complete 

our specification of the causal systems of interest here, we impose 
 
Assumption A.1(b): Acyclicality: S has the property that for each h ≤ G and each set of 

h distinct elements, say {g1, …, gh}, of {1, …, G}, we have 
1 2 2 3 1

... 0
hg g g g g gc c c× × = .    �                                   
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The acyclic structure of A.1(a, b) rules out mutual causality or cycles in S. Mutual 

causality occurs when Vg causes Vh and Vh causes Vg. Cycles occur when, for example, Vg 

causes Vh, Vh causes Vk, and Vk causes Vg. We impose this structure to keep our analysis 

focused; the general settable system framework does not require this. 

Acyclicality also ensures the system possesses at least one fundamental variable 

(Bang-Jensen and Gutin, 2001, prop. 1.4.2). Given A.1(a), none of the Xj’s (j > 0) can be 

fundamental, so it must be that at least one element of X0 is. We denote the vector of 

fundamental variables U0. This may contain some or all of the elements of the Uj’s. The 

causal matrix column for a fundamental variable is a vector of zeroes. 

A convenient device for representing causal relations is the causal graph, often used 

below. For each causal matrix CS there is a causal graph GS. This is a variant of the 

graphs used in Wright’s path analysis (Wright, 1921, 1923) and that are lately revived in 

the machine learning literature as “semi-markovian directed acyclic graphs” (DAGs). 

See, for example, Pearl (1988, 1993a, 1993b, 2000) and Spirtes, Glymour, and Scheines 

(1993). There, the unobserved variables are typically not explicitly represented. In 

contrast, we explicitly represent these due to their central role in econometrics. 

The graph GS consists of a set of nodes (vertices), one for each element of V, and a 

set of arrows A, corresponding to ordered pairs of distinct vertices. An arrow agh denotes 

that Vg directly causes Vh. Solid arrows will denote causal relationships between 

observables. A dashed arrow from Uj to Uk denotes that Uj causes Uk. A dashed arrow 

also denotes that Uj causes an observable. A simple dashed line between Uj and Uk 

indicates that (i) Uj causes Uk; (ii) Uk causes Uj; or (iii) an unobserved cause (e.g., U0) 

(directly or indirectly) causes both Uj and Uk (we omit depicting the unobserved common 

cause). The convention that variables do not cause themselves corresponds to the absence 

of self-directed arrows in GS. The absence of dashed lines or arrows between Uj and Uk  

implies that Uj ⊥  Uk, as discussed further below. 

We next impose some significant simplifying structure: 

Assumption A.2: Linearity and Separability: For j = 1, …, J, assume that rj is linear 

and separable so that the data generating structural equations system S is given by: 

   X1 
c
=  U1’α 1 
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X2 
c
=  β2,1X1 + U2’α 2 

 

XJ 
c
=  βJ,J-1XJ-1 +… + βJ,1X1 + UJ’α J, 

 where, for j = 1, …, J,  E(Uj) = 0, α j is an unknown real vector conforming to Uj, and 

for j = 2, …, J, βj,1, …, βj,j-1 are unknown real scalars. We put βj ≡  ( βj,j-1, …, βj,1)’.   � 
 

The compelling motivation for imposing this strong structure is to provide clear 

insights in a familiar context, permitting us to make our main points without being 

distracted by further complications. Nevertheless, our key results extend to the modern 

non-separable setting where much milder conditions replace A.2 (see, e.g., Matzkin, 

2003, 2004, and 2005; Imbens and Newey, 2003; WC). We take this up elsewhere. 

Throughout, our interest attaches to identifying and estimating the average total 

causal effect of an observable2 Xj on another observable Xk. Thus, we focus on the full 

effect of Xj on a response Xk, channeled via all routes in the system, averaged over the 

unobserved causes Uk of Xk. Given A.2, this quantity is a constant.  

Below, we require certain independence or conditional independence conditions to 

hold between variables. Following Dawid (1979), we write X ⊥  U | W to denote that X is 

independent of U conditional on W. Just as independence X ⊥  U entails fU|X (u| x) = fU 

(u) (using an obvious shorthand notation for (conditional) density functions), conditional 

independence X ⊥  U | W entails fU|X,W (u | x, w) = fU|W (u | w). Given A.2, these 

assumptions are stronger than will be necessary to obtain identification results. Weaker 

conditions suffice, such as conditional mean independence (E(U | X, W) = E(U | W)) or 

conditional non-correlation (E( X U | W) = E(X | W) E(U | W)). Nevertheless, we work 

primarily with (conditional) independence, first for convenience and second because such 

conditions are required for identification of causal effects generally, such as for the non-

separable case or when interest attaches to causal effects other than average effects, such 

as effects on the quantiles of the response (see WC).  

     Conditional independence implies conditional mean independence and conditional 

non-correlation. As a convenience to accommodate the stronger than necessary 
                                                 
2 As we implicitly rely on WC’s settable system framework, it is more appropriate to refer to causal relationships 

as holding between settable variables, as defined there. Our present usage is intended as a convenient shorthand.  
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assumptions adopted here, when we speak of conditional (unconditional) dependence, we 

will understand this to result from conditional (unconditional) correlation, also implying 

conditional (unconditional) mean dependence. 
 
3. Causal Identification with Exogenous Regressors or Instruments 

We first employ the framework of Section 2 to provide a fully explicit causal 

interpretation of standard regression and IV methods. This covers some familiar ground. 

Nevertheless, we discover important features previously unrecognized. This also sets the 

stage for subsequent developments. 

Goldberger (1991, p. 337) notes that there is no necessary causal structure embodied 

in standard regression. The same is true for standard treatments of IV. Although causal 

relationships were clearly of concern to the Cowles Commission pioneers, an explicit 

causal focus has disappeared from much of the subsequent literature. For example, White 

(2001) treats IV estimation extensively, but without any reference to causal structure. The 

properties of the estimators studied are driven solely by stochastic properties of the 

variables involved, and in particular certain key moment conditions. 

Exceptions to this agnosticism are provided by recent articles of Angrist, Imbens, and 

Rubin (1996) (AIR), Heckman (1997), and Heckman, Urzua, and Vytlacil, (2005), for 

example. A main goal of AIR is explicitly to provide a causal account of IV. Here we 

provide a causal account of IV complementary to and extending AIR, designed also to 

accord with the philosophy literature, which requires causal foundations to drive causal 

conclusions, as expressed in Cartwright’s (1989) dictum “no causes in, no causes out.”  

To proceed, we elaborate our notation. Let Y now denote the scalar response of 

interest, let X ≡  [X1, …, Xk]’ denote the observed causes of interest, and let Z ≡  [Z1, …, 

Z ]’ denote variables potentially instrumental to identifying causal effects of interest, all 

generated as in A.1 and A.2. (The Xj’s of A.1 and A.2 are now the elements of X, Y, and 

Z.) We denote by Uy, Ux ≡  [
1xU ′ , …, 

kxU ′ ]’, and Uz ≡  [
1z

U ′ , …, zU ′ ]’ the unobserved 

causes corresponding to the responses, causes, and instruments, respectively. As above, 

the fundamental unobservables are U0. We let X, Y, and Z denote n× k, n× 1, and n×  

matrices containing n identically distributed observations on X, Y, and Z respectively.  
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3.1 Exogenous Regressors  

We first consider exogenous regressors, for which linear regression identifies the effect 

of X on Y. Consider structural equations system S1 and its corresponding causal graph G1: 
 

   (1) X 
c
=  αx Ux 

   (2) Y 
c
=  X’βo + Uy, 

where Ux ⊥  Uy.                 
  
In (1), αx is a matrix of unknown coefficients that map unobserved causes Ux to observed 

causes X. The coefficients βo have causal meaning by virtue of (2). 

In S1, X and Y do not share a common cause, as reflected by the condition  
 

 (XR)   Exogenous Regressors: X ⊥  Uy. 
 
Together, A.1 and XR ensure the key moment condition  
 
                                                              E(XUy) = 0.                                                      (M1) 
 
From (2), Uy = Y − X’βo (an equality, not a causal link). Substituting this into M1 gives  
 

E(XY) − E(XX’) βo = 0. 
 
This condition structurally identifies causal coefficients βo by relating them solely to 

moments of observable variables. When stochastic identification also holds, that is, E(X 

X’) is non-singular, βo is fully identified as 
 

βo = [E(XX’)]-1[E(XY)]. 

Formally, we have: 

Proposition 3.1.1 Suppose A.1 and A.2 hold such that: (i) Y 
c
=  X’βo + Uy, where X is k 

×  1, k > 0, βo is an unknown finite k ×  1 vector, and E(XX’) and E(XY) exist and are 

finite. Suppose further that (ii) E(XX’) is non-singular; and (iii) XR: X ⊥  Uy. 

      Then βo, the average total causal effect of X on Y, is fully identified as: 

βo = [E(XX’)]-1[E(XY)].     � 
 
The plug-in estimator for βo is the usual OLS estimator for a linear regression of Y on X , 

ˆ XR
nβ  ≡  (X’X)-1(X’Y). Section 7 gives straightforward conditions ensuring consistency 

Uy 

Y X 

Ux 

Graph 1 (G1) 
 Exogenous Regressors (XR) 
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and asymptotic normality for ˆ XR
nβ  and the other estimators we discuss.  

Reichenbach’s (1956) principle of common cause, applicable here, states that two 

random variables can exhibit correlation only if one causes the other or if they share a 

common cause. Here X and Y are correlated. We assume that Y does not cause X. We also 

exclude the possibility that X and Y share a common cause. The association between X 

and Y can thus only be explained as the effect of X on Y. 

When control over X is possible, XR can be ensured by randomization. In 

observational studies, where control is absent, it is often hard to argue for XR. We now 

examine the failure of XR from a causal standpoint. 

Specifically, consider the structural system S2 and its corresponding causal graph G2: 
 

   (1) X 
c
=  αx Ux 

   (2) Y 
c
=  X’βo + Uy 

where Ux ⊥/  Uy.                                             

In S2, XR does not hold since X ⊥/  Uy. When this results from E(XUy) ≠ 0, then 

regression no longer structurally identifies βo, as unobservables appear in the moment 

equation E(XY) = E(XX’) βo + E(XUy). In G2, the association between X and Y could be 

due to the joint response of X and Y to Uy, to Ux, or to U0, an unobserved common cause 

of Uy and Ux. Following standard parlance, we call failure of XR regressor endogeneity 

and call X endogenous regressors. We also call this confoundedness of causes. In S2, 

either Uy, Ux, or U0 is a confounding variable. Thus, under A.1, an endogenous regressor 

is one sharing an unobserved common cause with the response. Simultaneity is absent 

from this system and is thus not responsible for the endogeneity. 
 
3.2 Exogenous Instruments   

When regressors are endogenous, XR is not available to identify βo. But it is well known 

that identification can be achieved using a vector of “proper” instrumental variables, Z. A 

standard definition is that Z is proper if it is “valid,” i.e. E(ZUy) = 0,  and  “relevant,” i.e. 

E(XZ) ≠ 0 (e.g., Hamilton, 1994 p.238; Hayashi, 2000 p.191; Wooldridge, 2002 p.83-84).  

     P.G. Wright (1928) first used instrumental variables, which he called “curve shifters,” 

to identify supply and demand elasticities (see Morgan, 1990; Angrist and Krueger, 2001; 

Uy 

Y X 

Ux 

Graph 2 (G2)
 Endogenous Regressors 
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Stock and Trebbi, 2003). In describing these, P.G. Wright states: “Such additional factors 

may be factors which (A) affect demand conditions without affecting cost conditions or 

(B) affect cost conditions without affecting demand conditions” (P.G. Wright, 1928 

p.312; our italics). The use of the term “affect” suggests that Wright was thinking about 

causality, not just correlation. The first thoughts on instrumental variables thus appear to 

have been driven by causal reasoning and not by statistical or algebraic study. 

As we discuss next, standard instrumental variables methods fall into one of two 

causally meaningful subcategories. In both cases, we refer to these standard instruments 

as exogenous instruments (XI) and refer to this as the XI method. 
 
3.2.1 Observed Exogenous Instruments 

Consider the following structural equations system S3 and its associated causal graph G3: 

    (1) Z 
c
=  αz Uz  

    (2) X 
c
=  γ x Z + αx Ux 

    (3) Y 
c
=  X’βo + Uy 

where γ x  is a k ×  k matrix (so  = k), Ux ⊥/  Uy, 

Ux ⊥  Uz, and Uy ⊥  Uz. Substituting structural equation (2)  

into structural equation (3) and setting πo ≡  γ x’ βo , we have: 

    (3’) Y 
c
=  Z’πo + Ux’ βo + Uy. 

In S3, X is endogenous. Nevertheless, structural identification of βo is ensured by: 

(XI)   Exogenous Instruments: Z ⊥  Uy. 
 
Together with A.1 and A.2, this implies  

 E(ZUy) = 0.        (M2) 

Using (3) then gives the structural identifying condition E(ZY) − E(ZX’) βo = 0. 

Identification is complete given stochastic identification, that is, that E(ZX’) is non-

singular. This directly embodies the standard rank and order conditions. We have 

Proposition 3.2.1 Suppose A.1 and A.2 hold such that: (i) Y 
c
=  X’βo + Uy,  X 

c
=  γ x Z 

+ αx Ux (with  = k ), and E(ZX’) and E(ZY) exist and are finite. Suppose further that (ii) 

E(ZX’) is non-singular; and (iii) XI: Z ⊥  Uy. 

Graph 3 (G3) 
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      Then βo, the average total causal effect of X on Y, is fully identified as: 
 

βo = [E(ZX’)]-1[E(ZY)].     � 

The familiar result that the plug-in estimator ˆ XI
nβ ≡  (Z’X)-1(Z’Y) is consistent and 

asymptotically normal for βo then holds under mild conditions, provided in Section 7. 

In S3, Z satisfies the following three causal properties that accord with XI and that 

make Z instrumental for identifying βo when X and Y are confounded: 
  
 (CP:OXI): Causal Properties of Observed Exogenous Instruments (i) Z directly 

causes X, and the effect of Z on X is identified via XR; (ii) Z indirectly causes Y, and the 

effect of Z on Y is identified via XR; (iii) Z causes Y only via X. � 
 
As Z is observable, we call Z observed exogenous instruments (OXI). 

These properties justify the indirect least squares (ILS) interpretation of instrumental 

variables (Haavelmo, 1943, 1944). Specifically, in S3, since Z ⊥  Ux and given E(XZ’) 

and E(ZZ’) finite with E(ZZ’) non-singular, Proposition 3.1.1 identifies the effect of Z 

on X as γx = E(XZ’)[E(ZZ’)]-1. Similarly, since Z ⊥  Ux and Z ⊥  Uy and given E(ZY) 

finite, Proposition 3.1.1 identifies the effect of Z on Y as πο = [E(ZZ’)]-1E(ZY). By 

CP:OXI (iii), Z causes Y and only via X. The effect of X on Y, βo, is thus the “ratio” of the 

effect of Z on Y to that of Z on X, so that βo = γ x’
-1 πo for γ x  non-singular. That is, 

 
βo =  γ x’

-1 πo = {[E(ZZ’)]-1E(ZX’)}-1{[E(ZZ’)]-1E(ZY)} = [E(ZX’)]-1E(ZY). 
 

This can be consistently estimated by indirect least squares, that is, as the “ratio” of 

the two consistent OLS estimators of the effect of Z on Y and the effect of Z on X:  
  

{(Z’Z)-1(Z’X)}-1{(Z’Z)-1(Z’Y)} = (Z’X)-1(Z’Y) = ˆ XI
nβ . 

This classical account of IV estimation bears explicit statement for two reasons. First, 

it makes fully explicit all the causal components; second, it provides a “base case” 

against which further developments, provided below, can be compared. 

The work of Angrist (1990) provides an example of OXI in which all causal elements 

are clear. Angrist is interested in the effect of Vietnam War military service on a 

veteran’s post-war civilian wage.Vietnam War service and civilian wage could be 

confounded by variables such as individual ability or education, as either might affect 
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both joining the military and civilian wages. Since military service is thus potentially 

endogenous, Angrist employs the Vietnam draft lottery number as an observed 

exogenous instrument in our parlance. This number was randomly assigned based on 

birth date; it dictated military service for individuals whose birth 

date corresponds to a lottery number below a certain threshold. 

Those with a lottery number above the threshold were  

not required to serve. 

Angrist’s use of lottery number as an instrument  

satisfies CP:OXI. Implicitly, Angrist assumes that the  

randomness of  the lottery number makes it independent  

of unobserved  factors affecting an individual’s military  

service or  civilian wages, and that the lottery number does  

not affect veteran’s wages except via military service, as in G4.  

If the data are indeed generated in this way, the lottery  

number is a legitimate OXI.  

A main goal of AIR is to provide an explicit causal account of the IV method. For 

this, AIR employ the “potential outcome” framework. We now compare the present 

approach with that of AIR. We maintain AIR’s notation except that we use Xi and X 

instead of their Di and D to denote receipt of treatment. AIR let i = 1, …, n denote 

individuals in the population of interest and list the following sufficient assumptions for 

the IV estimator to have a “causal interpretation,” namely that of “an average causal 

effect for a subgroup of units, the compliers”:  
 
AIR Conditions (a) Stable Unit Treatment Value Assumption (SUTVA): if Zi = Zi’ then 

Xi(Z) = Xi(Z’); if Zi = Zi’ and Xi = Xi’ then Yi(Z, X) = Yi(Z’, X’); (b) The treatment 

assignment Zi is random (or, more generally, “ignorable”); (c) Exclusion restriction: Y(Z, 

X) = Y(Z’, X) for all Z and Z’ and for all X; (d) Nonzero average causal effect of Z on X; 

(e) Monotonicity: Xi (1) ≥ Xi (0) for all i = 1, …, n. � 
 

If we let the variables X, Y, Z, Ux, Uy, and Uz in S3 pertain to a given individual in the 

population, the OXI case satisfies AIR’s assumptions. Assumption (a) is satisfied by A.1, 

as the left- and right-hand side variables in every equation in S3 pertain only to a given 

Graph 4 (G4) 
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individual. Assumption (b) and the OXI case share the same statistical implications, as Ux 

⊥  Uz and Uy ⊥  Uz. Assumption (c) states that any effect of Z on Y must be via X; this is 

ensured by S3 (2) and (3). Assumption (d) requires Z to have an effect on the treatment X, 

which is ensured by S3 (2) with γx  non-singular. Assumption (e) requires a monotonic 

causal relation between Z and X in that the direction of the effect of the assignment to 

treatment on the actual treatment is the same for all individuals. This is implicitly ensured 

in S3, as γ x  is the same for each individual, given our assumed absence of heterogeneity. 
 
3.2.2 Proxies for Unobserved Exogenous Instruments  

In satisfying CP:OXI, S3 imposes the strong requirements that Ux ⊥  Uz and Uy ⊥  Uz, so 

that Z is random. But random instruments are hard to justify in economics generally, as it 

is largely an observational science. Further, neither the standard relevance and validity 

conditions nor Proposition 3.2.1 require Z to be random or ignorable. In particular, 

Proposition 3.2.1, as is standard (e.g. Heckman, 1996), does not require Z ⊥  Ux: the 

effect of Z on X, usually estimated from a “first stage” regression, need not be identified. 

We now relax AIR’s conditions for the causal interpretation of IV by giving a causal 

account that does not require ignorability for Z, but that only relies on the standard 

relevance and validity conditions. For this, consider structural equations system S5 and its 

associated causal graph G5: 

    (1) Z 
c
=  αz Uz  

    (2) X 
c
=  γx Z + αx Ux 

    (3) Y 
c
=  X’ βo + Uy 

where γx   is a k ×  k matrix (so  = k), Ux ⊥/  Uy,  

Ux ⊥/  Uz and Uy ⊥  Uz. Substituting (2) into (3) gives  

    (3’) Y 
c
=  Z’πo + Ux’αx’βo + Uy. 

 
where πo ≡  γx’βo . Here Ux ⊥/  Uz , whereas in S3 we have Ux ⊥  Uz. 

As before, XR cannot identify βo. However, XI is satisfied, as Z ⊥  Uy. As we also 

have Z ⊥/  X, Z is a proper instrument. Thus, Proposition 3.2.1 applies, identifying βo as 

[E(ZX’)]-1 E(ZY). Nevertheless, S5 differs fundamentally from S3, in that the causal 

Graph 5 (G5) 
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properties making Z in S5 instrumental for identifying βo are satisfied not by Z but instead 

by unobservable causes Uz. If these were observable, they could act as proper 

instruments. In their absence, the observable Z acts as a proxy for the unobservable Uz. 

Accordingly, we call Z in S5 proxies for (unobserved) exogenous instruments (PXI) to 

distinguish this case from OXI. Causal properties for this case are: 
 
 (CP:PXI) Causal Properties for Proxies for Unobserved Exogenous Instruments  

(i) Uz indirectly causes X, and the full effect of Uz on X could be identified via XR had Uz 

been observed; (ii) Uz indirectly causes Y, and the full effect of Uz on Y could be 

identified via XR had Uz been observed; (iii) Uz causes Y only via X; (iv)  if Z causes Y, it 

does so only via X. � 
 
Conditions (i), (ii) and (iii) of CP:PXI are essentially identical to their analogues of 

CP:OXI with Uz replacing Z. Note that in (i) and (ii) we refer to the full effect of Uz on X 

and Y respectively. In (i), this includes not only the effect of Uz on X through Z, but also 

through Ux, and similarly for the effect on Y in (ii) (see (3’)). Condition (iv) is analogous 

to the exclusion restriction (iii) of CP:OXI, but here we do not require that Z cause Y. 

In the PXI case, the ILS account of IV holds with Uz replacing Z, but the 

unobservability of Uz  prohibits empirical application of this version of ILS. Moreover, in 

S5 the effects of Z on Y and of Z on X are not identified as they for OXI. For example, 

observe that Z is endogenous in the reduced form (3’). The classical ILS account now 

fails for instruments Z. Fortunately, however, Z’s role as a proxy for Uz enables it to 

structurally identify βo, given the causal structure of S5. 

Specifically, this structure ensures that Z and X as well as Z and Y are confounded by 

the same variables, Uz. When Uz renders the OLS estimator of πo inconsistent, it also 

renders the estimator of γx inconsistent in just the right way to leave the ratio of these 

confounded effects informative for the effect of interest. 

To demonstrate, suppose that E(XZ’), E(ZZ’), E(ZY), and E(UxZ’) are finite and that 

needed inverses exist. The effect of Z on X, γx, is not identified as E(XZ’) [E(ZZ’)]-1 

from (2), as Z ⊥/  Ux. Instead, γx = E(XZ’)[E(ZZ’)]-1 – αx E(Ux Z’)[E(ZZ’)]-1 . Similarly, 

as Z ⊥/  Ux, the effect of Z on Y, πo, is not identified as [E(ZZ’)]-1E(ZY) from (3’). 

Instead, πo = [E(ZZ’)]-1E(ZY) – [E(ZZ’)]-1E(ZUx’) αx’ βo. Yet βo is identified from (3):  
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     E(ZX’)-1E(ZY) = {[E(ZZ’)]-1E(ZX’)}-1 [E(ZZ’)]-1E(ZY)  

      = { γx’ + [E(ZZ’)]-1E(ZUx’)αx’}-1 [πo + [E(ZZ’)]-1E(ZUx’) αx’ βo]                                 

      = { γx’ + [E(ZZ’)]-1E(ZUx’) αx’}-1 {γx’+ [E(ZZ’)]-1E(ZUx’)αx’}βo                                 

                              = βo. 
 
     The above expression even permits γx = 0, so that Z need not cause X, whereas γx had 

to be invertible in S3 to support ILS. As long as Z and X share a common unobserved 

cause (Uz), they possess the correlation required to identify the effect of interest. We 

provide an example below. When γx = 0, Z is a “pure predictive proxy” for Uz, the true 

causal variable instrumental to identifying the effect of X on Y. The PXI case thus relies 

on causally meaningful instruments (Z) that satisfy the relevance and validity conditions 

but do not satisfy AIR’s conditions. In particular, PXI provides a causal account of IV 

that removes two of AIR’s assumptions, namely, ignorability of Z (assumption (b)) and 

nonzero average causal effect of Z on X (assumption (d)). 

In the PXI case, a function of two inconsistent estimators, the OLS estimators of γx’ 

and πo from (2) and (3’), is itself consistent for the effect of interest, βo. Thus, 

identification strategies that advocate recovery of causal effects as functions only of 

identifiable effects (Pearl 2000, p.153-154) miss recovering certain identifiable effects. 

A number of applied papers in economics that use standard IV to estimate the effect 

on Y of a potentially endogenous X implicitly employ PXI to justify the validity and 

relevance of their instruments. Consider, for example, measuring the effect of a person’s 

years of education on their future wages, as in Butcher and Case (1994) (BC). 

As BC note, an individual’s years of education and  

wages can be confounded by unobserved variables such 

as the individual’s ability, making the “years of 

education” variable potentially endogenous. To  

overcome this problem, BC employ the number 

of sisters in a family as an instrument. They argue  

that daughters in families with a larger number of  

sisters tend to have lower levels of education and 

that this association is unlikely to be related to future 
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wages by means other than educational attainment. In terms of our framework, BC 

exploit the correlation between the number of sisters and a daughter’s level of education 

without requiring that one causes the other. For example, suppose that parents’ 

socioeconomic background and capacity to help finance daughters’ education generates 

the correlation between the number of sisters and education level (see G6). If the data are 

indeed generated as in G6, then number of sisters is a legitimate proxy for the unobserved 

exogenous instrument “parents’ socioeconomic background.” 

Both OXI and PXI employ instruments Z satisfying the standard validity and 

relevance conditions. We call such Z “proper standard instruments.” Equally important is 

that Z provides or proxies for a source of variation preceding the cause of interest X and 

affecting Y only via X, if at all. We thus also call such Z pre-cause instrumental 

variables. We also call any Z satisfying XI an unconditional instrumental variable, to 

distinguish it from the conditional instrumental variables discussed below. 
 
3.3 Failures of Identification 

Our causal framework accounts for not only the successes of standard IV but also its 

failures. So as not to disrupt the flow of our main discussion, Appendix B contains a 

detailed causal description of how structural identification of βo via XI fails in the 

standard “irrelevant instrument,” “invalid instrument,” and “under-identified” cases. 

4 Extended Instruments 

We now investigate situations in which vectors Z or W are not valid instruments in the 

standard sense, as they are correlated with Uy, but are nevertheless instrumental in 

identifying the effect of X on Y. We call these extended instrumental variables (EIV). In 

particular, we introduce conditional and conditioning EIV.  
 
4.1 Single EIV Methods 

We first treat the case in which a single EIV can identify the causal effect of interest. 
 
4.1.1 Conditioning Instruments 

The treatment effect literature has introduced two central methods to treat the problem of 

confoundedness: randomization and matching (e.g., Rubin, 1974; Rosenbaum, 2002). 

Randomization, introduced by R.A. Fisher (1935, ch.2), randomly assigns units to 

treatment and control groups. If feasible, this ensures the absence of confounding 
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variables for the cause of interest, as in S1 and S3. But randomization is rare in 

observational studies. 

In non-randomized studies, matching observations from the treatment and control 

groups that share common causes or attributes provides a way forward. By conditioning 

on the information in the confounding variables, one can interpret the remaining 

conditional association between the putative cause and its response as the causal effect of 

the first on the second. Developments along these lines include “selection on 

observables” (Barnow, Cain, and Goldberger, 1980; Heckman and Robb, 1985), 

ignorability and the “propensity score” (Rubin, 1974; Rosenbaum and Rubin, 1983), the 

“back-door” method (Pearl, 1995), and “predictive proxies” (White, 2006; WC). In labor 

economics, matching methods are well established and have been applied in the contexts 

of the distribution of earnings, policy evaluation, and the returns to education and training 

programs (Roy, 1951; Heckman and Robb, 1985; Heckman, Ichimura, and Todd, 1998). 

     We now study causal structures in which matching can be effected by the use of 

conditioning instruments W that act as proxies for unobserved confounding variables. We 

write W ≡  [W1, …, Wm]’, Uw ≡  [
1wU ′ , …, 

mwU ′ ]’, consistent with A.1, and let W denote 

an n× m matrix of identically distributed observations on W. 

Specifically, consider S2, where X is endogenous because Ux ⊥/  Uy. Suppose that this 

dependence arises because Ux and Uy have a common cause. To gain insight we start with 

the extreme case where we actually observe the confounding variables W that determine 

Ux and Uy. This violates our convention that observables do not cause unobservables 

(A.1(a)), so this is only a temporary expedient that we will remove shortly. To proceed, 

consider structural equations system S7a and its associated causal graph G7a: 

    (1)  W 
c
=  αw Uw 

    (2)  
1xU

c
=

1x
γ W 

    (3) 
1yU  

c
=

1yγ W  

    (4)   X 
c
=  

1x
α

1xU + 
2xα

2xU  

    (5)   Y 
c
=  X’ βo + 

1yU  + 
2yU  Graph 7a (G7a) 
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W 

Uy 

Y X

Uw 
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so that Ux ⊥/  Uy, Ux ⊥/  Uw, and Uy ⊥/  Uw, where Ux ≡  (
1xU ′,

2xU ′)’ and Uy ≡  (
1yU , 

2yU )’,  

with wU ⊥
2xU , wU ⊥

2yU , and 
2xU ⊥

2yU . Regressor endogeneity arises from correlation 

between 
1xU and 

1yU  resulting from the common cause W. The unobservable causes 
2xU and 

2yU  provide independent sources of variation3 ensuring that X is not entirely determined 

by W and that Y is not entirely determined by X and W. 

In S7a, once we condition on W, we are guaranteed that the remaining association 

between X and Y can be interpreted only as the causal effect of X on Y. The key 

conditional independence condition obvious in S7a that parallels XR and XI above is:  
 

(CXR|I)  Conditionally Exogenous Regressors given Conditioning Instruments: 

 X ⊥  Uy | W. 
 
When this condition holds for some vector W generally, we call W conditioning 

instruments to emphasize their role in ensuring this conditional exogeneity. 

We emphasize that the role of S7a is merely to motivate CXR|I; by no means is S7a a 

necessary structure for CXR|I. As we discuss shortly, CXR|I can also hold for properly 

chosen W even when the true confounding variables for X and Y cannot be observed. 

CXR|I delivers structural identification of βo, as it implies the key moment condition  
 
                                            E(XUy | W) = E(X | W) ×  E(Uy | W).                               (M3) 
 
To see how this condition structurally identifies βo, rewrite (M3) as 
 

E([X – E(X | W)] Uy | W) = 0, 
 
replace E(X|W) with its regression representation E(XW’)[E(WW’)]-1W, and take 

expectations on both sides above to get 

E( [X – E(XW’)[E(WW’)]-1W ] Uy) = 0. 

This and structural equation (5) imply  

                                                 
3 In subsequent structural equations systems of Section 4, we may drop explicit reference to components of 

vectors of unobserved causes for notational convenience, keeping in mind that these vectors are not entirely 

determined by other unobserved causes and thus that they include independent sources of variation, such as 

2xU and 
2yU  in S7a (and S9 below), necessary for stochastic identification.           
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E([X – E(XW’)[E(WW’)]-1W] [Y – X’ βo] ) = 0, 

so that βo is structurally identified as 
 

{E(XX’) – E(XW’)[E(WW’)]-1 E(WX’)} βo = E(XY) – E(XW’)[E(WW’)]-1E(WY). 

Note that this derivation relies only on Y 
c
=  X’βo + 

1yU  + 
2yU , the linear regression 

representation of  E(X | W), and CXR|I. The specific structure of S7a is not required. 

When stochastic identification holds, i.e., E(XX’) – E(XW’)[E(WW’)]-1 E(WX’) is 

non-singular, βo, the average total causal effect of X on Y, is identified as: 
 
βo = {E(XX’) – E(XW’)[E(WW’)]-1E(WX’)}-1 ×  {E(XY) – E(XW’)[E(WW’)]-1E(WY)}. 
 
Under mild conditions, a consistent, asymptotically normal plug-in estimator for βo is 
 

|ˆ CXR I
nβ  ≡  {X’(I – W(W’W)-1W’) X }-1{X’(I – W(W’W)-1W’) Y}. 

Even though W plays an instrumental role in identifying βo, there is no requirement 

that W be exogenous. For example, in S7a W is clearly endogenous, as W ⊥/  Uy. 

Conditioning instruments are thus not standard instruments, motivating their description 

as extended instrumental variables (EIV). We call |ˆ CXR I
nβ  an EIV estimator. 

Inspecting |ˆ CXR I
nβ , we see that it is a standard IV estimator using as derived standard 

instruments estimated residuals of the regression of X on W, X – E(XW’)[E(WW’)]-1W. 

Nevertheless, we do not place these “residual instruments” on an equal footing with W, as 

it is W that carries the causal information enabling recovery of the effect of X on Y. Of 

even greater significance is that, as WC show, when A.2 is relaxed to permit non-

separable structures, these residual instruments no longer appear, whereas W (the 

“predictive proxies”) continue to play their instrumental role. 
|ˆ CXR I

nβ  is also the Frisch-Waugh (1933) partial regression estimator, obtained by 

regressing Y on the residuals (I – W(W’W)-1W’)X from a regression of X on W . This is 

equivalently the coefficient estimator associated with X from a linear regression of Y on 

both X and W. This latter regression emerges naturally from S7a, after performing the 

substitutions required to enforce our convention that observables do not cause 

unobservables. Substituting (2) into (4) and (3) into (5) in S7a gives the structure S7b: 
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      (1) W 
c
=  αw Uw 

      (2)  X 
c
=  γx W + xα xU  

      (3)  Y 
c
=  X’βo + W’γ o + yU  

 
with  wU ⊥ xU , wU ⊥ yU , and xU ⊥ yU . 

 
In writing S7b, we adjust the notation in the natural way. With the given independence 

conditions, Proposition 3.1.1 applies, as X and W jointly satisfy XR. In S7b, both βo, the 

full causal effect of X on Y, and γo, the direct causal effect of W on Y, are identified. The 

full causal effect of W on Y is γo + γx’βo, identified from a regression of Y on W only. 

As noted above, S7a (S7b) is not necessary for CXR|I. Structures satisfying Pearl’s 

(1995; 2000, pp. 79-81) “back-door” criterion, in which an observable (here W) mediates 

a link between X and Y, also ensure CXR|I. In Pearl’s framework, W is either the vector 

of common causes (G7a, G7b), or a response to the unobserved common cause and a cause 

of either Y or X (G8a, G8b). In G8a and G8b, CXR|I holds because an unobserved 

confounding common cause of X and Y causes Y via W (G8a) or X via W (G8b). In each 

case, W acts as an observable proxy for the unobserved common cause.  

Specifically, let S8a be given by  

    (1) W 
c
=  αw Uw 

    (2)  X 
c
= xα xU  

    (3)  Y 
c
=  X’βo + W’γ o + yU  

 
with  wU ⊥/ xU , wU ⊥ yU , and xU ⊥ yU . 
 
Similarly, let S8b be given by 

    (1) W 
c
=  αw Uw 

    (2)  X 
c
=  γx W + xα xU  

   (3)  Y 
c
=  X’βo + yU  
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with  wU ⊥ xU , wU ⊥/ yU , and xU ⊥ yU . 
 

There are several noteworthy features to these structures. In S8a, the causal direction 

between Ux and Uw in G8a is unspecified, so S8a corresponds to three possible back door 

structures. In each, X and W jointly satisfy XR in (3), so Proposition 3.1.1 holds. Here, W 

is a structurally relevant exogenous variable correlated with X, so omitting W from the 

identifying regression leads to the classical “omitted variable bias.”  

Now consider S8b. For concreteness, suppose Uy causes Uw. Now both X and W are 

endogenous, as X ⊥/ yU  and W ⊥/ yU . Yet βo is structurally identified by CXR|I. Given 

stochastic identification, βo is fully identified from a regression of Y on both X and W. 

According to the textbooks, this regression should yield nonsense, as it contains not only 

endogenous regressors X, but also structurally irrelevant and endogenous regressors W. 

(W “is structurally irrelevant,” as it does not appear in S8b (3).)  Nevertheless, this 

regression identifies causally meaningful coefficients βo.  

What about the remaining regression coefficients, those associated with W? In the 

context of S8b, these have no causal interpretation. Instead they have only a predictive 

interpretation, as discussed in detail by White (2006) and WC. Thus, some regression 

coefficients have causal meaning (those associated with X), but others do not (those 

associated with W). In other words, not all the regression coefficients need have signs and 

magnitudes that make causal sense, constituting an instance of what Heckman (2006) has 

termed “Marschak’s maxim”: we may identify certain economically meaningful 

components of a structure (βo) without having to identify the entire structure. 

Nor does Pearl’s back door method exhaust the possibilities for CXR|I. Another 

possibility is that of “predictive proxies” (White, 2006; WC). Here, this arises from 

structures such as S9, which violates Pearl’s back-door criterion: 

(1)   W 
c
=  

1wα
1wU + 

2wα
2wU  

(2) 
1x

U
c
=

1x
γ

1wU  

(3)   X  
c
=  

1x
α

1x
U + 

2xα
2xU   

(4) 
1yU

c
=

1yγ
1wU  
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(5)   Y  
c
=  X’βo + 

1yU + 
2yU  

where 
1wU ⊥

2wU , 
2wU ⊥

2xU , 
2wU ⊥

2yU , and 
2xU ⊥

2yU , with Uw ≡  (
1wU ′ ,

2wU ′)’,Ux ≡  

(
1xU ′,

2xU ′), and Uy ≡  (
1yU ′, 

2yU )’, so that W ⊥/  Uy, and X ⊥/  Uy.  

In S9, 
1wU is an unobserved common cause for X and Y; the predictive proxy W is a 

measurement error-laden version of 
1wU . Again, both X and W are endogenous; however, 

Proposition 4.4 of WC applies to establish CXR|I. The key to this is W’s ability to predict 

Uw (hence X) sufficiently well that Uy contains no additional information useful in 

predicting X. As in S8b, βo is identified from a regression containing endogenous X and 

structurally irrelevant endogenous W. Our comments about S8b fully apply to S9. 

Given its role as an observable proxy for unobserved common causes of X and Y, we 

call W a vector of common cause instruments. 

CXR|I enables matching, in the language of the treatment effects literature. Letting Yx 

denote the value Y would take had X been set to x (the “potential outcome”), it follows 

that Y  
c
=  X’βo + yU   and CXR|I imply the key “ignorability” or “unconfoundedness” 

condition Yx ⊥  X | W of Rosenbaum and Rubin (1983) (White, 2006, proposition 3.2). 

Although CXR|I and the methods of Section 4.2 permit structural identification, the 

order condition necessary for identification in Hausman and Taylor (1983) fails in these 

cases. In particular, in S9 the number of unconstrained coefficients in (5) exceeds the 

number of “predetermined” (uncorrelated with Uy) variables for (5) (k > 0). Thus, the 

limited information order condition of Hausman and Taylor (1983, proposition 4) fails. 

Similarly, since S9 does not impose any covariance restrictions (Ux ⊥/  Uy, Ux ⊥/  Uz, and 

Uy ⊥/  Uz ), Hausman and Taylor (1983, proposition 6) does not apply, and their sufficient 

condition for identification in the full information context (proposition 9) is not satisfied. 

Instead, a restriction on the conditional covariance of the unobserved causes, specifically 

Ux ⊥  Uy | Uw, ensures CXR|I here, ensuring the structural identification of βo in S9. 

We conclude this section with a formal identification result under CXR|I. 

Proposition 4.1.1 Suppose A.1 and A.2 hold such that: (i) Y 
c
=  X’βo + Uy, and E(XX’) 

and E(XY) exist and are finite. Suppose further that (ii) there exists a random vector W 
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such that E(XW’), E(WW’), and  E(WY) exist and are finite; E(WW’) is non-singular and 

E(X |W) = E(XW’)[E(WW’)]-1W; (iii) E(XX’) – E(XW’)[E(WW’)]-1E(WX’) is non-

singular; and (iv) CXR|I: X ⊥  Uy | W . 

      Then βo, the average total causal effect of X on Y, is fully identified as: 
 
βo = {E(XX’) – E(XW’)[E(WW’)]-1E(WX’)}-1 {E(XY) – E(XW’)[E(WW’)]-1E(WY)}.  � 
 
Note that in contrast to XI, CXR|I does not require  = k. 

WC present further substantial analysis for identification of average and other causal 

effects using predictive proxies for the general nonlinear and non-separable case (where 

A.2 is removed). White and Chalak (2006b) discuss related parametric and nonparametric 

estimation methods and provide several tests for CXR|I. 

Because of the straightforward framework provided by CXR|I for identifying causal 

effects (in particular, because there are no necessary exclusion restrictions involved) we 

do not provide a list of causal properties for CXR|I parallel to CP:OXI or CP:PXI. 

Nevertheless, we conjecture that in S9 (and G9) CXR|I implies (possibly with some mild 

additional conditions) that X cannot cause W (see (1) in S9). In particular, observe that if 

X causes W in S9 then conditioning on a common effect W of X and Uw generally renders 

X and Uw conditionally dependent given W. Since Uw causes Uy, this could lead CXR|I to 

fail. We leave a formal treatment of this conjecture for other work.  

4.1.2 Conditional Instruments  

We now examine how a single vector of conditional instruments Z can identify the causal 

effect of endogenous X on Y as the product of the effects of X on Z and that of Z on Y. We 

call this EIV class intermediate cause instrumental variables, as these variables mediate 

the effects of X on Y. To illustrate, consider system S10 and causal graph G10:   

    (1) X 
c
=  αx Ux 

    (2) Z 
c
=  γz X +αz Uz 

    (3) Y 
c
=  Z’δo + Uy 

where Ux ⊥/  Uy, Ux ⊥  Uz, and Uy ⊥  Uz. 

Substituting (2) into (3) with βo ≡  γz’δo  gives: 

    (3’) Y 
c
=  X’βo + Uz’αz’δo + Uy. 

Graph 10 (G10) 
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This is the structure described in the introduction. Clearly X and Z are endogenous in  

(3’), so neither XR nor XI can identify βo. Nor do we have CXR|I in (3’), as X ⊥/  Uy | Z. 

Nevertheless, βo is structurally identified as a result of  
 

 (CXI|R)   Conditionally Exogenous Instruments given Regressors:  Z ⊥  Uy | X. 
 

For our linear separable system, CXI|R implies the key moment condition 

                                            E(ZUy | X) = E(Z | X) ×  E(Uy | X).                                     (M4) 
 
Parallel to our analysis of CXR|I, it follows from this moment condition that 

E( [Z – E(ZX’)[E(XX’)]-1X ] Uy ) = 0. 
 
Thus, CXR|I with regressors Z and conditioning instruments X identifies δo in (3) as 
 

{E(ZZ’) – E(ZX’)[E(XX’)]-1 E(XZ’)} δo = E(ZY) – E(ZX’)[E(XX’)]-1E(XY). 

Full identification holds given non-singularity of {E(ZZ’) – E(ZX’)[E(XX’)]-1 E(XZ’)}.  

If γz can also be identified, then identification of βo follows, as βo ≡  γz’δo. In S10, γz  is 

structurally identified from (2) by XR, as X ⊥  Uz. If γz  is stochastically identified 

(E(XX’) is non-singular), Proposition 3.1.1 gives γz’ = [E(XX’)]-1E(XZ’). Thus we have 

Proposition 4.1.2 Suppose A.1 and A.2 hold such that: (i) Z 
c
=  γz X + αz Uz,  Y 

c
=  Z’δo 

+  Uy, where E(XX’), E(XZ’), E(ZZ’), E(ZY), and E(XY)  exist and are finite. Suppose 

further that (ii) (a) E(XX’) is non-singular and (b) {E(ZZ’) – E(ZX’)[E(XX’)]-1E(XZ’)} 

is non-singular; and (iii) (a) XR: X ⊥  Uz and (b) CXI|R: Z ⊥  Uy | X . 

      Then βo ≡  γz’δo, the average total causal effect of X on Y, is identified as: 
 
βo = [E(XX’)]-1E(XZ’) ×  

              {E(ZZ’) – E(ZX’)[E(XX’)]-1E(XZ’)}-1 ×  {E(ZY) – E(ZX’)[E(XX’)]-1E(XY)} � 
 
In contrast to XI but like CXR|I, CXI|R does not require  = k.  

A consistent and asymptotically normal plug-in estimator, treated in Section 7, is: 
|ˆ CXI R

nβ  ≡   (X’X)-1(X’Z) ×  [Z’(I – X(X’X)-1X’)Z]-1[Z’(I – X(X’X)-1X’)Y]  

≡  ˆ XR
nγ ’ |ˆCXR I

nδ . 

Although CXI|R uses a single vector of EIVs Z to identify βo, both Z and X play dual 

roles. The EIVs Z play the dual role of a response for X and a cause for Y. The regressors 
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X are exogenous regressors with respect to Uz in (2) and conditioning instruments with 

respect to Uy in (3). We reflect these latter roles in our notation ˆ XR
nγ  and |ˆCXR I

nδ  above. 

Analogous to XI, we can state a succinct set of causal properties required to ensure 

structural identification using conditional instruments Z: 

(CP:CXI|R): Causal Properties of Conditionally Exogenous Instruments Given 

Regressors (i) The effect of X on Z is identified via XR; (ii) The effect of Z on Y is 

identified via CXR|I with conditioning instruments X; (iii) If X causes Y, it does so only 

via Z.   � 
 
As is readily verified, S10 satisfies CP:CXI|R. 

The CXI|R method corresponds to the “front-door” method introduced by Pearl 

(1995, 2000). Whereas the treatment effect literature applies CXR|I (back door) to 

identify the effect of interest in the presence of confounding by conditioning on a 

covariate (W) that is not affected by the treatment, the CXI|R (front-door) method makes 

use of a variable that is affected by the treatment (indeed, that mediates it) to structurally 

identify the causal effect on Y of the treatment X.  

The structure of S10 can also be analyzed via Hausman and Taylor (1983). As Uz ⊥  

Uy  and γz is estimable from a regression on (2), proposition 6 of Hausman and Taylor 

(1983) applies to ensure that the residuals from a regression based on (2) in S10 can play 

the role of a standard instrument for Z in (3) and thus yield the identification of δo.  

The CXI|R method can play a particularly useful role in measuring policy effects, as 

illustrated in G11. Consider evaluating the outcome of a policy that we think is 

endogenous since it is determined by legislation that is correlated with the state of the 

economy, which also determines the policy outcome. To  

illustrate, we might be interested in evaluating the  

effect on students’ performance in public schools,  

as measured by their standardized test scores, of new  

legislation for education reform (see, for example,  

Gordon and Vegas, 2005) but suspect that the new  

education law is endogenous, as it is correlated with  

unobserved causes of the students’ performance. For example,  
Graph 11 (G11) 
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suppose the legislation passed due to the poor state of the economy, which itself is a 

cause of the students’ unsatisfactory performance. Under these circumstances, one can 

recover the effect of the legislation using as instruments intermediate causes affected by 

the new policy that in turn affect student performance. These EIVs should be 

implementation mechanisms that are responses only to the new policy and are not 

otherwise caused by the unobserved common confounding causes of the policy and the 

response of interest. In this example, potential intermediate cause instruments could be 

funding per student, number of teachers per school, educational attainment of teachers, 

class size, and so forth. 
 
4.1.3 Other Potential Single Extended Instruments  

So far, we have examined four single EIV methods for ensuring identification of the 

effect of X on Y: XR:  X ⊥  Uy;  XI:  Z ⊥  Uy; CXR|I:  X ⊥  Uy | W; and CXI|R:  Z ⊥  Uy | 

X. The remaining possibilities for (conditional) independence from Uy are associated with 

Y. Now Y ⊥/  Uy, Y ⊥/  Uy | X, and Y ⊥/  Uy | W as, by definition, Uy is an immediate cause 

of Y. Similarly, X ⊥/  Uy | Y, as conditioning on a common response generally renders the 

possibly independent X and Uy necessarily dependent. The final possibility to consider is 

whether identification holds when Z is conditionally independent of Uy given Y. 

A causal structure generating this conditional independence relationship is one where 

Z is a post-response instrument, as in S12:  
     

    (1) X 
c
= xα Ux 

    (2) Y 
c
=  X’βo + Uy 

    (3) Z 
c
=  γz Y + zα Uz 

where Ux ⊥/  Uy, Ux ⊥  Uz, and Uy ⊥  Uz. 

Substituting structural equation (2) into structural equation (3) with δo ≡  βoγz  we get: 

    (3’) Z 
c
=  X’δo + γz Uy+ zα Uz. 

 
This might look promising, as one may consider the possibility of identifying the 

effect on Y of the endogenous X as the ratio of the effect of X on Z and that of Y on Z, 

analogous to ILS. Unfortunately, the condition Z ⊥  Uy | Y is not sufficient to identify βo. 

Graph 12 (G12) 
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From this condition and algebra analogous to that above, we obtain the moment equations 
 

{E(ZY’) – E(ZY’)[E(YY’)]-1E(YY’)} – {E(ZX’) – E(ZY’)[E(YY’)]-1E(YX’)} βo = 0. 
 
But the first term above is always zero, so even if  {E(ZX’) – E(ZY’)[E(YY’)]-1 E(YX’)} 

is non-singular, the solution for βo is also always zero. The problem is that the effect of X 

on Z is not identified, as X and Z are confounded by the unobserved common cause of X 

and Y. Proposition 7 of Hausman and Taylor (1983) also rules out using the estimated 

residuals from a regression on (3) as standard instruments to identify βo, as Y ⊥  Uz in S12. 

This exhausts the possibilities for structural identification via a single vector of EIVs. 
 
4.2 Double Extended Instrumental Variables Methods 

Economic theory can suggest causal structures that permit identification of causal effects 

by jointly using conditional instruments Z and conditioning instruments W. We now 

examine the corresponding EIV methods. 

For this, let Y be the response of interest, let the elements of the k1 × 1, …, kp × 1 

random vectors X1, …, Xp be the causes of interest, and let the elements of the 1 × 1, …, 

q × 1 random vectors Z1, …, Zq and the  m1 × 1, …, ms × 1 random vectors W1, …, Ws be 

extended instrumental variables, all with observed realizations as specified in A.1 and 

A.2. The corresponding unobserved causes are Uy and the elements of vectors 
1xU , …, 

pxU , 
1z

U , …, 
qzU , and 

1wU , …, 
swU .  Put X ≡  [X1’, …, Xp’]’, Z ≡  [Z1’, …, Zq’]’ and 

W ≡  [W1’, …, Ws’]’, where X is k× 1 with k ≡  k1 + … + kp, Z is × 1 with  ≡  1  + 

… + q , and W is m× 1 with m ≡  m1 + … + ms. Similarly, put Ux ≡  [
1xU ’, …, 

pxU ’]’, 

Uz ≡  [
1z

U ’, …, 
qzU ’]’, and Uw ≡  [

1wU ’, …, 
swU ’]’. Boldface symbols denote vectors 

and matrices of observations of X, Y, Z, and W, as above. 
 
4.2.1 Conditional and Conditioning Instruments: CXI|I  
 
4.2.1.a OCXI|I  

Our first case is that of observed conditionally exogenous instruments given conditioning 

instruments (OCXI|I). To illustrate, consider structural system S13a with associated causal 

graph G13a, where S13a is given by: 
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  (1) W 
c
=  αwUw 

  (2) Z 
c
=  αz Uz 

  (3) X 
c
=  γx Z + αx Ux 

  (4) Y 
c
=  X’βo + Uy, 

where Ux ⊥/  Uy, Ux ⊥/  Uz, Ux ⊥/  Uw, Uy ⊥/  Uz,  

Uy ⊥/  Uw, and Uz ⊥/  Uw. Substituting structural  

equation (3) into (4) and setting πo ≡  γx’ βo gives  

   (4’) Y 
c
=  Z’πo + Ux’αx’βo + Uy 

The key conditional independence relationship that holds in S13a when W is a 

sufficiently good predictor for Uw (hence Z) is: 
 
(CXI|I) Conditionally Exogenous Instruments given Conditioning Instruments: Z ⊥  Uy | W. 
 
Given A.2, the key moment condition resulting from CXI|I is: 

                                  E(ZUy | W) = E(Z | W) ×  E(Uy | W).                                      (M5) 
 
Algebra similar to that for CXR|I delivers the structural identification of βo under CXI|I.  

Proposition 4.2.1 Suppose A.1 and A.2 hold such that: (i) Y 
c
=  X’βo + Uy. Suppose 

further that (ii) there exist random vectors W and Z such that and that  = k; E(ZY), 

E(ZW’), E(WW’), E(WY), and E(ZX’) exist and are finite; E(WW’) is non-singular and 

E(Z |W) = E(ZW’)[E(WW’)]-1W; (iii) E(ZX’) – E(ZW’)[E(WW’)]-1 E(WX’) is non-

singular; and (iv) CXI|I: Z ⊥  Uy | W . 

      Then, βo, the average total causal effect of X on Y, is fully identified as 
 
βo = {E(ZX’) – E(ZW’)[E(WW’)]-1E(WX’)}-1 × {E(ZY) – E(ZW’)[E(WW’)]-1E(WY)}. � 
 

Note that  = k, analogous to XI. No previous method can identify βo in this case, as 

none of the other admissible conditional independence relationships hold in S13a.  

The plug-in CXI|I estimator, covered by the results of Section 7, is 
|ˆ CXI I

nβ  ≡  [Z’(I – W(W’W)-1W’)X]-1[Z’(I – W(W’W)-1W’)Y]. 

Graph 13a (G13a) 
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This is standard IV with residual instruments Z – E(ZW’)E(WW’)-1 W, but as discussed 

above for CXR|I, the key role in identifying βo is played by W and Z, not these residuals. 

In S13a, Z satisfies the following causal properties that parallel CP:OXI. 
 
(CP:OCXI|I): Causal Properties of Observed Conditionally Exogenous Instruments 

given Conditioning Instruments (i) Z directly causes X, and the effect of Z on X is 

identified via CXR|I with conditioning instruments W; (ii) Z indirectly causes Y, and the 

effect of Z on Y is identified via CXR|I with conditioning instruments W; (iii) Z causes Y 

only via X.    � 
 
As Z is observed, we call this case observed conditionally exogenous instruments given 

conditioning instruments (OCXI|I). Similar to the method of XI, the effect of X on Y is 

identified here as the “ratio” of the identified effects of Z on X and that of Z on Y.  
 
4.2.1.b PCXI|I  

As for XI and CXR|I, the true underlying cause need not be observed; a suitable proxy 

suffices. In fact, this feature applies to all EIV methods we discuss (see Theorem 5.1 

below). We illustrate this in S13b and associated causal graph G13b, where S13b is given by: 

  (1) W 
c
=  αwUw 

  (2) Z 
c
=  αz Uz 

  (3) X 
c
=  γx Z + αx Ux 

  (4) Y 
c
=  X’βo + Uy, 

where Ux ⊥/  Uy, Ux ⊥/  Uz, Ux ⊥/  Uw, Uy ⊥/  Uz, Uy ⊥/  Uw, and 

Uz ⊥/  Uw. Substituting (3) into (4) and setting πo ≡  γ x’ βo gives:  

   (4’) Y 
c
=  Z’πo + Ux’αx’βo + Uy 

 
Here CXI|I holds when W is a sufficiently good predictor for Uw; Proposition 4.2.1 

then applies to fully identify βo, as for OCXI|I. Here, however, the effects of Z on X and 

of Z on Y are no longer identified, so CP:OCXI|I fails. Instead, Uz plays the key role, and 

Z acts as a proxy for Uz. Parallel to PXI, we call Z proxies for (unobserved) conditionally 

exogenous instruments given conditioning instruments (PCXI|I). The parallel causal 

properties permitting identification of βo are: 

Graph 13b (G13b) 
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(CP:PCXI|I) Causal Properties for Proxies for Unobserved Conditionally 

Exogenous Instruments given Conditioning Instruments (i) Uz indirectly causes X, 

and the full effect of Uz on X could be identified via CXR|I with conditioning instruments 

W had Uz been observed; (ii) Uz indirectly causes Y, and the full effect of Uz on Y could 

be identified via CXR|I with conditioning instruments W had Uz been observed; (iii) Uz 

causes Y only via X; (iv) if Z causes Y, it does so only via X . � 

CP:PCXI|I parallels CP:PXI, but identification in (i) and (ii) is via CXR|I with 

conditioning instruments W, not XR. Our comments about PXI fully apply here, in that 

the analog of ILS fails. Nevertheless, the ratio of two inconsistent CXR|I estimators 

remains informative for βo. As in the PXI case, Z is not required to cause X in S13b. When 

γx = 0, Z acts as a “pure predictive proxy” for Uz.  

4.2.2 Conditional and Conditioning Instruments: CXIR|I  

When conditioning instruments W render only a subvector X2 of X ≡  [X1’, X2’]’ 

conditionally exogenous, the previous methods cannot structurally identify βo ≡  [β1’, 

β2’]’. Nevertheless, identification obtains given conditional instruments Z for X1 that are 

conditionally exogenous given W. To illustrate, let S14 be given by: 

  (1) W 
c
=  αwUw 

  (2) Z 
c
=  αzUz 

  (3) X1 
c
=  

1x
γ Z + 

1x
α

1x
U  

  (4) X2 
c
=  

2xα
2xU  

  (5)  Y 
c
=  X1’β1 + X2’β2 + Uy 

where 
1xU ⊥

2xU , 
1xU ⊥/  Uy, 

2xU ⊥/  Uy, 
1xU ⊥  Uz, 

2xU ⊥/   

Uz, 
1xU ⊥  Uw, 

2xU ⊥/  Uw, Uy ⊥/  Uz, Uy ⊥/  Uw, Uz ⊥/  Uw. 

The key conditional independence relationship that holds in S14 is: 
  

(CXIR|I)  Conditionally Exogenous Instruments and Regressors given Conditioning 

Instruments: (Z, X2) ⊥  Uy | W. 
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CXIR|I is the special case of CXI|I in which X2 plays the role of a conditionally 

exogenous instrument for itself. We call Z = [Z’, X2’]’ conditionally exogenous 

instruments and regressors given conditioning instruments. The key moment condition is  
 

   E( Z Uy | W) = E( Z  | W) ×  E(Uy | W).                                    (M6) 
 

The corresponding identification result (in which  = k1 is necessary) is 

Proposition 4.2.2 Suppose A.1 and A.2 hold such that: (i) Y 
c
=  X1’β1 + X2’β2 + Uy, with 

X ≡  [X1’, X2’]’ and βo ≡  [β1’, β2’]’. Suppose further that (ii) there exist random 

vectors W and Z such that  = k1 and that with Z = [Z’, X2’]’, E( Z X’), E( Z W’), 

E(WW’), E(WX’), E( Z Y), and E(WY) exist and are finite; E(WW’) is non-singular and 

E( Z |W) = E( Z W’)[E(WW’)]-1W; (iii) E( Z X’) – E( Z W’)[E(WW’)]-1 E(WX’) is non-

singular; and (iv) CXIR|I: (Z, X2) ⊥  Uy | W. 

      Then βo, the average total causal effect of X on Y, is fully identified as  

βo = {E( Z X’) – E( Z W’)[E(WW’)]-1E(WX’)}-1{E( Z Y) – E( Z W’)[E(WW’)]-1E(WY)} 

� 

The CXIR|I plug-in estimator treated in Section 7 is 

 |ˆ CXIR I
nβ  ≡  [ Z' (I – W(W’W)-1W’)X]-1[ Z' (I – W(W’W)-1W’)Y]. 

4.2.3 Conditional and Conditioning Instruments: CXI|RI  

A generalization of CXI|R occurs when CXI|R fails but conditioning instruments W 

and regressors X jointly render extended instruments Z conditionally exogenous, as in S15: 

  (1) W 
c
= αw Uw

 

  (2) X 
c
=  αx Ux 

  (3) Z 
c
=  γz X + αz Uz  

  (4) Y 
c
=  Z’δo + Uy 

where Ux ⊥/  Uy, Ux ⊥  Uz, Ux ⊥  Uw, Uy ⊥/  Uz, Uy ⊥/  Uw,  

and Uz ⊥/  Uw. Substituting equation (3) into equation (4)  

with βo ≡  γz’δo gives:  

(4’)  Y 
c
=  X’ βo + Uz’αz’δo + Uy. 

Graph 15 (G15) 
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The key conditional independence relationship that holds in S15 is: 
 

(CXI|RI)  Conditionally Exogenous Instruments given Regressors and Conditioning 

Instruments: Z ⊥  Uy | (X, W). 
 

We call Z conditionally exogenous instruments given regressors and conditioning 

instruments. The key moment condition resulting from CXR|RI is:  

                                         E(ZUy | W ) = E(Z | W ) ×  E(Uy | W ),                                  (M7) 
 
where W = [X’, W’]’. Like CXI|R, CXI|RI identifies βo as the product of the effects of X 

on Z and of Z on Y. The causal properties of CXI|RI parallel those of CP:CXI|R. 

Proposition 4.2.3 Suppose A.1 and A.2 hold such that: (i) Z 
c
=  γz X + αz Uz,  Y 

c
=  Z’δo 

+  Uy, where E(XX’), E(XZ’), E(ZZ’), and E(ZY) exist and are finite. Suppose further 

that (ii) there exists a random vector W such that with W = [X’, W’]’, E(Z 'W ), 

E(W 'W ), and E(W Y)  exist and are finite; E(W 'W ) is non-singular and E(Z | W ) = 

E(ZW ’)[E(W 'W )]-1W ; (iii) (a) E(XX’) and (b) {E(ZZ’) – E(Z 'W )[E(W 'W )]-1 

E(W Z’)} are non-singular; and (iv) (a) XR: X ⊥  Uz and (b) CXI|RI: Z ⊥  Uy | W . 

      Then  βo  ≡  γz’δo, the average total causal effect of X on Y, is fully identified as: 
 
βo = [E(XX’)]-1E(XZ’) ×   

  {E(ZZ’) – E(Z 'W )[E(W 'W )]-1E(W Z’)}-1{E(ZY) – E(Z 'W )[ E(W 'W )]-1E(W Y)} � 
 

A key feature of S15 is that X ⊥  Uz. It should now be clear that this can be relaxed to 

a conditional independence relationship, such as CXR|I: X ⊥  Uz | W1, with W1 a suitable 

vector of conditioning instruments. Pearl (1995, 2000) provides graphical criteria for 

structural identification to obtain in such a manner via his “front door” method. 

The plug-in estimator |ˆ CXI RIβ  treated in Section 7 is  

|ˆ CXI RI
nβ  ≡  [(X’X)]-1(X’Z) ×  [Z’(I – W (W' W )-1W' )Z]-1[Z’(I – W (W' W )-1W' )Y] 

≡  ˆ XR
nγ ’ |ˆCXR I

nδ . 
 
4.2.4 Further Comments on Double Extended Instrumental Variables  

As in the single EIV case, conditions of the form Z ⊥  Uy | (Y, W) do not permit structural 

identification of βo. The demonstration is entirely parallel to that of Section 4.1.3.  



 37

The double EIV methods CXI|I, CXIR|I, and CXI|RI, together with the single EIV 

methods of Sections 3.1, 3.2, and 4.1 thus provide a basis for all EIV methods discussed 

so far. In fact XR, XI, CXR|I, CXI|I, and CXRI|I constitute an exhaustive set of 

“primitive” methods, since other EIV methods, such as CXI|R and CXI|RI, identify 

causal effects as functions of effects identified by use of one or more of these primitives.  
 
5. A Master Theorem for EIV Identification  

We now summarize our previous results by stating a “master theorem” that provides not 

just sufficient conditions for identification, but necessary and sufficient conditions. 

Theorem 5.1 Suppose A.1 and A.2 hold for a structural system S such that: (i) Y 
c
=  X’βo 

+ Uy, where X is k× 1, k > 0, and βo is finite and k× 1. Suppose further that (ii) Z ( × 1, 

 ≥ 0) and W (m× 1, m ≥ 0) are random vectors determined by S, and let Z  and W be k 

× 1 and m × 1 vectors respectively such that  [ Z ′ , W ′ ]’ = A [X’, Z’, W’]’, for a given 

(k + m ) ×  (k +  + m) matrix A, and that E( Z Y), E( Z X’), E( E( Z |W ) Y ), and E( 

E( Z |W ) X’) exist and are finite. Then 
 
(a) E{[ Z  – E( Z | W )]Uy} exists and is finite.  
 
(b) Stochastic identification holds, that is, there exists a unique β* such that 
 

E( [ Z –E( Z |W )] X’) β* = E([ Z –E( Z |W )]Y ) – E{[ Z  – E( Z | W )]Uy} 
 
if and only if E( [ Z –E( Z |W )] X’) is non-singular. 
 
(c) Structural identification holds, that is βo satisfies 
 

E( [ Z –E( Z |W )] X’) βo – E([ Z –E( Z |W )] Y) = 0 
 
if and only if E{[ Z  – E( Z | W )]Uy} = 0. 
 
(d) The average causal effect βo is fully identified as  

βo = { E( [ Z –E( Z |W )] X’)}-1 × {E( [ Z –E( Z |W )] Y )} 
 
if and only if stochastic and structural identification jointly hold.   � 

For the sake of generality, we now do not impose linear structure on E( Z |W ). The 

previous sections employ this for concreteness. When stochastic identification holds but 



 38

not structural identification, then we have 
 

β* = βo + { E( [ Z –E( Z |W )] X’)}-1 E{[ Z  – E( Z | W )]Uy}. 
 
With linearity for E( Z |W ), β* is the probability limit of the plug-in EIV estimator 

ˆ EIV
nβ ≡  [ Z' (I – W (W' W )-1W' )X]-1[ Z' (I – W (W' W )-1W' )Y]. 

 
Thus, ˆ EIV

nβ converges to the true average causal effect, βo, plus a “causal discrepancy,” 

δ* ≡  {E( [ Z –E( Z |W )] X’)}-1 E{[ Z  – E( Z | W )]Uy}. 

If structural but not stochastic identification holds, then the estimating equations 

[ Z' (I – W (W' W )-1W' )X] β – [ Z' (I – W (W' W )-1W' )Y] = 0 
 
define a set of solutions converging stochastically to a set that contains βo, but there is 

insufficient information to identify which element of the set is the true causal effect. 

Theorem 5.1 contains XR, CXR|I, XI, CXI|I, and CXRI|I as special cases. For these, 

an exclusion restriction acts to ensure that when Z is present, Z causes Y only via X. It 

follows easily that conditional independence ( Z  ⊥  Uy | W ), conditional mean 

independence ( E(Uy | Z , W ) = E(Uy | W ) ), and conditional non-correlation (E( Z Uy | 

W ) = E( Z  | W ) E(Uy | W ) ) each imply the necessary structural identification condition 

E{[ Z  –E( Z | W )]Uy} = 0. The derived standard instruments Z  – E( Z | W ) satisfy this 

moment condition. We also call these “residual instruments,” analogous to those of 

Hausman and Taylor (1983).  

The next result extends Theorem 5.1 to cover cases such as CXI|R and CXI|RI, where 

causal effects are identified as a function of effects identifiable as in Theorem 5.1.  

Corollary 5.2 Suppose A.1 and A.2 hold for a structural system S such that Y 
c
=  X’βo + 

Uy, where X is k× 1, k > 0, and βo is finite and k× 1. For H > 0, let θ1, …, θH, be real-

valued vectors of structural coefficients of S, and let b( . ) be a known measurable real 

vector-valued function such that βo = b(θ1, …, θH). If θ1, …, θH are each fully identified as 

in Theorem 5.1, then, βo is fully identified as b(θ1, …, θH).   � 
 
6. Characterization of Structural Identification via Causal Matrices: Single EIV 

Causal matrices effectively characterize the causal structures in which the identification 

of given causal effects of interest obtains. In particular, Chalak and White (2006) give a 
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procedure to generate conditional independence matrices from causal matrices. These 

characterize the conditional independence relationships holding among the variables of a 

given system S, conditioning on any subset of system variables. (The empty set yields the 

independence matrix.) Thus, by inspecting the conditional independence matrices one can 

determine whether the necessary exogeneity or conditional exogeneity relationships hold 

for structural identification of given causal effects. 

Every causal matrix CS also has an associated path matrix PS. The (k, l) entry of PS, 

pkl, is 1 if there is a (Vk, Vl)-path in GS and is 0 otherwise. Formally, PS = p(CS) where:  
 
               pkl = 1              if there exists h > 0 and a set {g1, …, gh} with elements  

                                        in {1, …, G} such that 
1

... 1
hkg g lc c× × = ;                                                                

               pkl = ckl            otherwise.  
 
Thus, PS summarizes all direct and indirect causal relationships between the variables of 

S. The path matrix, together with its corresponding causal matrix, expresses concisely the 

exclusion restrictions necessary for the identification of causal effects.  

By examining the causal, path, and conditional independence matrices, one can check 

whether structural identification of given causal effects obtains. We illustrate this for the 

case of a single EIV Z and single cause and response variables X and Y. For the single 

EIV case under A.1 and A.2, the causal matrix has the form 

       X Y Z Ux Uy Uz 
       X 0   0 0 0 
       Y 0 0  0 0 0 
 CS   =  

1SC  
2SC    =   Z   0 0 0 0 

   
3SC  

4SC   Ux 1 0 0 0   
       Uy 0 1 0  0  
       Uz 0 0 1   0 

 
The entries in the off-diagonal blocks follow by our conventions, as do the diagonal 

elements. We have c21 = 0 by acyclicality and because the effect of interest is that of X on 

Y. Further, acyclicality imposes on 
1SC  three constraints of the form cjk × ckj = 0 and two 

constraints of the form cjk × ckl × clj = 0 for j, k, l = 1, 2, 3 and on 
4SC  three constraints of 

the form cjk × ckj = 0 and two constraints of the form cjk × ckl × clj = 0 for j, k, l = 4, 5, 6. 

Table I displays all possible acyclic causal structures that can relate X, Y, and a single 
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EIV Z. As illustrated there, under A1 
1SC admits 9 possible values that we label in 

relation to Z. These include the pre-cause, intermediate cause, and post-response 

instrument cases. In addition, entries (1, 1), (1, 2), (2, 1), and (2, 2) of Table I depict 

common cause instrument cases, valid when appropriate causal relationships hold among 

the unobserved variables. Structures not obeying the exclusion restrictions for 

identification appear in the second column of the second, third, and fourth rows. We refer 

to cases in the first row as the non-causal case in entry (1, 1), the joint cause case in entry 

(1, 2), and the joint response case in entry (1,  3).   
 

Non Causal,  Joint 
Cause, and Joint 
Response 

   

 
Pre-Cause 
 

   

 
Intermediate Cause 
 

   

 
Post-Response 
 

   

 

 
  

Inspection of 
4SC  reveals that for every entry of Table I, there are 25 possible acyclic 

structures that relate the unobserved variables. Thus, CS can represent 225 (25× 9) 

potential acyclic causal structures in the single EIV case. The analysis simplifies by 

restricting attention to the presence or absence of statistical independence among the 

unobservables, as is standard practice in the literature. The 25 possible acyclic structures 

reduce to 8 possible sets of independence/dependence relationships among Ux, Uy, and 

Uz. We thus have 72 (8× 9) possible structural equations systems. 

The cases discussed in Sections 3.1, 3.2, and 4.1 are the only ones for which the 

structural identification of the effect of X on Y holds in the single EIV case. Specifically, 

the values of CS that have corresponding conditional independence matrices indicating 

that at least one exogeneity or conditional exogeneity relationship holds, together with 

corresponding path matrices indicating the needed exclusion restrictions, exhaustively 

Table I 
Acyclic Causal Relationships for 

1SC  in the 

Single Extended Instrumental Variable Case.  

Z

YX 

Z

YX

Z 

YX 

Z

YX 

Z

YX

Z

YX 

Z

YX

Z

YX 

Z

YX
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characterize the acyclic causal structures admitting structural identification. These are 

precisely the cases presented in Sections 3.1, 3.2, and 4.1. 

For example, the second columns of the pre-cause and intermediate-cause categories 

in Table I violate the exclusion restrictions that Z causes Y only via X in the first case and 

that X causes Y only via Z in the second case. Hence, identification is not possible in 

these cases, even when appropriate exogeneity or conditional exogeneity conditions hold.  
 
7. Asymptotic Properties of EIV Estimators 

With linearity assumed for E( Z |W ), plug-in EIV estimators for causal coefficients 

identified by Theorem 5.1 have the form 
 

ˆ EIV
nβ  ≡  [ Z' (I – W (W' W )-1W' )X]-1[ Z' (I – W (W' W )-1W' )Y] . 

 
Standard arguments easily yield an asymptotic normality result for this estimator. 
 
Theorem 7.1  Suppose the conditions of Theorem 5.1 ensuring the identification of βo 

hold with E( Z |W ) = E( Z W ′ )[E(W W ′ )]-1W , where E( Z W ′ ) and E(W W ′ ) exist and 

are finite, and that E(W W ′ ) is nonsingular. Suppose further that 
 
(i) Z' (I – W (W' W )-1W' )X / n p⎯⎯→  Q ≡  E( Z X’) – E( Z W ′ )[E(W W ′ )]-1E(W X’); 
 
(ii) n-1/2

1

n

i=∑ [ iZ  – E( iZ | iW )]Uy,i d⎯⎯→  N(0, V), where V is finite and positive definite. 

 
Then n1/2 ( ˆ EIV

nβ – βo) d⎯⎯→  N(0, Q-1V Q’-1).   � 
  
Plug-in EIV estimators for average causal effects identified by Corollary 5.2 are given by 
 

ˆ EIV
nβ  ≡  b( ˆEIV

nθ ), 
 
where ˆEIV

nθ = ( 1,
ˆEIV

nθ ’, …, ,
ˆEIV
H nθ ’)’ is a vector of plug-in EIV estimators of the form 

covered by Theorem 7.1. To state a formal result, let 
 
  ,

ˆEIV
h nθ ≡  [ hZ ' (I – hW ( hW ' hW )-1

hW ' ) X h]-1[ hZ ' (I – hW  ( hW ' hW )-1
hW ' )Yh ]  h = 1, ... , H, 

 
   ζ h,i ≡  [ ,h iZ  – E( ,h iZ | ,h iW )] ,hy iU          i = 1, …, n;  h = 1, …, H, 

and put ζ i ≡  (ζ 1,i’, … , ζ H,i’)’. 
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Theorem 7.2  Suppose the conditions of Corollary 5.2 hold with θo ≡  (θ1’, …, θH’)’, 

with E( hZ | hW ) = E( hZ hW ′ )[E( hW hW ′ )]-1 
hW , where E( hZ hW ′ ) and E( hW hW ′ ) exist and 

are finite, and that E( hW hW ′ ) is nonsingular, h = 1, …, H. Suppose further that 
 
(i) hZ ' (I – hW ( hW ' hW )-1

hW ' ) X h / n p⎯⎯→  Qh ≡  E( hZ Xh’) – E( hZ hW ′ )[E( hW hW ′ )]-1 

E( hW Xh’),  h = 1, …, H ; 

(ii) n-1/2
1

n

i=∑ ζ i d⎯⎯→  N(0, V), where V is finite and positive definite. 

 
Then  n1/2 ( ˆEIV

nθ – θo) d⎯⎯→  N(0, Q-1V Q’-1), where Q = diag (Q1, …, QH). 
 
Suppose further that b is continuously differentiable at θo such that ∇ b(θo) (the gradient 

of b at θo) has full column rank. Then with ˆ EIV
nβ  ≡  b( ˆEIV

nθ ) and βo ≡  b(θo), 

  n1/2 ( ˆ EIV
nβ – βo) d⎯⎯→  N(0, ∇ b(θo)’Q-1V Q’-1 ∇ b(θo) ).        � 

 
White (2001, ch. 3, 5) gives straightforward primitive conditions ensuring hypotheses (i) 

(law of large numbers) and (ii) (central limit theorem) of Theorems 7.1 and 7.2.  

These plug-in estimators are straightforward to compute, and their asymptotic 

covariance matrices can be robustly estimated in the usual way under mild conditions 

(e.g., as in White, 2001, ch. 6). Nevertheless, they are not necessarily asymptotically 

efficient. Efficiency arises from optimally choosing the extended instruments in a manner 

similar to the way in which optimal instruments are chosen in the standard IV framework. 

In particular, GLS-like corrections for conditional heteroskedasticity are involved in 

obtaining the optimal instruments for EIV. We leave this analysis to other work. 
 
8. Conclusion  

Building on the structural equations, treatment effects, and machine learning literatures, 

we utilize the settable system framework of White (2006) and White and Chalak (2006a) 

to present an explicit and rigorous framework that permits the identification and 

estimation of causal effects with the aid of extended instrumental variables (EIV). EIV 

methods use variables that are not valid instruments in the traditional sense, but that 

emerge from a given causal structure to enable the recovery of causal effects of interest. 

We analyze single and double extended instrumental variables methods.  
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In the single EIV case, we demonstrate how the use of a single vector of 

unconditional, conditional, or conditioning EIVs permits identification of causal effects 

of potentially endogenous causes on a response of interest. Specifically, we analyze the 

cases of exogenous regressors (XR), exogenous instruments (XI), conditionally 

exogenous regressors given conditioning instruments (CXR|I), and conditionally 

exogenous instruments given regressors (CXI|R). For XI, we provide a causal account for 

two subcategories: observed exogenous instruments (OXI) and proxies for unobserved 

exogenous instruments (PXI), thereby extending work of Angrist, Imbens and Rubin 

(1996). We also causally explain the failure of XI in the standard irrelevant instrument, 

invalid instrument, and under-identified cases.  

In the double EIV case, we show how joint use of conditional and conditioning EIVs 

permits identification of causal effects. We analyze the cases of conditionally exogenous 

instruments given conditioning instruments (CXI|I), conditionally exogenous instruments 

and regressors given conditioning instruments (CXIR|I), and conditionally exogenous 

instruments given regressors and conditioning instruments (CXI|RI). For CXR|I and 

double EIV methods, we show how identification results from restrictions on certain 

conditional covariances, extending results of Hausman and Taylor (1983). We state a 

master theorem giving necessary and sufficient conditions for the identification of causal 

effects via EIV methods and provide straightforward high-level conditions ensuring 

consistency and asymptotic normality for EIV plug-in estimators. 

By using causal, path, and conditional independence matrices one can characterize 

the cases where structural identification holds. We illustrate this in the single EIV case, 

demonstrating that the XR, XI, CXR|I, and CXI|R methods exhaust the single EIV 

methods capable of structurally identifying causal effects. Chalak and White (2006) give 

procedures for generating conditional independence matrices from causal matrices and 

establishing identification results for EIV methods more generally.  

Here, we consider identification of causal effects given causal structures specified a 

priori. Chalak and White (2006) give methods for generating the class of causal matrices 

that agree with a collection of given (observed) conditional independence matrices. This 

yields methods for suggesting or ruling out potential causal structures. There we propose 

methods for causal inference based on those results and our present identification results. 
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Future work will analyze asymptotic efficiency for EIV in the linear separable case. 

In other work (White and Chalak, 2006a, 2006b), we analyze nonparametric 

identification and estimation of general causal effects, relaxing A.2 to the non-separable 

case. White (2006) and White and Chalak (2006b) give tests of conditional exogeneity. 

Other planned work extends these and studies new tests for use with EIV methods. 

Throughout this paper, we have provided examples of the use of EIV methods 

relevant to the labor economics and policy evaluation literatures. Our hope is that these 

methods will prove broadly helpful in empirical applications focused on modeling, 

understanding, and measuring causal effects of interest. Our methods also offer a possible 

alternative to handling the consequences of weak instruments: when standard instruments 

are weak, there may be extended instruments that are either less weak or not at all weak 

for identifying effects of interest. This is another interesting avenue for further research.  
 

Appendix A: Mathematical Proofs 
 
Proof of Proposition 3.1.1 From (iii), E(XUy) = 0. From (i), Uy = Y – X’βo. Substituting 

this into E(XUy) = 0 gives E(XY) – E(XX’)βo = 0. From (ii), E(XX’) is non-singular. Thus 

βo is fully identified as βo = [E(XX’)]-1 [E(XY)]      � 

Proof of Proposition 3.2.1 Analogous to 3.1.1, mutatis mutandis. � 

Proof of Proposition 4.1.1 From (iii), E(XUy | W) = E(X | W) E(Uy | W). Equivalently, 
 

E([X – E(X | W)] Uy | W) = 0. 
 

From (ii), E(WW’) is non-singular and E(X | W) = E(XW’)[E(WW’)]-1 W, so 
 

E( [X – E(XW’)[E(WW’)]-1W] Uy | W) = 0, 
 
By the law of iterated expectations  
 

E( [X – E(XW’)[E(WW’)]-1W ] Uy) = 0. 
 
From (i), Uy = Y – X’βo. Substituting this gives: 
 

E([X – E(XW’)[E(WW’)]-1W] [Y – X’βo] ) = 0 

or 
 
 {E(XX’)– E(XW’)[E(WW’)]-1 E(WX’)} βo = E(XY) – E(XW’)[E(WW’)]-1E(WY). 
 



 45

By (iii), {E(XX’) – E(XW’)[E(WW’)]-1 E(WX’)} is non-singular. Thus βo is fully 

identified as 
 
βo = {E(XX’) – E(XW’)[E(WW’)]-1 E(WX’)}-1 {E(XY) – E(XW’)[E(WW’)]-1E(WY)}� 
 
Proof of Proposition 4.1.2 From (iii)(a), E(XUz) = 0. From (i), αzUz  = Z – γzX, and from 

(ii)(a) E(XX’) is non-singular. Proposition 3.1.1 thus ensures that  γz’ is fully identified 

as γz’ = [E(XX’)]-1E(XZ’). Similarly, from (iii)(b), E(ZUy | X) = E(Z | X) ×  E(Uy | X); 

from (i), Uy = Y − Z’δo; and from (ii)(b), {E(ZZ’) – E(ZX’)[E(XX’)]-1 E(X Z’)} is non-

singular. Since we also have E(Z | X) = E(ZX’)[E(XX’)]-1X, δo is fully identified by 

Proposition 4.1.1 as δo  = {E(ZZ’) – E(ZX’)[E(XX’)]-1E(XZ’)}-1 ×  {E(ZY) – E(ZX’) 

[E(XX’)]-1E(XY)}. Since βo ≡  γz’δo, βo is thus fully identified as:  
 
βo = [E(XX’)]-1E(XZ’) ×  

              {E(ZZ’) – E(ZX’)[E(XX’)]-1E(XZ’)}-1 ×  {E(ZY) – E(ZX’)[E(XX’)]-1E(XY)} � 
 
Proof of Proposition 4.2.1 Analogous to 4.1.1, mutatis mutandis.  � 

Proof of Proposition 4.2.2 Analogous to 4.2.1, replacing Z with Z . � 

Proof of Proposition 4.2.3 Analogous to 4.1.2, mutatis mutandis. � 

Proof of Theorem 5.1: (a) From (i) and (ii), 

     E{[ Z  – E( Z | W )]Uy}  
 
      = E{[ Z  – E( Z | W )] (Y – X’βo)}    
 
      = E( Z Y ) – E(E( Z | W ) Y ) – E ( Z X’) βo  + E(E( Z | W )X’) βo 
 
Since βo is finite and E( Z Y ), E(E( Z | W ) Y ), E ( Z X’), and E(E( Z | W )X’) exist and 

are finite, it follows that E{[ Z  – E( Z | W )]Uy} exists and is finite.  

(b) Consider the system of equations 
 
E{ [ Z  – E( Z | W )] X’} β  = E{ [ Z  – E( Z | W )Y } – E{[ Z  – E( Z | W )]Uy}.  
 
It is a standard result of linear algebra that this system admits a unique solution β* if and 

only if E{ [ Z  – E( Z | W )] X’} is non-singular. 

(c) The result follows immediately from (a).  
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(d) If stochastic and structural identification hold, we have that E{ [ Z  – E( Z | W )] X’} 

is non-singular  and   
 

E{ [ Z  – E( Z | W )] X’} βo = E{ [ Z  – E( Z | W )] Y}. 
 
It follows that βo is then fully identified as  
 

βo = [ E{ [ Z  – E( Z | W )] X’}]-1 E([ Z  – E( Z | W )] Y ). 

 
To establish the converse, suppose that either stochastic or structural identification fails. 

If stochastic identification fails, then the inverse of E{ [ Z  – E( Z | W )] X’} does not 

exist, so  βo cannot have the form given above. If structural identification fails, then 

E{[ Z  – E( Z | W )]Uy} is not zero. By (a),  βo satisfies 
 
E{[ Z  – E( Z | W )]Uy}  = E([ Z  – E( Z | W )] Y ) – [ E{ [ Z  – E( Z | W )] X’}] βo. 
 
But this is incompatible with the expression above, and the result follows.   � 

Proof of Corollary 5.2 Immediate.� 

Proof of Theorem 7.1 The proof follows that of theorem 4.26 of White (2001). � 

Proof of Theorem 7.2 The proof of the first result follows that of theorem 4.26 of White 

(2001). The second result follows from theorem 4.39(i) of White (2001).   � 
 

Appendix B: Failures of Identification from a Causal Perspective 

Here we examine how structural identification of βo via the XI method fails in the 

standard “irrelevant instrument,” “invalid instrument,” and “under-identified” cases. 
 
B.1 Irrelevant Exogenous Instruments 

Proper instruments Z must be both valid and relevant to ensure structural identification. 

System S16 and its causal graph G16 depict the irrelevant XI case and demonstrate how an 

irrelevant XI satisfies neither CP:OXI nor CP:PXI. Let S16 be given by: 

    (1) Z 
c
=  αz Uz  

    (2) X 
c
=  αx Ux 

    (3) Y 
c
=  X’βo + Uy 

where Ux ⊥/  Uy, Ux ⊥  Uz and Uy ⊥  Uz. 

Graph 16(G16) 
Irrelevant Exogenous Instruments 

Z 

Uy 

YX

Uz 

Ux 
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Although Z is valid and satisfies XI, it fails to identify βo, because the effect of X on Y 

cannot be represented as the ratio of the effect of Z (resp. Uz) on Y and the effect of Z 

(resp. Uz) on X – both these effects are zero. In S16, neither CP:OXI(i) nor CP:PXI(i) 

hold, since neither Z nor Uz cause X, justifying the label “irrelevant exogenous variables.” 

When  = k (as assumed here), the presence of irrelevant exogenous variables causes 

stochastic identification (condition (ii)) to fail in Proposition 3.2.1. 
 
B.2 Endogenous Instruments  

We next examine the failure of XI, condition (iii) of Proposition 3.2.1. In this case Z ⊥/  

Uy; such Z are endogenous. This can occur in several ways. 

First, a potential instrument Z can be both irrelevant and endogenous. An example is a 

Z such that Z doesn’t cause X and Uz ⊥  Ux, but both Ux and Uz cause Uy. Turning to 

relevant instruments, consider the system S17: 

    (1) Z 
c
=  αz Uz  

    (2) X 
c
=  γx Z +αx Ux 

    (3) Y 
c
=  X’βo + Uy 

 
where Ux ⊥/  Uy, Ux ⊥/  Uz, and Uy ⊥/  Uz. Substituting (2) into (3) with πo ≡  γx’ βo gives 

    (3’) Y 
c
=  Z’πo + Ux’αx’ βo + Uy. 

 
Because Uy ⊥/  Uz, XI fails for Z. This can occur in several ways. For example, correlation 

between Uz and Uy can arise because either Uy causes Uz (G17a, G17b) or Ux causes both Uz 

and Uy (G17c). CP:OXI(ii) fails, as Z and Y are confounded; and CP:PXI(ii) fails, as Uz 

and Y are confounded. CP:PXI(i) also fails, as Uz and X are also confounded. 
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Alternatively, Z is endogenous when Uz affects Uy via a channel other than X. As we 

assume Z can’t cause Uy, we need consider only the case where Uz causes Y via an 

intermediate cause other than X (G17d and G17e). Now CP:OXI(ii) fails as Z and Y are 

confounded. CP:PXI(iii) fails as Uz causes Y via an intermediate cause other than X; the 

effect of X on Y is thus no longer the ratio of the effect of Uz on Y and that of Uz on X.  

 

 

 

 

 

 

 

 
 

Proposition 3.2.1 fails because structural identification fails. From (3) we have 
 

E(ZY) = E(ZX’) βo + E(ZUy), 
 
but E(ZUy) does not vanish.. 
 
B.3 Under-Identified Exogenous Instruments  

Finally, consider what happens when instruments Z are valid and relevant, but condition 

(i) of Proposition 3.2.1 fails. Specifically, consider the system S18: 

   (1) Z 
c
=  αz Uz 

    (2) X 
c
=  αx Ux 

    (3) Y 
c
=  X’ βo + Z’γo + Uy 

 
where Ux ⊥/  Uy, Ux ⊥/  Uz, and Uy ⊥  Uz. 
 

In this case, the regressors X are endogenous, as Ux ⊥/   

Uy, but we have that Z is relevant since X ⊥/  Z, and valid  

since Z ⊥  Uy. It follows from (3), however, that  
 
                              [E(ZX’)]-1 E(ZY) = [E(ZX’)]-1E[Z(X’βo + Z’γo + Uy)]  
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                 = βo + [E(ZX’)]-1E(ZZ’) γo, 
 
Once again, structural identification of βo fails, this time due to the presence of the 

unknown (non-zero) γo. The problem is that Z determines Y directly, and not solely via X. 

This violates CP:OXI(iii) and  CP:PXI(iv). 

Viewed in this way, the lack of structural identification appears as a form of “omitted 

variables bias,” resulting from the failure to include Z in the instrumental variables 

regression. But one cannot resolve this problem by including Z, as then one is attempting 

to identify both βo and γo, and there are not enough proper instruments for this. This is the 

classical “under-identified” case in which there are more right-hand side variables than 

valid instruments. Condition (ii) of Proposition 3.2.1 fails for the IV regression that 

includes both X and Z as regressors and uses only Z as instruments. 
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