
Università degli Studi di Firenze

Dipartimento di Statistica “G. Parenti”

Control of the false
discovery rate with

frequentist p-values in
Microarray data

analysis

Stefano Cabras

Dottorato di Statistica Applicata XVI Ciclo

April 2004

Supervisor: Prof. L. Fattorini
Assessor: Prof. F. M. Stefanini



Abstract

Microarrays are emerging as a powerful and cost-effective tool for large scale anal-
ysis of gene expression (Brown and Botstein, 1999). These experiments are typically
done in a case-control study framework where thousand of genes are simultaneously
compared in order to assess which, among them, are differentially expressed (Discov-
eries) switching from case to control target samples. This approach typically involves
Multiple Hypothesis Testing (MHT) procedures rather than classical Multiple Com-
parisons (MCPs) procedures because, in an exploratory data analysis on thousands
of genes, the researcher is mainly interested in controlling the False Discovery Rate
(FDR) rather than the probability of making one or more false discoveries (FWER).
The control of FDR was initially introduced in the pioneer work of Benjamini and
Hochberg (1995), further developed by Storey (2002) and generalized by Genovese and
Wasserman (2002) that introduced the control of False Non-rejections Rate (FNR).
Available literature makes use of frequentist p-values as a measure of evidence from
each single hypothesis. By using the Frequentist Principle (Neymann, 1977), we have
that a p-value is frequentist if it is uniformly distributed under the null hypothesis
that the gene is not differentially expressed. This is not always the case, because the
hypotheses under test are typically composite null hypothesis rather than simple null
hypothesis. Moreover composite null hypotheses often involve nuisance parameters to
be eliminated in order to calculate the p-value. This problem has been recently ad-
dressed by Bayarri and Berger (2000) in an objective Bayesian framework that makes
use of non-informative priors, as the case in an exploratory data analysis. They in-
troduced the conditional predictive p-value (pcpred) and the partial posterior predictive
p-value (pppost). Under fairly general conditions, the pcpred is uniformly distributed
under the null hypothesis (no matter the number of experimental replications), while
the pppost only asymptotically, but with better approximation to the uniform distri-
bution than other alternative p-values, such as, Plug-in p-values (pplug) and Posterior
Predictive p-values (ppost). The aim of this work is to extend the use of FDR control-
ling procedures to models that involves nuisance parameters and when no sufficient
statistics are available. We do this by using the pcpred and pppost. We found that
they allow to control the FDR, by using the recent available techniques, as if we
were dealing with simple null hypothesis. In the end they allow more power, in de-
tecting differentially expressed genes, than other p-values for composite null models.
Two models are considered here: i) the Gamma model with the shape parameter that
represent the common variation coefficient in spotted cDNA microarrays and ii) the
Normal model in order to match the theoretical results coming from pcpred with the
well known t-tests. The gamma model has been applied to three public data sets
in order to make comparisons among different notions of p-values. The methodology
here proposed is general and the results can be extended to more complicates models
than those showed in this thesis. The methodology also can be applied to every other
experimental situations where the control of FDR is needed.
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Chapter 1

Introduction

This chapter contains the introduction to this thesis’s work. Here it will be introduced
the terminology and part of the notation used in the rest of the thesis and it will be
provided the motivations for this work. We first start by stating the goal of the mi-
croarray experiment and the contribution of this work in helping the researcher while
analyzing the experimental outcome. Then, we provide a brief description of microar-
ray experiment with the two commons techniques: cDNA arrays and oligonucleotide
arrays. Finally we underline the sources of experimental variations and statistical
issues in data analysis.

The literature on microarray as recently experienced a great explosion. This can
be monitored, for example, from microarray journal watch web sites such as the “Y. F.
Leung’s Functional Genomic page” at http://genomicshome.com or the “Microarray
and Data Analysis” at http://www.nslij-genetics.org/microarray/.

1.1 Goal of a microarray experiment and thesis contri-

bution

Microarray experiments are mainly designed to characterize the genetic profile of cells
under different experimental conditions. This typically involves statistical testing on
thousand of genes in order to asses which are differentially expressed in two or more
experimental conditions. Multiple Hypothesis Testing (MHT) techniques address this
issue, but they require calibrated measures of evidence for each hypothesis. This can
be achieved by using frequentist p-values.

1.1.1 Microarrays experiments are performed to understand the genome

through the messenger Ribonucleic Acid

Proteins are structural components of the cells and tissues and perform many key
functions in biological systems. The production of proteins is controlled by genes,
which are coded in Deoxyribonucleic Acid (DNA). DNA molecules are common to
all cells of an organism. Protein production from genes involves two principal stages,
known as transcription and translation, as illustrated schematic on Figure 1.1. During
transcription, a single strand of messenger Ribonucleic Acid (mRNA) is used as a

1



1. Introduction 2

Figure 1.1: Central dogma of molecular biology (source: www.swbic.org).
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template to assemble a chain of amino acids to form the protein. Gene expression
investigations study the amount of transcribed mRNA in biological system. Although
most proteins undergo modification after translation and before becoming functional,
most changes in the state of a cell are related to changes in mRNA levels for some genes,
making the transcription worthy of systematic measurement. Basic biochemistry and
molecular biology textbooks, such as those of Bolsover et al. (1997) and Garret and
Grisham (2002), provide background on gene expression and its biological significance.

1.1.2 Many genes are compared simultaneously and this involve Mul-

tiple Hypothesis Testing (MHT)

The outcome of a microarray experiment are quantities which are supposed to rep-
resent the genes abundances in mRNA from a tissue. In the simplest experiment we
compare the gene expression of a tissue under two experimental conditions, regarded
sometimes as biological populations. Biologists expect that many genes are differ-
entially expressed at different levels. Therefore, if we measure the abundance of m

genes we have to perform m individual tests in order to discover which of them are
differently expressed in the two conditions. This involves the simultaneous test of m

hypotheses, where the null hypothesis is “the gene i is not differentially expressed in
the two biological populations” (Hi = 0) against the alternative “It is differentially
expressed” (Hi = 1): either overexpressed or underexpressed. The hypothesis testing
is conducted under the limitation that the available number of replications, n, is very
small. The order of magnitude is m ' 10000 genes with n ' 3 in a small scale study
and n ' 100 in largest studies. Comparing gene expression across two conditions for
a single gene is an instance of the most classical statistical questions: the two-sample
comparison. Estimating and testing in this case are very well developed. In genomic
applications, however, there is an increasing consensus on the inefficiency due to a
gene-by-gene analysis, and consistency is gained by considering the ensemble of gene
expression measures at once. This occurs for at least two reasons: first, genes mea-
sured on the same array type in the same laboratory are all affected by a number
of common sources of noise; second, changes in expression are all part of the same
biological mechanism, and their magnitudes, although different, are not completely
unrelated. This requires to take into account this multiplicity of tests by considering
the dependency of the hypotheses under test.

1.1.3 MHT procedures need frequentist p-values

The proportion of false discoveries among all discoveries, the False Discovery Rate
(FDR) is the main quantity considered in this thesis in order to decide whether or
not the reject a subset of null hypotheses. The control of this quantity was originally
introduced by Benjamini and Hochberg (1995) and further developed by Storey (2002,
2003 and 2004). Early ideas on the FDR were introduced by Seeger in 1968, but the
popularity of FDR was mainly due to Benjamini and Hochberg (1995). It may seems
somewhat arbitrary to focus the control only on this quantity, because in general we
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should control all the errors produced when we wrongly reject Hi or we fail to reject Hi.
The False Non-rejection Rate (FNR), and the joint control of the FDR and FNR, was
recently introduced by Genovese and Wasserman (2002). Although the joint control
of FDR and FNR seems quite appealing, most of the techniques developed until now,
concern the control of the FDR and so we will mainly concentrated on them.

The control of FDR (and also of FNR) relies on our ability to construct a rejection
region for each hypothesis Hi, i = 1, 2, ..., m and then can calculate their Type I Error.
Let T be the a test statistic. In this thesis we show that to control the FDR, we must
be able to find a suitable set of nested rejection regions Γα. such that

Pr (Ti ∈ Γα|Hi = 0) = α

The nested property means that α′ ≤ α implies Γα′ ⊆ Γα. Each hypothesis may have
a different Γα, so it is convenient to consider a set which is equal for all hypotheses.
In particular we consider the set of nested rejection regions defined by the p-values on
each Hi. The p-value for an observed value ti is defined as (Lehmann, 1986):

p-value (t) = inf
{Γα:ti∈Γα}

Pr (Ti ∈ Γα|Hi = 0) . (1.1)

Therefore, since the set of rejected regions is nested, it can be seen that

ti ∈ Γα ⇔ p-value (ti) = p ≤ α.

When this is true, a p-values is said to be a frequentist p-value, that is

Pr {P ≤ α} = α, (1.2)

where P is the p-value and we regarded it as a random variable uniformly distributed
on (0, 1). The (1.2) simply restate the frequentist principle of Neyman (1977): “the
long run error is less or equals than the declared one.”. Only frequentist p-value can
also be thought of as the level of the test at which the hypothesis Hi would just be
rejected. Using frequentist p-values we obtain the following rejection region:

Γα ≡ {(p, 1) , α = p} . (1.3)

Unfortunately, in a parametric framework, the (1.2) and the (1.3) are always true if
Hi is a precise null hypothesis (or simple null hypothesis), and on the other hands
(1.2) and (1.3) are generally false when Hi is a composite null hypothesis. Hence when
the null hypothesis is composite and we want to control the FDR, we found that it is
necessary to make use of p-values uniformly distributed for a fixed sample size n.

In an objective Bayesian framework, that makes use of non-informative priors
(often improper priors), Bayarri and Berger (2000) provide p-values that are uniformly
distributed under the null hypothesis. The object of this thesis is to investigate the
control of FDR using different notions of p-values. We show that only frequentist
p-values are legitimate to control the FDR and, in regard to this task, the p-values
proposed by Bayarri and Berger (2000) outperform other commonly used p-values.
This thesis work allows to properly extend the procedure that control the FDR in
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parametric composite null hypothesis (or models). Until now, the very recent literature
on FDR does not seem to be interested on this extension.

Using p-values we are mainly focused on model criticism rather than classical
hypothesis testing, because when considering only p-values in hypothesis testing we
do not consider any other alternative model. The use of p-values in model criticism is
very questionable from a pure Bayesian point of view. Here we agree with the usual
criticisms that: i) models can only be compared and cannot be assessed singularly;
ii) the integration over the sample space after knowing the data introduce additional
noise, and so forth. These criticism are due to the violation of the likelihood principle
in the inferential process, because we are considering values greater than ti which have
been never observed. However, here we are interested only in constructing a rejection
region for each single hypothesis and assign its Type I error. Obviously, this has
to be done beforehand with respect to the experiment, for any arbitrary choice of a
rejection region. This goal can be conveniently achieved by using frequentist p-values
that suggest a rejection region and provide the corresponding Type I error. The choice
of using rejection regions based on p-values becomes then a merely fact of convenience,
because recent literature on p-values makes possible to build a one-to-one relationship
between the rejection region Γ ≡ (p, 1) and the Type I error α = p under fairly general
conditions. Other measures of evidence useful to this purpose are welcome.

1.2 The microarray experiment

Microarrays quantify gene expression by measuring the hybridization, or matching, of
DNA immobilized on a small glass plastic, or nylon matrix to DNA from the sample
under study. As a crude approximation, we can think to a separate experiment taking
place in each of many individual spots, arranged in a regular lattice pattern on a
matrix, whence the name array. Arrays may have hundred of thousands of spots.
We call the spotted sequences “genes”, whether or not they are actual genes, ESTs
(expression sequence tags) or cDNA sequences from other sources.

Such ability to measure simultaneously a large fraction of an expression (the ex-
pressed part of the genome) opens the door to the investigation of large scale inter-
actions among the genes, the discovery of the role of a vast number of genes whose
function is not adequately understood, and the characterization of how metabolic
pathways are changed under various conditions. Duggan et al. (1999) review the use
of microarrays in genomic investigations and the impressive spectrum of biological
applications.

This work is focused on microarrays viewed as a tool for screening genes before
further investigations take place. These second investigations are usually performed
with other techniques then microarray such as: serial analysis of gene expression,
cDNA library sequencing, differential display, cDNA subtraction and multiplex quan-
tile RT-PCR. For more details and history on these techniques see for example Zweiger
(2001).
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1.2.1 The two most important techniques: cDNA arrays and oligonu-

cleotide arrays

There are several microarray technologies, but we briefly describe two prevalent ap-
proaches: cDNA arrays and oligonucleotide arrays. Although they both exploit hy-
bridization, they differ in how DNA sequences are laid on the array and in the length of
these sequences. For a brief overview of current microarray technologies see Southern
(2001) or Hardiman (2002).

The cDNA arrays

In spotted DNA arrays, mRNA from two different biological samples is reverse-transcribed
into complementary DNA, (whence the acronym cDNA), labelled with dyes of two dif-
ferent colors (Cy3 and Cy5), and then hybridized to DNA sequences. Each of these
sequences is spotted on a small region, or spot, on a glass slide. After hybridization,
a laser scanner measures the dye fluorescence at the two wavelength on a fine grid of
pixels. A high florescence indicates high amounts of hybridized cDNA, which in turn
indicates high gene expression in the sample. A spot typically consists of a number of
pixels. Image analysis algorithms either assign pixels to a spot (foreground) and pro-
duce summaries of fluorescence in the surrounding unspotted areas (background). More
technical details on cDNA arrays are beyond the scope of this thesis and can be found
in Schena (2000) and at microarrays web sites such as http://www.microarrays.org.

For each location on the array, a typical output consists of at least four quantities:
two pairs foreground-background one for each dye. Sometimes these are accompanied
by measures of the quality of the spot, to flag technical problems, or by measures of
variability at pixel level. It is conventional to refer to the two colors Cy3 and Cy5 as
red and green color, denoted respectively with R and G. The use of two channels allows
for measurement of relative gene expression across two sources of cDNA, controlling
the amount of spotted DNA, which can be variable, as well as other experimental
variation. This led to emphasize the ratio R/G at each spot.

The high density oligonucleotide arrays

The second common approach involves the use of high-density oligonucleotide arrays.
This is an area of active technological development. As we write, the most widely
used oligonucleotide array type is the Affymetrix GeneChip (henceforth abbreviated by
Affy). In Affy arrays, expression of each gene is measured by computing hybridization
of the sample mRNA to a set of probes, composed of 11-20 pairs of oligonucleotide, each
of length 25 base pairs. The first type of probe in each pair is known as perfect match
(PM) and is taken from the gene sequence. The second type is known as mismatch
(MM) because it is created by changing the middle (13th) base of the PM sequence
to reduce the rate of specific binding of mRNA for that gene. The goal of MM is
controlling for the experimental variation which is related to non specific binding of
mRNA from other part of the genome.

An mRNA sample is prepared, labelled with one fluorescent dye, and hybridized to
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an array. Unlike the two-channel array, a single sample is hybridized on a given array.
Arrays are then scanned, and images are produced and analyzed to obtain a fluores-
cence intensity value for each probe, measuring hybridization for the corresponding
oligonucleotide. For each gene, or probe set, the typical output consists of two vectors
of intensity readings, one for PMs and one for MMs. Oligonucleotide arrays are dis-
cussed by Lockhart et al. (1996). Details of Affy-arrays can be found in Affymetrix
(1999).

1.2.2 Raw data from the experiment consist in digitalized images

Using microarray technologies, it is essential to visual inspect the array in order to
diagnose the presence of possible artifacts. For most visualizations, logarithmic trans-
formation of the data are recommended because of the marked differences of expression
data values and because the scanning of arrays results in optical or background noise
affecting pixel intensities.

In cDNA arrays, image processing will produce an absolute expression measure
and a background measurement for each spot or cell. On the contrary in high density
oligonucleotide arrays have minimal space between the segments of the array where
probes are attached, therefore background information is difficult to obtain and it is not
commonly used. High-density oligonucleotide arrays pose the challenge of summarizing
data from a probe set into a single measure, which estimates the level of expression of
the gene of interest. Affy software provides a default approach for this step by returning
the AD quantity, that is the difference between the PM fluorescence intensity and the
MM florescence intensity. Two important reasons suggest that both probe-level data,
PM and MM, should be considered as an integral part in Affy data analysis: the first
reason is that visualization of probe-level data can help to identify artifacts on Affy
chips. The second reason is that there is evidence that alternative summarizations,
to the defaults currently implemented by Affy, may improve the ability to detect
biological signal.

1.2.3 Images provide quantities on genes abundance which have to

be efficiently stored in relational databases

In microarray experiments, the quantified values are contained in the image files pro-
duced by the scanner. The pixel intensity, stored in these files, can be thought as
raw data. Image analysis tools are then used to provide numerical quantification for
the quantities of interest: foreground-background intensities in cDNA arrays and PM-
MM in Affy chips. The process of draw numerical quantities from scanned microarray
images can be separated into three tasks that we list here in order to convey the
complexity of the experiment:

i) Addressing. The basic structure of the microarray image is determined by the
arrayer and is therefore known. That is, it is known that there are some number
of rows and column of spots. The addressing process consists in matching an
idealized model of the array with the scanned image. A number of parameters
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need to be estimated. These parameters include: separation between rows and
columns of grids, individual translation of grids, etc... It is desirable, for the
addressing procedure, to be as reliable as possible to ensure accuracy of the whole
measurement process. Reliability of the procedure can be increased allowing user
intervention, but this makes the process very slow.

ii) Segmentation is the process of partitioning the image into different regions: fore-
ground and background. The foreground region is the region of the spot, where
the genetic materials is supposed to lay. The background region is the region
where it is supposed to be no genetic materials. Any segmentation method pro-
duces a spot mask, which consists of the set of foreground pixels for a given
spot. The procedures are usually classified in two categories: adaptive and non
adaptive. The former perform generally better as shown in Yang et al. (2002).
Adaptive procedures starts from a point in the image and try to learn the shape
of the spots.

iii) Information extraction. After detecting the location, size and shape of each
spot using one of the previous methods, foreground is calculated together with
background intensities and, possibly, spot quality measures. Most microarray
analysis packages define the foreground intensity as the mean or median of pixel
values within the segmented spot mask. More possibilities exist in the choice of
background calculation method. Common approaches include taking the median
of values in selected regions surrounding the spot mask.

Accounting for the details of these techniques constitutes an additional insight
which is useful in the model selection process, but the comparison between different
techniques is behind the scope of the thesis. Recent reviews of image analysis tech-
niques and software can be found in Brown et al. (2001), Yang et al. (2002) and Jain
et al. (2002).

The information associated with microarray experiment has four important com-
ponents:

i) a table of numbers representing absolute or relative expression values at gene or
spot level. The emerging standard is to have rows represent genes and columns
represent samples/arrays;

ii) a table of covariates associated with the samples, which may include information
on the samples phenotypes (e.g., cancer type) as well as design variable for
controlled experiments (e.g., drug treatment);

iii) detailed description of genes represented and of phenotypic variables;

iv) information about the experiment itself, which generally consists in an identifi-
cation number in a public database, the experimental protocols, normalization
information, and so forth.
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This resulting complexity creates substantial computational challenges, therefore
for researchers it is crucial to store the flood of information efficiently. Relational
databases make possible to efficiently store and access to complex data sets and facil-
itate combining information from multiple microarray experiments. Gardiner-Garden
(2001) provide a survey and comparative analysis of microarray databases.

Various open source database servers are freely available for custom database devel-
opment. However, proliferation of microarray databases, the growing appreciation for
both the importance of analysis across experiments and the need for well-documented
repositories, have stimulated work toward the development of standards. The Microar-
ray Gene Expression Database (MGED) group (http://www.mged.org) is a movement
to promote the adoption of standards in microarray experiments and data. MGED
developed requirements for Minimum Information about a Microarray Experiment
(MIAME) required to interpret and verify results. Scientific journals are beginning to
require compliance with MIAME standards for data made available as supplementary
information in microarray-oriented papers. All data sets analyzed in this thesis are
MIAME complaint.

Proper storage and access to data is critical but it is not the only relevant aspect in
microarray analysis, because a database needs also to interact efficiently with statisti-
cal analysis languages and environments. With regard to this computational aspect,
microarray analysis tools have been developed following three approaches: i) as parts
of comprehensive databases, ii) as stand-alone packages, and iii) as libraries within
well-established programming and analysis languages/environments, such as S-PLUS,
R, SAS, Excel and Matlab. The first approach addresses the storage/analysis inter-
face but often requires new development for statistical analysis software. The second
approach leaves the interface to the user. The one joined in this thesis is the third,
because it allows the exploitation of standard tools for data manipulation and statis-
tical analysis. With this approach tailored analysis and methods for special needs are
easily obtained.

Extensive support for microarray analysis is available as part of the Bioconduc-
tor Project (http://www.bioconductor.org) whose relies on the R language. The
R project provides the main support to almost all calculations in this thesis. The
original code, both in R and C, which have been used to produce all the numerical
results in this work is described in the Appendix and also available at the web site
http://www.stat.cmu.edu/~scabras/tesi/.

1.3 The experimental variability

The most important step in a microarray experiment, like any other experiment, is
the identification of biological questions of interest. The degree of specificity in the
question can range from a precisely defined hypothesis about two groups. For ex-
ample, we can study a specific question such as the effect on a particular organ of a
toxic compound in a population of genetically identical laboratory animals, or we can
study a much more broad questions, such as a novel hypothesis about yet-unidentified
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subtypes of lung cancer. The chosen question gives rise to a design of the experiment,
which in turn leads to data. In view of the multiple source of errors described below, a
substantial effort is necessary to extract from the data a reliable signal, (that is, a reli-
able representation of the gene expression under the various experimental conditions).
Gene expression measures are subsequently used to address the biological questions.
Because of the high potential for false positive findings, there is a wide agrement that
results should be validated using alternative assays, such as RNA blotting, or RT-PCR.

A broad spectrum of biological investigations is made possible by microarray tech-
nologies. On the one end of this spectrum, we have highly specific comparisons, for
example, between treated and control groups of genetically identical mice. In such ap-
plications, the signal-to-noise ratios are relatively favorable and statistical questions,
albeit hard to addresses, are generally better defined. At the opposite end, we have
what we could describe as “genome biometry”, that is, the description of the genetic
variability in different biological populations. In this latter, the signal-to-noise ratios
are less favorable and the more exploratory is the nature of biological investigations
the more the statistical questions are less well defined. It is widely accepted that, the
statistical tools currently used in microarray data analysis are much more useful to
support data exploration rather than completely automate it.

Ideally the three different stages of the analysis: signal extraction, data analysis
and validation stages should be integrated and uncertainties propagated across stages.
Because of the complexity and the novelty of the tasks corresponding to the three
stages, only preliminary progress have been made toward this integration.

We mainly concern on data analysis stage. The typical approach is to first perform
what is called normalization, that is trying to model and then remove sources of noise
due to experimental artifacts. These sources of noise, if not appropriately removed,
translate into a BIAS in the data analysis which is performed on normalized gene ex-
pression measures. There is a gross and prevalent strategy for dealing with uncertainty
in individual spot measurements, which is to exclude spots for which the uncertainty
is considered too high to be acceptable. This happen, for example, when the amount
of background intensity from a spot is higher than the amount of foreground intensity.

Gene expression microarrays are powerful, but technical variability arising through-
out the measurement process can obscure the biological signals of interest. It is useful
to classify source of error into five phases of data acquisition: i) microarray manu-
facturing, ii) preparation of mRNA from biological samples, iii) hybridization, iv)
scanning and v) imaging. Each of these phases can introduce an amount of artifactu-
ally variation and/or bias that makes problematic the estimation of expression levels
as well as the comparison of expression changes between arrays. We list some examples
to convey a sense for the multiplicity of source of errors and the importance of quality
control.
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1.3.1 The relevant sources of variability across different experimental

phases

Phase i). Manufacturing errors are specific to the technology. In cDNA microarrays
they arise: in the amplification, purification and concentration of DNA clones for
spotting; in the amount of material spotted; in the ability of spotted material to bind
to the array, and in the shape of the deposited spot. Systematic variation can be
determined by microscopic defects in the print tip of the robotic equipment used for
spotting.

Phase ii). During the preparation of the samples, sources of variability depend on
the protocol and the platform used. Important examples include labelling procedure,
RNA extraction and amplification. In cDNA arrays, dye biases can arise from different
physical properties of the dyes or from differential ability of the dyes to incorporate
into the samples.

Phase iii). During hybridization, variability arises from ambient conditions such as
temperature and humidity, from edge effects (that is, effects seen only at the gene spot-
ted near the edges of the array), from slight inhomogeneity of the hybridization solu-
tion, from extraneous molecules or dust binding to the array, from cross-hybridization
of molecules with high sequence identity, and from washing of nonhybridized materials
from the array.

Phase iv). During scanning, natural florescence and binding of genetic material to
the array in unspotted regions can introduce a nontrivial, spatially varying background
noise. Scanning requires separating the fluorescent label from the biological material
and capturing it with sensors; both phases involve randomness, and rescanned slides
usually give slight different results. Scanning intensity is an important factor, as higher
intensity improves the quality of the signal but increase the risk of saturation caused
by ceiling occurring when a channel reaches maximum intensity, (which is 216 on a 16
bit channel).

Phase v). In the imaging step, some technologies require human intervention for
initialization of the image algorithms or the alignment of the image to a grid. Different
imaging algorithms and options within these algorithms also typically lead to varying
fluorescence quantifications.

Although many of these errors are relative small, the compound of their effects
can be significant. As a result, we can generally expect variation in the expression of
a given gene across different hybridizations using the same RNA sample. Also, when
a sequence is spotted in multiple locations on an array, there is usually variation in
the amount of hybridization measured across location. In cDNA arrays, many sources
of noise can be quantified in the aggregate by a self-versus-self hybridization in which
two subsamples, from the same pool of RNA, are labelled with different dyes and then
hybridized on the same array.

The sources of variation described so far arise from limitations of the current
techniques and will be referred to as technological. In most microarray experiments
we will also need to consider the usual source of variation that arise in sampling from
biological populations and treated individuals. For example, in comparing the gene
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expression of tumor tissue to normal tissue in a patient, we need to consider that
the overall expression profile of the tissue could be different if another patient would
be analyzed. It might differ if a different portion of the tissue from the patient under
consideration had been sampled. In the end, microarray experiments resemble to other
investigation of biological variation.

1.3.2 Experimental replications and sample size considerations

It is now becoming widely accepted that microarray experiments need to be replicated
due to the sources of variation.

We can distinguish two broad types of replicates experiments: biological replicates,
which refer broadly to analysis of RNA of the same type from different subjects (for
example, muscle tissue treated with the same drug in different mice); technical repli-
cates refer to multiple-array analysis performed using the same RNA (for example,
multiple samples from the same tissue). Depending on the experimental setting, one
or both of these types of replicates need to be considered. In controlled experiments,
replicates are generally used to increase the reliability of conclusions. In more com-
plex or more exploratory experiments, where biological variability is likely to exceed
technical errors, it is more critical to obtain biological replicates. Simon et al. (2002)
provide a discussion of the relevant trade-offs.

In controlled experiments comparing gene expression in two or a small number of
conditions, the goal of microarray study can be often described as identifying as many
genes that are differentially expressed across conditions as possible while keeping the
probability of making false declarations of differential expression acceptably low. If
this is the goal, then we can address the question of how many replicates are required
using well-developed hypothesis testing ideas. In general the answer depends on several
factors: the signal-to-noise ratio, the desired sensitivity in detecting changes, and
the tolerance for false findings (Robert et al., 2003). In the context of microarray
experiments Pan et al. (2002) discuss how to calculate the number of replicates given
a normal-mixture model to detect changes in gene expression. In order to allow proper
inference, we consider experiments with at least two replicates.

1.4 Some issues on microarray data analysis

The goal of many controlled microarray experiments is to identify genes that are regu-
lated by modifying conditions of interest. For example, one may wish to compare wild
type to knockout laboratory animals or alternative drug treatments. The objective
of these experiments is to identify as many genes as possible that are differentially
expressed across the compared conditions. There are two broad categories of situa-
tions which have to be kept in mind when choosing a statistical approach. In the first
situation, we are comparing samples which the majority of the genes are expected
to show some differences, albeit in varying degrees. An example would be cells at
different stages of development. This problem is best approached by estimating the
differences or ratios of expression across conditions for each gene. Considering the
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variability of these ratios we can make a screening of the genes by using only “the
most significant” ones and report the part of the genome that could be altered across
the conditions under comparison. In a second approach we compare samples where a
relative small fraction of genes are differentially expressed. For example, we may be
studying alterations in expression caused by loss of a gene active in a specific pathway.
In this type of applications, microarrays are often used to screen genes for further
analysis by more reliable assays, and the data analysis is best approached by ranking
genes and/or by selecting of genes for further validation. The methodology proposed
here apply to both situations, because it is essentially focused on finding differentially
expressed genes by formalizing the expression “the most significant genes”.

1.4.1 Brief description of the Normalization process

As stated before the first step in microarray data analysis is the normalization process.
This is briefly described here.

The notion that the normalization process is difficult to automate is widely ac-
cepted (Tseng et al., 2001; Yang et al., 2002). Normalization is best understood as an
interactive process of visualization, identification of likely artifacts and their removal,
when feasible. Examples of artifacts that can be at least partially removed include
differentially non linear response of the two channels to hybridization intensity, biases
in DNA spotting from defective print tips and the fainting of the signal in large regions
of the array.

Evaluation of spatially varying bias is also critical. One, for example, can look
at the original images or, more conveniently, at images of the processed absolute or
relative expression values arranged by their location, or at “gradient plots” graphing
intensity versus one of the spatial coordinates (Sellers et al., 2003).

Investigation on normalization process is behind the scope of this thesis, in the
sense that our aim is to capture the variability left from a normalization process by
using a parametric models where the presence of nuisance parameters account for this
variability. Nonetheless, we briefly discuss here the choices about normalization that
have been made on the analyzed data sets. We generally distinguish the normalization
in cDNA array from those in oligonucleotide array.

Although they are different experiments, they both have in common the problem
of background subtraction, where the background here, B, has the meaning of either
the background measured in cDNA arrays either the MM intensity measured in Affy
chips. Let X represent the foreground in cDNA array and the PM intensity in Affy
chips. It is widely accepted that X is likely to be the result of signal and additional
background noise, then it is biased estimate of the true hybridization that we intend
to measure (that is, it is likely to be systematically too high). To obtain an unbiased
measure of expression, conventional wisdom is to subtract the background considering
X−B (the AD quantity in Affy chips). If both X and B are unbiased and background
adds to the signal, then X − B is unbiased. Even in these circumstances, however,
there are important trade-offs to be evaluated in deciding whether and how to subtract
background noise. Because both X and B are estimates, the variability of X − B is
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larger than that of X alone; thus, subtracting background adds variance. This is es-
pecially problematic in the low intensity range, where the variance of B can be of the
same magnitude as X. Generally, the assumptions of unbiasedness and additivity are
far too optimistic. Also, some researchers have found that the background estimates
produced by popular image-processing algorithms are not sufficiently reliable (Yang
et al., 2002). One alternative is to avoid background subtraction altogether and only
use X to estimate the expression level. This avoid to introduce the additional vari-
ance from inaccurately estimate background and is generally conservative in making
declaration of differential expression in practical. To illustrate this, say that the true
expressions in two sample being compared are e1 and e2. We observe X1 = e1+B1+ε1

and X2 = e2 + B2 + ε2 where ε1 and ε2 are measurement errors of the true signal.
Because B’s are positive, the log ratio of the non-background-corrected raw expression
values X1/X2 is likely to be closer to 1 than the true ratio e1/e2. This bias toward
one is stronger for low intensity genes. In summary, not subtracting background can
be an attractive alternative, as it does not rely in potentially problematic background
estimates and loses sensitivity mostly for low intensity genes; the exceptions are exper-
iments with major spatial artifacts affecting only one channel. In practice, decisions
about background subtraction need to be made based on careful visualization of the
data and we decided to subtract it and not include in the analysis those spots where
the X < B.

The background subtraction is a problem related to the normalization of spots in
the array, but we also considered experiments that requires comparison of the gene
expression measures across arrays. Variation across arrays reflects the genetic, ex-
perimental and environmental differences under study but will also include variation
introduced during the sample preparation, during manufacture of the arrays, and dur-
ing the processing of the arrays (labelling, hybridization and scanning). These are
typical sources of variability that require technical replicates. The needed of technical
replicates and the sources of noise generate by them require a normalization across
arrays. This normalization process will be mainly centered on removing variability
due to experimental artifacts.

Normalization in cDNA arrays

In two-channel cDNA arrays, the two signals allow for internal correction of a number
of commonly occurring artifacts. In order to compare two sets of expression values
(say, the two channels of a cDNA array or the expression levels across two arrays in
Affy chips), it is useful to look at scatter plots of the two intensities or, as is more
commonly done, to examine plots of differential expression versus overall intensity.
This plot is called the MA-plot (also RI-plot) where the dimensions are M = log2 R/G

and A = log2

√
RG. An MA-plot amounts to a 45◦ counterclockwise rotation of the

(log2 G, log2 R)-coordinate system followed by a scaling of the coordinates. When the
effect of artifacts are weak or they have been removed by normalization, we expect to
see the points along the 45◦ (π/2) line from the origin of the plan spanned by MA

(the bisectrix or angle bisector). In this case isolate points far from the bisectrix are
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supposed to represent genes differentially expressed.

Normalization in oligonucleotide arrays

In Affy arrays and other platforms providing a single reading per spot, one can then
construct MA-plots for each array versus the reference. Initial approaches for nor-
malization across arrays are focused on standardizing overall intensity. This is useful,
but often inadequate, as one commonly encounters systematic nonlinear distortions.
Vertical residuals from robust regression of MA-plots against a common reference,
as described above, can provide normalized values that account for nonlinear effects.
Other popular alternatives, like quantile normalization (Bolstad et al., 2002), won’t
be considered here.

1.4.2 The “Analyze and Then Summarize” approach

We mainly consider observational studies which describe the variation of genomic infor-
mation in biological populations. These studies have broadly ranging goals including
refinement of current taxonomies, identification of genome-phenotype relationships,
classification and annotation of genes, and exploration of unknown pathways. The
statistical tools brought to bear in these investigations cover the full range of tradi-
tional multivariate analysis, cluster analysis and classification. A challenge for the
application of these analysis tools to genome-wide studies of gene expression comes
from the large number of genes that are studied simultaneously and the high gene-
to-sample ratio. Having many more genes than biological replicates makes possible
a number of strategies for analysis. These can be categorized mainly into two broad
categories: Summarize Then Analyze (STA) and Analyze Then Summarize (ATS). In
the first category, STA, a multivariate procedure such as cluster analysis or multidi-
mensional scaling is used to reduce the large number of genes to a smaller number
of summary variables or profiles. These profiles are further then taken as outcome
variables in, (say), a regression analysis of expression on experimental conditions, or
as predictor variables in a model with a health outcome (typically in survival analysis).
In this thesis we will consider the ATS approach, where the modelling is conducted
for each gene, producing an estimate of a statistic of scientific interest (for instance: a
difference or ratio among means, a regression coefficient, etc...) and its standard error.
These gene-specific coefficients are then summarized, for example, by identifying those
supposed to be differentially expressed according some statistical parametric model.

This approach lead to the data analysis steps adopted here: a first step is isolat-
ing those genes that are supposed to be significant or most significant differentially
expressed (gene shaving), then we use these to draw inference on the underlying bi-
ological process or to make class prediction of the samples into known categories as
shown in the application of a case study in Chapter 4.
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1.4.3 Microarrays are useful to diagnose diseases

The complexity of gene expression analysis is stimulating the development of novel
and specific statistical modelling tools to perform classification of class prediction.
However, the existing body of pattern recognition and prediction algorithms devel-
oped in computer science and statistics can provide an excellent starting point for
class prediction. Dudoit et al. (2002a) offer a practical comparison of discriminant
methods for the classification of tumors using gene expression data. The one used
here is the k-Nearest-Neighbor Classifiers (k-NNC) which is a simple and powerful
class of algorithms for classification (Cover and Hart, 1967). Consider a sample of
gene expression values (or expression profile), then the k-NNC classifies such sample
of unknown phenotype by comparing the given gene expression profile to those of a
sample of known phenotype. Essentially a k-NNC works in this way: suppose we
want to classify the gene expression of sample into two phenotype class, say A and
B. Let a0 represent the sample point in the space of gene expression profile, then we
will classify to A, if the majority of the k nearest points belongs to A otherwise B if
the majority belongs to B. On the contrary we may decide of not classify the sample
because there is not a majority. The choice of a metric is critical in order to measure
distances among points in the expression profile. This discussion is behind the scope
of this thesis and, as usual, we consider the Euclidean distance between points in the
space of gene expression profile.

Modelling of gene expression data, by capturing the residual variability left from
normalization, aims at usable classification. This requires the validation of a con-
structed classifier. The approach considered here is the most satisfactory to validation.
It is based on the use of independent data, which can often be achieved by setting aside
samples for validation purposes, as illustrated by Dudoit et al. (2002a). Statistical
validation of probabilistic models (DeGroot and Fienberg, 1983) has two goals: assess-
ing calibration (that is, the correspondence of the fraction predicted and the fraction
observed in validation sample) and measuring refinement (that is, the ability of the
model to discriminate between classes). As an alternative to setting aside samples
for validation, one can use cross-validation, that is, splitting the data in portions and
training the classifier a number of times equal to the number of portions and then
setting aside each portion for validation. The resulting average classification rates
is an unbiased estimated of the correct classification rate. Applying cross-validation
techniques here results in an exponential increase of the computational efforts and
it will not be considered here. It is also not needed, because of the availability of a
relative large data set to be used for validation purpose.

The evaluation of classifiers on the same data that were used for training is a
potentially serious mistake. When the number of predictors is very large, a relative
large number of predictors will appear to be correlated with the phenotype of interest
as a result of random variation present in the data. This spurious correlation has no
biological foundation and does not generally reproduce outside of the sample studied.
As a result, evaluation of classifiers on training data tends to give overly optimistic
assessments of the validity of a classifier. It is more likely that a classifiers may
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even have a near perfect classification ability in the training set without having any
biological relation with phenotype.

1.4.4 We are mainly interested in gene screening using the False

Discovery Rate approach

Perhaps, the simplest screening approach is to select genes based on average change
in expression (say, difference in mean log expression across group). One problem
with this, is that it ignores variation in how reliably each gene is measured. The
problem is partially mitigated by careful normalization. Even after normalization,
however, within the considered experimental conditions the variation of expression
will be highly gene-dependent, therefore we have to account both for the uncertainty
on these measures and also for the multiplicity.

Joint estimation of many related quantities is a time-honored problem in statistics,
dating back at least to the pioneering work of Stein and colleagues (James and Stein,
1961) and continuing with empirical Bayes approaches (Efron and Morris, 1973) and
hierarchical Bayesian multilevel models (Lindley and Smith, 1972). The idea behind
the multilevel models and the associated empirical Bayes and hierarchical Bayes esti-
mation techniques is to proceed in two stages. The first defines some useful summaries
at the gene level, for example, a test statistics, or parameter estimates of the fold
change and noise in parametric models. These describe the variability of samples for
each gene. The second stage posits a distribution of these gene-level summaries. This
approach has benefits in both estimation and selection. In the case of microarrays, ex-
amples of estimation are provided by Efron et al. (2001), Lönnstedt and Speed (2002)
for selection and Ibrahim et el. (2002) and Newton et al. (2002) for both selection
and estimation.

In analysis aimed at selecting differentially expressed genes, there are several ap-
proaches for reporting the degree of reliability of results. Conventional approaches
based on gene-specific p-values are generally criticized on the grounds of the multi-
plicity of comparisons involved. Several proposals exist for adjusting p-values (see, for
example, Dudoit et al., 2002a and references therein) to account for multiplicities. A
second approach, not considered here, is to compute the posteriori probability that a
single gene is differentially expressed. For a discussion of the differences between the
two approaches, see Berger and Delampady (1987).

This thesis is focused on the third and, perhaps, currently the most popular ap-
proach, that is, to estimate the False Discovery Rate (FDR) for a group of genes or
for a specific cutoff value of a statistic. Assuming that the population of genes were
truly divided into two groups, the altered and unaltered genes, and that a statistical
approach selects a set of significant genes, the FDR is an estimate of the fraction of
truly altered genes among the genes declared significant. This approach often reflects
appropriately the fact that array experiments are performed to guide future validation
work on individual genes, which is usually expensive and time-consuming. Another
version of the FDR, namely pFDR, is also directly interpretable as the posterior
probability that a gene is not differentially expressed in a list of genes declared as
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differentially expressed.
An alternative to estimate the FDR could be to consider using classical Multiple

Comparison procedures (MCPs) such as the well known Bonferroni correction. These
procedures are too conservative when the amount of hypothesis under testing is high,
as is the case in microarray application. In fact even though MCPs have been in use
since early 1950s, and in spite of the advocacy for their use (e.g. it is strongly recom-
mended by some journals, as well as in some institution such as the Food and Drug
Administration in USA), researchers have not yet widely adopted these procedures.
In medical research, for example, Godfrey (1985) and Pocock et al. (1987) examined
sample of reports of comparative studies from major medical journals. They found
that researchers overlook various kinds of multiplicity, and as a result reporting tends
to exaggerate treatment differences (Pocock et al., 1987). This underutilization in
applied analysis is also due to other two difficulties with classical MCPs:

i) much of the methodology concerns comparisons of multiple treatments and fam-
ilies whose test statistics are multivariate normal (or t-student). In practice,
many of the problems encountered are not of the multiple-treatments type, and
test statistics are not multivariate normal (or t-student). In fact, families of
hypothesis are often combined with statistics of different types;

ii) classical MCPs are focused on controlling the probability of making a false re-
jection and often this is not quite needed in the analysis. The control of this
probability is important when a conclusion from the various individual inferences
is likely to be erroneous when at least one of them is. This may be the case, for
example, when several new treatments are competing against a standard, and
a single treatment is chosen from the set of treatments which are declared sig-
nificantly better than the standard. However, a treatment group and a control
group are often compared by testing various aspects of the effect (different end
points in clinical trials). The overall conclusions that the treatment is superior
need not be erroneous even if some of the null hypotheses are falsely rejected.

The first difficulty has been partially addressed by the recent line of research ad-
vancing Bonferroni-type procedures, which use the observed individual p-values, while
remaining faithful to control the probability of making a false rejection (see Simes
(1986), Hommel (1988) and Hochberg (1988)). The other difficulties are still present
and they constitute a serious problem. This is probably why other procedures which
amounts to ignoring the multiplicity problem altogether, were recommended by some
(e.g. Saville, 1990).

Several papers (Efron et al., (2001); Efron and Tibshirani, (2002)) connect em-
pirical Bayes methods with false discovery rates, but it is not clear whether these
procedures allow to control the FDR as suggested in Dudoit et al. (2002b).



Chapter 2

Methodology

In this chapter we show the methodology adopted to perform genes screening (or genes
shaving), of the genes under study in a microarray experiment. We want to remark
the need of frequentist p-values in order to control the FDR and we want to show that
the p-values proposed in Bayarri and Berger (2002) are useful in order to control the
FDR. In this way we are allowed to extent the control of FDR to models where the
p-values have to be calculated accounting the uncertainty on nuisance parameters. We
do this by numerically investigating the control of FDR using the p-values proposed
by Bayarri and Berger (2002). Furthermore we match the results about the frequentist
property of the Bayarri and Berger p-values with those that allow the control FDR.

We start by setting up the single hypothesis test on each gene by introducing
the use of p-values. We then introduce the p-values of Bayarri and Berger (2002),
bringing some results from model criticism to hypothesis testing, being aware that
these are two separate approaches to the inference. We then concentrate on Multiple
Hypothesis testing MHT by illustrating the use and control of two main quantities: the
FDR and the pFDR introduced, respectively, by Benjamini and Hochberg (1995) and
Storey (2002). We show the lack of efficiency of these methods when we use p-values
that are not uniformly distributed under the null hypothesis. We will consider two
situations when all genes are supposed independent and when there exists a kind of
dependency called clumpy dependency, meaning that genes expression are dependent
in small groups.

We apply the methodology to two relevant models for gene expression: the normal
model and the gamma model. The aim of using the former is to show the relation
between the Conditional Predictive p-value (pcpred) with the classical t-test for two
populations with unknown equal variance. In this way we justify the popular analysis
on t-test in terms of Conditional Predictive p-value. We show how the Partial Posterior
Predictive p-value (pppost) improves the inference using the Gamma model, which is a
flexible and popular model in microarrays analysis (Newton et. al, 2002).

19
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2.1 Single Hypothesis Testing

We introduce here the notation of single hypothesis testing. Lehmann (1986) covers
hypothesis testing in detail, so the reader should refer there for a more thorough
discussion of it. Suppose we are given a set of data, generally noted with X, and
we suppose that the data follow some distribution Fθ, where Fθ comes from a family
of distributions indexed by θ ∈ Θ. Some subset of Θ, say, Θ0 represent the null
hypothesis, which is usually the state of θ that one hopes to find evidence against. Some
other subset Θ1 represent the alternative hypothesis. For example, we are interesting
in assessing the differential expression of a gene in two tissues, the null hypothesis Θ0

would tend to be the set of θ that indicate the gene is not differentially expressed.
The alternative hypothesis Θ1 contains the set of θ values representing differential
expression for the considered gene: either overexpressed or underexpressed. It is always
the case that Θ0∩Θ1 = ∅, and sometimes Θ0∪Θ1 = Θ. If Θi consists of a single value,
then this hypothesis is said to be simple, otherwise, Θi is a composite hypothesis.

A test statistic T = t (X) is chosen to investigate compatibility of the model Fθ∈Θ0

with the observed data, xobs, and/or decide whether θ ∈ Θ0 or θ ∈ Θ1. We think
that the choice of the test statistic is driven by the data analysis problem and we do
not discuss choices of T , which can be anything from the unchanged set of data to an
univariate quantity. However, we follow the convention that large values of T indicate
less compatibility or evidence against de decision θ ∈ Θ0. The decision is based on a
rejection region, which we will denote by Γ. If T ∈ Γ, then we decide that the evidence
is not in favors of θ ∈ Θ0; if T /∈ Γ, then we decide θ ∈ Θ0. There are two kinds of
errors that can be committed when testing a hypothesis. The first is a Type I error
(false positive or false discovery), which occurs when T ∈ Γ yet θ ∈ Θ0. Therefore,
the Type I error rate for a specific θ0 ∈ Θ0 is

∫
{T∈Γ} dFθ0 , which we will denote by

Pr (T ∈ Γ|θ0). The second class is Type II error (false negative or false non-rejection),
and this occurs when T /∈ Γ yet θ ∈ Θ1. The Type II error rate for a specific θ1 ∈ Θ1

is Pr (T /∈ Γ|θ1). The power of the test (T, Γ) at θ1 is Pr (T ∈ Γ|θ1), and this is equal
to 1 − Pr (T /∈ Γ|θ1); in words, the power is the probability of rejecting, given the
alternative hypothesis is true.

The optimality criterion defined for hypothesis testing is to find the most powerful
test. Let Y be a test statistic and ∆ a rejection region for Y . For a given θ1 ∈ Θ1,
(T, Γ) represents the most powerful test of size supθ∈Ω0

Pr (T ∈ Γ|θ) if for all (Y, ∆)
such that

sup
θ∈Θ0

Pr (T ∈ Γ|θ) ≤ sup
θ∈Θ0

Pr (Y ∈ ∆|θ) ,

we have
Pr (T ∈ Γ|θ1) ≥ Pr (Y ∈ ∆|θ1) .

If (T, Γ) is most powerful ∀θ1 ∈ Θ1, then it is said to be uniformly most powerful.
Given the optimality criterion for testing a single hypothesis, it is convenient to

consider only the nested set of rejection regions, such as those defined by p-values.
For the remainder of this thesis, we will use the symbol H to denote the state of

the hypothesis: we pose H = 0 when θ ∈ Θ0 and H = 1 when θ ∈ Θ1. Whether the
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hypothesis is simple or composite will be explicitly stated.

2.1.1 Hypothesis testing versus model criticism

Let f (x; θ) be the corresponding density of Fθ. In this thesis we assume f (x; θ) is a
continuous density (with respect to Lebesgue measure), this is not strictly necessary
in single hypothesis testing, but it is generally required in MHT.

Consider now the previous setup in terms of densities

H = 0 : X ∼ f (x; θ0) against H = 1 : X � f (x; θ0)

The null hypothesis H = 0 means that one of the distributions Fθ∈Θ0 governs the
system with reasonable approximation, or that the model f (x; θ0) is compatible with
the observed data. It is worthy here to stress the difference between hypothesis testing
and model criticism (or model validation or model checking) following the recent paper
of (O’Hagan, 2003). What makes the difference between hypothesis testing and model
criticism is how we specify the alternative hypothesis. More formally, we are in a
hypothesis testing framework if the alternative is

X � f (x; θ0) ≡ X ∼ f (x; θ1 ∈ Θ1) ,

while we are doing model criticism (or model checking) if

X � f (x; θ0) ≡ X ∼ f1 (x; ω) ,

where f1 (x; ω) belongs to the set of all models but f (x;θ0). The tools that we are
going to present, that relay on p-values as measure of evidence against H = 0, are
explicitly designed for model criticism and not for hypothesis testing. However, here
we are only interested in constructing a nested set of rejection regions for H = 0 and
assign to that Pr (T ∈ Γ|θ0). This can be done without specifying any alternative
hypothesis. In this way we can produce proper inference using MHT, because in MHT
the assumptions on the distribution of the p-values under the alternative hypothesis
are very weak and operative procedures need only to know the distribution of the
p-values under the null hypothesis.

We recognize that this point of view regarding p-values is not shared in part of
statistical literature as clearly shown in Hubbard and Bayarri (2003). This is originate
by the debate on the differences between the Fisher’s ideas on significance testing (and
inductive inference) and Neyman-Pearson’s views on hypothesis testing (and inductive
behavior). According to Hubbard and Bayarri (referring to Berger, 2002) the agrement
between the two approaches can be reached if the p-values are calibrated with respect
to some quantity of interest such as the posterior probability of H = 0. By calibration
we mean that the p-values are values in some known scale. It is worthy here to remark
that:

a) we calculate the p-values approximating a probability, but we interpret them as test
statistics instead of probabilities. That, is P is a test statistic in the range (0, 1)
whose distribution under H = 0 belongs to the Beta family. In particular we
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want this distribution to be fixed under the null model. This is necessary because
of convergency theorems on MHT which will be show later. Moreover, in order to
readily obtain the Pr (P ≥ p) we also want P ∼ U (0, 1) (at least approximately).
In the same spirit of Berger (2002) we remark that main point here is whether
or not the P are calibrated with respect to some probability law regarding P ,
that is, whether or not we can make the statement Pr (P ≤ p|H = 0) = p;

b) we define the rejection region for H = 0, Γα as in (1.3) and therefore we consider
a gene not differentially expressed if the random rejection region obtained from
a p-value leads to α greater than some values. In particular the threshold level
is decided after (and not prior to) the experiment and it is explicitly suggested
by the MHT procedures that leads to Err, which is a compound error measures
for all test.

With respect to the application on Microarrays it is very important to note that
H = 0 means that the gene in two biological target samples under comparison is
not differentially expressed according to the parametric model f (x;θ0) but f1 (x;ω)
could be a model were the gene is still not differentially expressed. This is the price
we are paying to combine parametric model criticism with hypothesis testing, it is
the price we are paying to have assumed f (x; θ0) as a reference model for the null
hypothesis. This may seems to be a critical issue. The solution could be to use
non parametric methods, such as the permutation tests, that Westfall and Young
(1993) introduced in MHT data analysis based on original ideas of Tukey and further
developed by Ge, Dudoit and Speed (2003). However, errors in approximating the null
hypothesis with non-parametric methods is very large when the sample size is small,
as it is the case for small scale microarray experiments. These experiments are the
most popular due the prohibitive cost of a large scale study. For this reason we do not
consider non-parametric null hypothesis, therefore we will not consider in detail MHT
procedures based on permutation tests (Pesarin, 2001), such as those implemented in
popular software SAM (Significance Analysis of Microarrays) which is a package in the
Bioconductor project.

2.1.2 The p-value for composite null model

We simplify the notation by considering f (x; θ) to be the model under H = 0, because
we do not specify any alternative model. We consider composite null hypothesis where
θ ∈ Θ and further we partition θ =

(
θ, θ′

)
and we regard θ as a nuisance parameter.

This setup is a particular case of those in Berti, Fattorini and Rigo (2000) where they
provide a characterization to the problem of eliminating nuisance parameters. Here we
will mainly consider eliminating θ by maximum likelihood estimators and integrated
likelihood and we do not aim explicitly towards the mixture model in Berti, Fattorini
and Rigo (2000), which has been derived by eliminating the nuisance parameter θ.

To assess the compatibility of a model with the data it is necessary to chose a test
statistic T . We do not discuss the choice of T and we will consider natural choices
of T , in particular we will favor choice of statistics whose distribution under the null
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hypothesis is known at least in their kernel. Let f (t; θ) be the density of T under the
null hypothesis we will require that

f (t; θ) ∝ f∗ (t; θ)

where f∗ (t; θ) is the kernel density t with parameter θ.
There are several measures of compatibility (or measures of surprise) of the data

with f (x; θ), Bayarri and Castellanos (2001) investigate the behavior of some, for
different choice of T in a goodness-of-fit framework. The most commonly used one is
the p-value defined in terms of test statistics

p = Pr (T (X) ≥ t (xobs)) (2.1)

= Pr (T ≥ tobs)

=
∫

T≥tobs

f (t; θ) dt

where xobs are the observed data.
When θ = θ0 the null model consists of a single distribution, the p-value is readily

obtained, and it is uniformly distributed under H = 0. On the on the other hands,
when the null model depends on unknown nuisance parameter θ, one must somehow
eliminate θ. Various proposals have been suggested to remove θ, each yielding a
different candidate p-value. Before analyze some of the most popular candidate p-
values, we further motivate the need for p-values to be uniformly distributed on [0, 1].

2.1.3 The desirable finite and asymptotic sample property of candi-

date p-values

We call the random variable p (X) a candidate p-value if it range in [0, 1]; if it is
also uniform under H = 0 (p (X) ∼U(0, 1)), we say that p (X) is a frequentist p-
value. When a candidate p-value is not uniform, we say that it is conservative (anti-
conservative) at θ if Pr {p (X) < α} is less (greater) than α for all α < 1/2. Finally,
a candidate p-value is globally conservative (anti-conservative) if it is conservative
(anti-conservative) for all θ ∈ Θ.

This terminology was motivated by the following considerations. All considered
candidate p-values have range [0, 1], but, because H = 0 is composite, they may not
be uniform distributed, even when the null is true, the only exception is when T is an
ancillary statistic. Yet in practice we use small values of p (xobs) to denote surprise
or incompatibility, in analogy with the non-composite case, we act as if p (X) were
U(0, 1). Seriously anti-conservative candidate p-values lead to discard the null model
even when it is quite compatible with the data, while seriously conservative candidates
may cause to fail to discard models that are grossly incompatible with the data.

The point here is that a p-value is useful to assess compatibility of the null model
with the data only if its distribution under the null model, G0 (p), is known to the
analyst; otherwise there is no way of assessing whether or not observing, for example,
p = 0.1 is surprising. The fact that we require the distribution to be uniform is largely
a matter of convention, but it made readily usable all the results in MHT. We could
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admit other distribution on [0, 1], because we can always find a transformation of p (X)
such that the resulting random variable is uniform in [0, 1].

Hence, for frequentist testing purposes, we should require that candidate p-values
to be frequentist p-values. This requirements is generally unfulfillable for all sample
sizes, with the exception of special models, many of which are discussed by Bayarri
and Berger (1999), but it can often be approximately satisfied in large samples. We
may argue that f (t; θ) can be chosen so that p (X) is asymptotic frequentist p-value,
i.e. one whose distribution converges in law to U(0, 1) distribution under H = 0 as
n →∞ (Robins et al., 2000). In this sense Bayesian statisticians, who use p-values to
assess the compatibility of a model with the data, should require to use asymptotic
frequentist p-values. In fact if the goal is to check the model rather than the prior,
any procedure should perform adequately whatever the prior, and this would imply
that p-values should be required to be frequentist p-values. However as the sample
size increases, the data dominate any prior with support on all Θ, therefore Bayesians
should both expect and require that any model checking procedure should perform
adequately in the limit as n →∞.

2.1.4 Some candidate p-value

Let h (t) be the marginal density of T (X), that is the distribution obtained eliminating
the nuisance parameter. Each way of eliminating θ lead to a different h (t) and then
to different p-values. We examine, here, the various solutions proposed to eliminate
the nuisance parameter θ. We start with the classical solution and then we illustrate
the Conditional predictive p-value and the Partial posterior predictive p-value.

Classical p-values

The similar p-value. The first and most promising solution is to condition on
an ancillary statistic for θ. Let T ′ (X) = t′ be an ancillary statistic for θ then
f (x|t′obs; θ) = f (x|t′obs) which is a completely specified function and h (·|t′obs) can
be obtained by applying the random variable transformation, T ′ = T ′ (X). In this
case we define the similar p-value as follow:

psim = Pr h(·|t′obs) (T (X) ≥ t (xobs))

Weakness of this approach are:

i) computation can be burdensome;

ii) a suitable sufficient and ancillary statistic T ′ often does not exist;

iii) after conditioning upon T ′, the choice of compatibility statistic T may be forced
on the user, and this may not be a desirable choice.

The plug-in p-value. Another alternative is to replace θ by same estimate, say
the Maximum Likelihood Estimate (MLE), θ̂, this lead to the plug-in p-value, where
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h (t) = h
(
t; θ̂

)
(plug-in distribution) and

pplug = Pr h(·;θ̂) (T (X) ≥ t (xobs)) (2.2)

The main weakness is that pplug does not account for the uncertainty on θ and it also
over estimates the evidence against the null hypothesis.

The prior predictive p-value. A first Bayesian approach for the problem is to
use the predictive distribution: h (t) can be obtained by a transformation rule on
m (x) =

∫
f (x; θ) π (θ) dθ. The prior predictive p-value is

pprior = Pr m(·) (T (X) ≥ t (xobs)) (2.3)

Here m (x) measures the likelihood of the data relative to both the model and the
prior, therefore an excellent model could come under suspicion if a poor prior distri-
bution were used. For this reason, in an exploratory data analysis, a non subjective
analysis might be desired. This makes attractive to use non informative priors, but,
unfortunately, these are typically improper priors, in which case the prior predictive
m (x) would also be improper and this precludes computation of (2.3). For this reason
we no further consider the prior predictive p-value that was originally popularized by
Box (1980).

The posterior predictive p-value. From now on we will always assume π (θ) to
be an improper prior of θ ∈ Θ. This concerns leads many Bayesians, beginning with
Guttman (1967) and Rubin (1984), to consider the posterior predictive p-value: θ is
integrated out with its marginal posterior distribution and calculating the posterior
predictive distribution mpost (x|xobs) =

∫
f (x; θ) π (θ|xobs),

ppost = Pr mpost(·|xobs) (t (X) ≥ t (xobs)) (2.4)

The strengths for this approach are:

i) improper non-informative priors can readily be used;

ii) mpost (x|xobs) will be much more influenced by the model than by the prior and
the posterior distribution will essentially concentrate at θ̂ so that ppost → pplug

as n →∞.

The weakness of this approach is that we are making a double use of the data:
first to train the improper prior into a proper distribution and then computing the
tail area corresponding to t (xobs). This approach is very conservative with respect to
the rejection of H = 0 in particular when the sample size is small as in the case of
microarray data analysis.
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The Partial Posterior Predictive p-value and the Conditional Predictive

p-value.

On the spirit of avoid double use of the data Bayarri and Berger (2000) propose the
partial posterior predictive p-value:

pppost = Pr m(·|xobs\tobs) (t (X) ≥ t (xobs)) (2.5)

here m (·|xobs\tobs) and the partial posterior π (·|xobs\tobs) are given by

m (·|xobs\tobs) =
∫

f (t|θ)π (θ|xobs\tobs) dθ,

π (θ|xobs\tobs) ∝ f (xobs|tobs; θ) π (θ) ∝ f (xobs; θ) π (θ)
f (tobs; θ)

, (2.6)

where π (θ) is an improper prior and π (·|xobs\tobs) is assumed proper. Conditioning
the posterior to the density of the observed statistic avoids the double use of the data
that occurs in the posterior predictive p-value because the contribution of tobs to the
posterior is removed before eliminate θ by integration. The notation xobs\tobs indicates
this.

The second p-value they propose is a specific case of what they termed a U -
conditional predictive p-value, defined, for some conditioning statistic U = u (x) as

pcpred(u) = Pr m(·|uobs) (t (X) ≥ t (xobs)) ; (2.7)

here uobs = u (xobs), and the conditional distribution T |U is

m (t|u) =
∫

f (t|u; θ) π (θ|u) dθ,

assuming that

π (θ|u) =
f (u; θ) π (θ)∫
f (u; θ) π (θ) dθ

is proper. f (t|u; θ) and f (u; θ) are defined as conditional and marginal densities of T

and U under the null hypothesis.
The specific proposal that they recommend, for m (t|u) to be invariant under

parameter transformation, is to choose U in (2.7) to be the conditional MLE of θ,
θ̂cMLE (x), given by

θ̂cMLE (x) = arg max
θ∈Θ

f (x|t, θ) = arg max
θ∈Θ

f (x; θ)
f (t; θ)

(2.8)

and the resulting p-value is called the conditional predictive p-value denoted by pcpred =
p

cpred(θ̂cMLE). Given the invariant property of MLE under one-to-one transformations
of u (x), then also m (t|u) is invariant to any one-to-one transformation of (2.8).

When f (x; θ) belongs to the natural scale exponential family the following Theo-
rem 1 apply.

Theorem 1 (Bayarri and Berger, 2000). Suppose f (x; θ) is a continuous density
from the natural scale exponential family, and that statistics T > 0 and U > 0 exists
such that S = T + U is sufficient and the joint density

f (t; u; θ) = kθαtγuα−γ−2 exp {−θ (t + u)} ,
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for some constants k, α > −1, and γ < α − 1. Under the prior π (θ) ∝ 1/θ then
pcpred = ppost = psim.

Theorem 1 can be particularized by noting that when T is conditionally indepen-
dent of θ̂cMLE and

(
T, θ̂cMLE

)
are jointly sufficient for θ, then pppost = pcpred. But

when this condition does not hold then we can consider pppost to approximate pcpred,
in fact Robins et al. (2000) showed that pcpred and pppost are asymptotic frequentist
p-values: their asymptotic distribution is U (0, 1) for all θ when n →∞. Successively
Bayarri and Berger (2000) showed the following theorem.

Theorem 2 (Bayarri and Berger, 2000). Let p (X) be any U -conditional p-value for
a proper π (θ), and consider it as a random variable with respect to the distribution
f (x; θ). If the distribution of p (X) does not depend on θ, then p (X) is a frequentist
p-value for all θ. The conclusion also holds for π (θ) improper under this condition:
suppose a sequence of increasing compact sets Θk ⊂ Θ such that ∪k≥1Θk = Θ, 0 <

mk =
∫
Θk

π (θ) dθ, m (u) =
∫
Θ f (u; θ) π (θ) dθ < ∞, and limk→∞mk

∫ [mk(u)]2

m(u) du = 1,

where mk (u) =
(∫

Θk
f (u; θ) π (θ) dθ

)
/mk. This condition is satisfied if U has location

or scale parameter distribution and π (θ) is the reference prior (Berger and Bernardo,
1992abc).

For the pcpred this result may help to remove any concerns about asymptotic ar-
guments, while, for the pppost the result of Robins et al. (2000) may help to alleviate
them. However calculate pppost is much easier than calculate pcpred, in fact it is only
necessary to know the density f (t; θ), or at least its kernel f∗ (t; θ). However in the
case we don’t know the density even on its kernel f∗ (t; θ), we can approximate it
by generating θ ∼ π (θ|xobs) and for each θ generate x, calculate t and approximate
f (t; θ) with a kernel density. This is a very computational intense procedure that
has not been used here because we considered application where we know at least
f∗ (t; θ). However this computationally intense procedure shows the potential of the
methodology that can be applied to almost every practical situations.

2.2 Microarray data analysis with two models: the Nor-

mal model and the Gamma model

We apply the above methodology to two models: the Normal model and the Gamma
model. In the former it is possible to calculate pcpred and, using Theorem 2 we show
that it is U (0, 1) for all sample size. The pcpred in the Normal model is the p-value
obtained from the classical t-test for the difference of two means when the variance
is unknown but equal in the two populations. t-tests are widely used in microarray
analysis to perform gene screening and here we characterize them in terms of the used
methodology.

The Gamma model has been also used in microarray data analysis because of its
flexibility (Newton et al., 2002). It allows equal variation coefficient on the measures of
mRNA abundance in two samples (say, R and G signals in cDNA array experiments).
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This feature has been found relevant in many experiments as noted in Chen et al.
(1997). For this model we didn’t found pcpred and we only calculate pppost and we
show that it outperforms the pplug and ppost in terms of asymptotic approximation to
the uniform distribution. In the end this leads to more efficient MHT procedures.

The sketches of the calculations are reported here while the details are showed in
the Appendices A and B.

2.2.1 The Normal model for single gene expression

Let X and Y be two independent measures of mRNA abundance for a single gene in
two biological target samples under comparison. Suppose that

X = X1, . . . , XnX ∼ N
(
µX , σ2

)
, i.i.d.

Y = Y1, . . . , YnY ∼ N
(
µY , σ2

)
, i.i.d.

where all the parameters are unknown. We want to investigate the compatibility of
the data with the model that support the hypothesis of no differential expression.
Parametrically, this requires the two Normal distributions to have the same mean.
Formally,

H = 0 : µX = µY = µ,∀σ2 > 0

against a non specified alternative. We found convenient to use the following statistic:

T (X = x,Y = y) = t (x,y) = x− y

where x and y represent the observations of sizes respectively nX and nY , and x, y

their respectively means. The null distribution of the test statistic is

T (X,Y) |H0 ∼ f
(
t|σ2

)
= N

(
0,

(
1

nX
+

1
nY

)
σ2

)

=
1√

2π nX+nY
nXnY

σ2
exp

(
− t2

2nX+nY
nXnY

σ2

)

and σ2 is the nuisance parameter. We denote with t (x,y) the observed value of T and
with t a point in the space defined by T , the real line in this case.

The Plug-in p-value for the Normal model

The MLE of µ and σ2 are

µ̂ =
nX

nX + nY
x +

nY

nX + nY
y

σ̂2 =
∑nX

i=1 x2
i +

∑nY
i=1 y2

i

nX + nY
− µ̂2

Therefore the Plug-in p-value is:

pplug = 2


1− Φ




|t (x,y)|√(
1

nX
+ 1

nY

)
σ̂2






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where Φ (·) is the cumulative distribution function (cdf) of a standard normal distri-
bution.

The posterior predictive p-value for the Normal model

Using the reference prior for µ and σ2:

π
(
µ, σ2

) ∝ 1/σ2, σ ∈ R+

the marginal posterior distribution for σ2 is

π
(
σ2|x,y

)
= Ga−1

(
nX + nY

2
− 1, σ̂2

)

where Ga−1
(

nX+nY
2 − 1, σ̂2

)
denotes the inverse gamma distribution with scale pa-

rameter σ̂2. The marginal posterior distribution for T is

mpost (t|x,y) = ζnX+nY −2

(
0, σ̂2 nX + nY

nXnY

2
nX + nY − 2

)

where ζnX+nY

(
0, σ̂2 nX+nY

nXnY

2
nX+nY −2

)
represents the density of a centered t-student

distribution with nX+nY degrees of freedom and scale parameter equals to σ̂2 nX+nY
nXnY

2
nX+nY −2 .

Therefore the Posterior p-value is

ppost = 2


1−ΥnX+nY


 |t (x,y)|√

σ̂2 nX+nY
nXnY

2
nX+nY −2







where ΥnX+nY (·) is the c.d.f. of a standard t-student distribution with nX + nY

degrees of freedom.

The conditional predictive p-value for the Normal model

The U statistic is a vector of two elements µ̂cMLE and σ̂2
cMLE

u (x,y) = arg max
µ,σ2

L
(
µ, σ2

)

f (t|σ2)
=

(
µ̂cMLE = µ̂, σ̂2

cMLE =
nXS2

x + nY S2
y

nX + nY − 1

)
,

where S2
x = x2 − x2, S2

y = y2 − y2 and x2 =
∑n

i=1 x2
i /nX , y2 =

∑n
i=1 y2

i /nY are the
second sampling moments. Note that only σ̂2

cMLE is relevant in order to eliminate σ2.
Further we note that σ̂2

cMLE is independent from T and they are jointly sufficient for
σ2 and µ; so by Theorem 1 the Partial Posterior Predictive p-value equals Conditional
predictive p-value.

Let f
(
u (x,y) , µ, σ2

)
represent the joint density of U and the parameters, then

the U -conditional distribution for the parameter is given by:

π
(
µ, σ2|u (x,y)

)
= π

(
µ|σ2,

nXx + nY y

nX + nY

)
π

(
σ2|σ̂2

cMLE

)

where:

π

(
µ|σ2,

nXx + nY y

nX + nY

)
= N

(
nXx + nY y

nX + nY
,
σ2

n

)

π
(
σ2|σ̂2

cMLE

)
= Ga−1

(
nX + nY − 2

2
,
nX + nY − 1

2
σ̂2

cMLE

)
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Figure 2.1: Distribution of the p-values under the null model: X,Y ∼ Φ (·) and
nX = nY = 2. We can see that only the pcpred is uniformly distributed. In the
left columns are showed the quantiles of the empirical distribution of the p-values
against the quantile of the U(0, 1) distribution (QQ-plot). The right column show the
histograms of the same distribution.

The marginal distribution of t|u (x,y) is given by:

m (t|u (x,y)) = ζnX+nY −2

(
0,

(nX + nY ) (nX + nY − 1)
(nX + nY − 2) nXnY

σ̂2
cMLE

)

Then the Conditional Predictive p-value is equal to:

pcpred = 2


1−ΥnX+nY −2


 |t (x,y)|√

S2
p







where S2
p =

(
1

nX
+ 1

nY

)(
nXS2

x+nY S2
y

nX+nY −2

)
is the pooled sample variance in the classical

t-test for the difference of two means under normal assumption with equal variance.
Figure 2.1, shows the differences in the null distribution in the three p-values

for two experimental replications. We simulated 1000 samples of X and Y of size
nX = nY = 2 from a standard normal distribution. We can see the only pcpred is
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U (0, 1) under the null hypothesis. Obviously it is not necessary to show this by using
simulations because |t (x,y)| /

√
S2

pooled is a pivotal quantity and we know that the p-
value from a t-test are frequentist. However, here we want to illustrate the differences
among the three p-values using the pppost (which equals the pcpred) that will be used
in the for the Gamma model where we cannot calculate the pcpred. We can further
note that pplug is less conservative than the ppost. This is due to the double use of the
data in the ppost, in fact it becomes quite hard to criticize H = 0 when we first used
the data to calculate the posterior and then to calculated the p-value using the data
again in tobs. The effect the double use of the data becomes stronger as the sample
size get smaller, in fact the differences between the three p-values are negligible for a
sample size larger than ≈ 50. However, in the case of microarray analysis this sample
size is practically unreachable in small studies and therefore we have to be careful in
choosing the p-values that provides evidence against the null hypothesis.

2.2.2 The Gamma model for single gene expression

As noted above, measured intensity levels (either R and G in cDNA array, or two AD

measures in oligonucleotide arrays) depends on signal strength (Chen et al., 1997).
On other hands it is convenient to express the measurement error in terms of relative
variance (variability) rather than in terms of variance. Therefore a quantity worthy
of estimations is the common Coefficient of Variation (CV ) of the measurements. We
take into account this by modelling the two measurements with distinct distributions
with the same CV . We found convenient to work with Gamma distributions where
the common shape parameter represents the common CV . Formally:

X = X1, . . . , XnX ∼ Gamma (a, θX) i.i.d.

Y = Y1, . . . , YnY ∼ Gamma (a, θY ) i.i.d.

where nX = nY = n. Extension to unbalanced sample cases are also possible, but
they have not considered here for seek of simplicity in the notation. Note that in this
parametrization we have that CVX = CVY = 1/

√
a. The mean mRNA abundance

for measurements X and Y is given respectively by E (X) = aθX and E (Y) = aθY ,
therefore the null model is

H = 0 : θX = θY = θ, ∀a > 0

where θ represents the common unknown mean. We found useful to work with the
ratio of sample means, this leads us to define the following test statistic,

T (X = x,Y = y) = t (x,y) =

{
x
y , x ≥ y
y
x , x ≤ y

.

Note that the dual role of X and Y in using T (X,Y), in fact we loose the information
of whether the gene is overexpressed in X or in Y. This information is not proba-
bilistically relevant because we are interested only in measuring the compatibility of
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Figure 2.2: The effect of the nuisance parameter a on the distribution of T = x/y for
the gamma model. (a) Distribution of T > 1 for two different values of the nuisance
parameter a. (b) Dependency of the p-values from a and n ( for a = 1).

H = 0. The null distribution of T is a Multiple Scaled Beta distribution of II kind
(Kendall and Stuart, 1969)

T (X,Y) |H = 0 ∼ f (t; a) =
22naΓ

(
1
2 + na

)

Γ (na)
√

π

tna−1

(1 + t)2na , t ≥ 1 (2.9)

and a is the nuisance parameter.
Figure 2.2 provides an idea of the dependency of (2.9) from the common CV . In

the top of Figure 2.2 we plotted the (2.9) for a = 9 and a = 25 that correspond
respectively to CV = 1/3 and CV = 1/5. For T = 2 and n = 2 we have that in the
former situation the p-value is ≈ 0.05 while in the latter is ≈ 0.00. The interpretation
of this is quite straight forward: it says that by observing a double fold change of the
means does provide evidence against the null hypothesis when the variability in the
system is sufficiently small. On the contrary, if we observe a double fold change then
it does not provide enough evidence against H = 0 if the relative variability of the
experiment is large. In many microarray data analysis, practitioners used to adopt the
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practical rule of consider, as differentially expressed, only those genes that exhibits a
double fold change in the means. Therefore, if the considered Gamma model fits the
data, this role is not supported by the data.

We can reinforce this conclusion by considering the bottom of Figure 2.2 where we
plotted the p-values for different values of a. The gradient of this curve is larger for
a < 10, moreover a ∈ (1, 10) is plausible in microarrays analysis, therefore it becomes
a critical task estimate the nuisance parameter a. In (2.9) we can see the dual role of
a and n, the horizontal axe in the bottom of Figure 2.2 represents also the sample size
for a = 1. In fact when a = 1, the amount of signal equal the amount of noise and
we need more than 10 replications to detect that a gene is differentially expressed. It
is not surprising that playing with the sample size we may make the signal-to-noise
ratio in our favor, but here we provide a numerical quantification. In fact the bottom
of Figure 2.2 suggests that when the sample size is small, n ≤ 10, proper inference on
a is critical. For this reason is useful to consider the pppost as an alternative way to
the pplug and ppost.

The Plug-in p-value for the Gamma model

Let and â represent the MLE of and a from the Likelihood function under the null
model. The pplug is obtained generating T from (2.9) having a = â. We can see that
under the null hypothesis the (2.9) does not depend on θ and the MLE of θ will not
be used. Details are in Algorithm 16 in Appendix.

Posterior p-value for the Gamma model

Two non-informative priors were considered: the Jeffreys’s prior and the Reference
prior. The inference under the Reference prior provides better results than with the
Jeffreys’s prior as showed in Liseo (1993). The reference prior is improper, it is given
in the following formula

π (θ, a) ∝ 1
θ

√
aψ(1) (a)− 1

a
(2.10)

where ψ(1) (a) is the trigamma function. The posterior predictive distribution for T is
given by the integral

mpost (t|x,y) =
∫

R+

22naΓ
(

1
2 + na

)

Γ (na)
√

π

tna−1

(1 + t)2na

Γ2 (2na)
Γ2 (na) Γ2n (a)

∏n
i=1 (xiyi)

a−1

[n (x + y)]2na ×

×
√

aψ(1) (a)− 1
a

da.

The ppost has been approximated with a Monte Carlo sum, by first approximat-
ing π (a|x,y) using a Metropolis Hastings algorithm (MH) and then using Algorithm
16 (see Appendix) where the values of a are obtained from the marginal posterior
distribution of a, π (a|x,y).
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The Partial Posterior Predictive p-value for the Gamma model

In this paragraph we derive the marginal partial posterior distribution for parameter
a, π (a|x,y\t (x,y)). As far as we know this distribution has been never derived
before. We provide a simulation algorithm and we demonstrate that this is a proper
probability distribution. π (a|x,y\t (x,y)) is proportional to

π (a|x,y\t (x,y)) ∝ Γ2 (2na)
Γ2 (na) Γ2n (a)

∏n
i=1 (xiyi)

a−1

[n (x + y)]2na

√
aψ(1) (a)− 1

a
× (2.11)

×
(

22naΓ
(

1
2 + na

)

Γ (na)
√

π

t (x,y)na−1

(1 + t (x,y))2na

)−1

and its approximation has been obtained in the same way as for the posterior, except
that the proposal distribution has been set up according to the kernel of the partial
distribution π (a|x,y\t (x,y)) instead of the kernel of the posterior π (a|x,y). We
remark that because we have to run thousand of Markov chains, it is not feasible
to check the behavior of each chain and it is necessary to have an automatic choice
of the proposal distribution. The one adopted here, produces a chain that behaves
acceptably as shown in the Appendix.

We showed the following proposition (3) that assures a proper inference using the
marginal partial posterior distribution for a.

Proposition 3 For n ≥ 2 the (2.11) is a proper distribution.

Proof. Detailed proof is showed in Appendix. The proof is based on the analysis
of π (a|x,y\t (x,y)) for a → ∞ and a → 0+. For a → ∞ the proof is based on some
considerations about the geometric and arithmetic means of x and y.

Figure 2.3 shows a typical inference using the three p-values under the alterna-
tive model X ∼ N (3, σ = 3/2), Y ∼ N (1, σ = 1/2) with n = 3 replications. This
model simply reproduce the fact the two sets of measurements for X and Y have the
same CV but the two genes are differentially expressed (the gene in population X

is overexpressed). We considered a set of simulated data where no negative numbers
appeared (of course it is not worthy to check the compatibility of negative observations
with a gamma model), and the three p-values are: pplug = 0.021, ppost = 0.085 and
pppost = 0.009. As expected, the partial posterior predictive p-value provides more
evidence against the null hypothesis and it may allows us to detect that the gene is
actually differentially expressed.

Considering the top of Figure 2.3 we see why the pppost provides more evidence
against the null model. We know that the true value of a is 4 and only the partial
posterior predictive distribution, π (a|x,y\t (x,y)), has the mean near to this value
so providing larger density around 4 than the posterior distribution π (a|x,y). The
variance of π (a|x,y\t (x,y)) is larger than the variance of π (a|x,y) because the latter
takes into account only the variability of the parameter while the former also the
variability of T . The partial posterior distributions π (a|x,y\t (x,y)) learns more
about a then both the posterior distribution and the MLE. The result of this is to
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Figure 2.3: Gamma model: typical inference with the three p-values under an alterna-
tive model: X ∼ N (3, σ = 3/2),Y ∼ N (1, σ = 1/2) and n = 3, so that the common
variation coefficient a = 2. (a) The reference prior, the posterior and partial posterior
are showed together with their modes (Vertical lines). The bold vertical line is the
true value of a. (b) The marginal distributions of T according to the different ways of
eliminating a. The bold vertical line is the observed value of T for the simulated data
set.
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Figure 2.4: Distribution of the p-values under the null model: X,Y ∼ Gamma (2, 1)
and n = 4. We can see that only the pppost is approximately distributed U (0, 1).

consider the observed value of T very rare under H = 0 as shown in the bottom of
Figure 2.3. As we noted above, other measures of surprise can be considered in order
to carry out the test. Bayarri and Castellanos (2001) recommended that these should
be based on the partial posterior distribution or the conditional predictive distribution
when available.

In the end the pppost is a p-value asymptotically uniform distributed under the null
hypothesis. Also the other p-values are asymptotically uniform distributed under the
null hypothesis, but for a fixed n the error in approximating the null distribution with
U (0, 1) is much less for pppost than for the other p-values as shown in Figure 2.4. We
produced these quantile-quantile plots (in the sequel QQ-plots) by simulating 1000
p-values under the null hypothesis with n = 4 replicates of X,Y ∼ Gamma (2, 1). We
can see that with only 4 replicates pppost behaves like a U (0, 1) random variables while
the ppost is a conservative p-value and the pplug is anticonservative. Considering the
sample size that we can use to make proper inference, that is n = 2, we can see that
the pppost tends to behave in a conservative way (see top of Figure 2.5), while with
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Figure 2.5: Distribution of the p-values under the null model: X,Y ∼ Gamma (2, 1)
and n = 2 (first row) and n = 10 (second row). We can see that with a large sample
size all p-values are approximately distributed U (0, 1). With very small sample sizes
the pplug is anticonservative, the ppost is very conservative and the pppost tend to be
conservative.

n = 10 replicates we find that all three p-values are approximately U (0, 1) as shown in
the bottom of Figure 2.5. The differences between the three p-values may not seem to
be very large, but when we use the p-values in MHT they become relevant. Intuitively
this is due to the fact that we are drawing inference from thousand of p-values and
the compound error arising from each test determines the results of the analysis.

2.3 Multiple Hypothesis Testing (MHT)

The literature on MHT has experienced an increase in the recent years. Here we try
to summarize those topics that are relevant for this thesis. We briefly discuss the most
important issues indicating the relevant bibliography. For the reasons indicated above
the MHT techniques based on non-parametric methods will be marginally considered
in this work.
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Not-Reject Reject Total
Null True V ′ V m0

Alternative True O L m1

Total W R m

Table 2.1: Outcomes in testing m hypotheses, based on Table 1 of Benjamini and
Hochberg (1995)

We remember here the notation: with Hi we indicate the state of the hypothesis
i on gene i, Hi = 0 if the null hypothesis is true, otherwise Hi = 1. We will always
assume Hi a random variable and its probability will explicitly specified. In this way
we are legitimate to write conditional probabilities on Hi.

2.3.1 Compounds error measures for MHT

When testing multiple hypotheses (MHT) the statistical setup becomes much more
complicated. Each test has is own Type I and Type II errors, and it becomes unclear
how one should measure the overall error rate. Specifically, let’s consider Table 2.1
which lists the possible outcomes when testing m hypothesis simultaneously. We
suppose there exists an unknown subset of true null hypothesis, M0 = {i : Hi = 0}
the cardinality of M0 is m0, with possibly m0 = 0. The m hypotheses are assumed to
be known in advance. R is an observable random variable, while V ′, V, O and L are
unobservable.

For example, V is the number of Type I errors (false positives), O is the number
of Type II errors (false negatives), and R = V + L is the total number of significant
hypothesis. In parallel with single hypothesis testing the notion of power is approx-
imately given by the ratio L/R, again here we look for the most powerful testing
procedure, that is a procedure that maximize L/R while bounding V .

In order to measure the errors occurred in MHT, it is convenient to define a com-
pound error measure Err. We consider here six Err that are common to the MHT
literature:

i) Per Comparison Error Rate: PCER = E (V ) /m;

ii) Family Wise (also called experiment-wise) Error Rate: FWER = Pr (V ≥ 1);

iii) False Discovery Rate: FDR = E (V/R|R > 0)Pr (R > 0);

iv) False Non-rejection Rate: FNR = E (O/W |W > 0)Pr (W > 0);

v) Positive False Discovery Rate: pFDR = E (V/R|R > 0) and Positive False Non-
rejection Rate E (O/W |W > 0);

vi) False Discovery Proportion: FDP = Pr (V/R > γ).

Note that all expectations and probabilities are conditioned on M0.



2. Methodology 39

The PCER and the FWER have been used for many years, but the FDR was
relative recently introduced by Benjamini and Hochberg (1995). The FNR was intro-
duced by Genovese and Wasserman (2001). The positive versions of these compound
error measures were introduced by Storey (2002, 2003).

The FDP was introduced by Korn et al. (2001).
Even if it may have no meaning to compare this error measure because each one

has a different interpretation, we numerically expect that the following inequality hold
in general (Ge et al., 2003):

PCER ≤ FDR ≤ pFDR ≤ FWER. (2.12)

We reported (2.12) because it is very common in literature to fix a significance level
and then compared the result of multiple testing across all Err definitions.

For each of these measures it has been studied a decision procedure on the m

hypothesis under test that is focused on controlling a particular error measure. The
main goal of each procedure is to gain in power while controlling the error rate at some
fixed level α: Err ≤ α.

There exists different types of controls on Err. We say that an algorithm strongly
controls the error rate if it is controlled for all values of m0 simultaneously. In other
words it is not necessary to include m0 as an argument in the algorithm. An algorithm
weakly controls the error rate when it only holds for m0 = m; that is, when all null
hypothesis are assumed true. Given the two types of control, Shaffer (1995) pointed
out that in MHT literature strong control is usually preferred over weak control, simply
because it implies weak control and it is adaptive over all possible values of m0. We
further note that the expectations and probabilities for the error rates i) - v) are
calculated with respect to the cardinality of M0. We say that a procedure has an
exact control of Err if it is conditioned on M0 (and not m0). In general strong
control implies exact control, but neither of weak control and exact control implies
the other. In the microarray setting, where it is often unlikely that none of the genes
is differentially expressed, it seems that weak control without any other safeguards is
unsatisfactory, and it is important to have exact or strong control. The advantage of
exact control is higher power, and we will show that we are more likely to obtain exact
control by using the pppost and pcpred.

We can consider MHT algorithms to be carried out on the ordered p-values for a
given set of rejection regions Γα. The MHT literature has mostly been concerned with
deriving algorithms based on the order statistics. As stated at the very beginning,
instead of using p-values, we could use other measures of evidence if the choice leads
to a nested set of rejection regions Γα and allows one-to-one mapping between Γ and α.
The investigation of the behavior of other measures of evidence (or surprise) is behind
the scope of this thesis, and the reader is referred to the originals works of Good
(1953, 1956) recently commented by Bayarri and Berger (1997, 1999). The problem
with using other measure of evidence is that most of them are not calibrated, i.e. they
are not in the error scale such as the frequentist p-values. However, the relevant goal is
to classify the hypotheses H1,H2, . . . , Hm based on respectively p-values p1, p2, . . . , pm
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and another more general way to achieve this goal is to consider the MHT problem as
missing label problems (Genovese and Wasserman, 2001) where we have to estimate
the label (0 or 1) on each observed p-values. This more general point of view may lead
to consider other MHT procedures which could be not based on ordered p-values.

We will refer to the algorithms based on ordered p-values as sequential p-values
methods. This is how a sequential p-value method works: using the observed data,
it estimates the rejection regions for all hypothesis, so that on average Err ≤ α

for some pre-chosen α. The result of a sequential p-value method is an estimate k̂

that indicates to reject the null hypotheses corresponding to p(1), p(2), . . . , p(k̂), where
p(1) ≤ p(2) ≤ . . . ≤ p(m) are the ordered observed p-values.

To further illustrate the general goals in MHT and the most relevant results ob-
tained from using different controlling procedure, we use Figure 2.6. Here test m = 50
null hypotheses Hi = 0 : X ∼ N (1, 1) for i = 1, . . . , m. We simulated 25 observations
from the null model and 25 from an alternative model N (3, 1). The corresponding
frequentist p-value from Hi is pi = 1 − PrN(1,1) (X > xi). It is reasonable to suspect
that small p-values may come from the alternative hypothesis (P and b points). With
respect to this intuition, it is convenient to consider the ordered sequence of p-values
as showed in Figure 2.6, where are all p-values are plotted against their rank order. In
this work we limit to consider six procedures that control Err = α, three are aimed
to control the FWER, and the others control the FDR and pFDR.

In order to simplify the notation, we use α to indicate the amount of Err that
we are bearing with while controlling some of the previous compound error measure.
However, each error measure has its own interpretation and it is not fair to compare
all the error measures by using the same level α. We will do this having in mind that
we are dealing with different procedures that are aimed to control different definitions
of Err. Moreover in MHT there not exists any kind of “conventional level” α like the
0.05 (or 0.01) as in single hypothesis testing. In the end, the choice of some reference
level α, should be done in a more broadly decision theory framework, for example, by
assigning an utility function to α and to the power of the test. This is what is done
in Genovese and Wasserman (2001) where they considered to control both the FDR

and FNR.
It is important to note that if we choose a set of hypotheses to be rejected, M̂0, then

the corresponding Err refers to the whole set and cannot be pointed to any of the single
hypothesis belonging to M̂0. This is due to the fact that we are taking into account
the multiplicity and considering the outcome from Table 2.1 we are, in some sense,
loosing information on single tests. This point was suggested by Glonek and Solomon
in the discussion of the paper of Ge et al. (2003). They used a numerical example
on the pFDR in order to show that if we reject a set of hypotheses for pFDR = α

then the pFDR we are bearing with is larger. The claim there was made only for the
pFDR but it applies in general to the p-values. As stated above, a p-value defines a
rejection region of the form P > p, but once we observed p, then we can only decide
to reject H = 0 based on the equality P = p which is not the same rejection region as
P > p. The result of these point, applied to MHT, has been showed by Glonek and
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Figure 2.6: Hypothesis testing with ordered p-values. Lower case letters represent
error: (a) H = 0 and null hypothesis rejected, (b) H = 1 and null hypothesis not
rejected; Capital case represent success: (P) H = 1 and null hypothesis rejected and
(O) H = 0 and null hypothesis not rejected. Therefore (P) represents the power of
the procedure, (a) the False Discovery Rate and (b) the False Non-Rejection Rate.
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Solomon, but it was yet known since the work in Selke, Bayarri and Berger (2001) and
it is curious that Glonek and Solomon used almost the same numerical investigation
as in Selke, Bayarri and Berger (2001).

Summing up, in MHT is relevant only the frequentist interpretation of the p-values.

2.3.2 Procedures that control compound error measures

In literature we encounter two different classes of MHT procedures:

a) single-step procedures: equivalent multiplicity adjustments are performed for all
hypotheses, regardless of the ordering of the test statistics or raw p-values;

b) stepwise procedures in which the rejection of particular hypothesis is based not
only on the total number of hypotheses, but also on the outcome of the tests
of other hypotheses. Step-down procedures order the raw p-values starting with
the most significant, while step-up procedures start from the least significant.

We consider here six procedures that control the Err. The first and the last are
single-step procedures while the others are step-up procedures.

We consider three procedures that control the FWER:

i) Bonferroni method: k̂ = max
{
k : p(k) ≤ α/m

}
,

ii) Holm procedure (1979): k̂ = max
{
k : p(j) ≤ α/ (m− j + 1) for j ≤ k

}
,

iii) Hochberg procedure (1988): k̂ = max
{
k : p(k) ≤ α/ (m− k + 1)

}
.

Simes (1986) developed a procedure that weakly control the FWER. This is
important in this thesis and we summarize it in Algorithm 4.

Algorithm 4 (Simes, 1986 - BH procedure).
1. Let p(1) ≤ p(2) ≤ . . . ≤ p(m) be the ordered observed p-values.
2. Calculate

k̂ = max
{
k : p(k) ≤ α · k/m

}
. (2.13)

3. Reject the null hypothesis corresponding to p(1), p(2), . . . , p(k̂).

We consider two procedures that control the FDR:

iv) the Benjamini Hochberg (BH) procedure (1995): throughout this work, we will
refer to Algorithm 4 as the BH procedure, mainly because we are interested in
the fact that it strongly controls the FDR as was originally proved in Benjamini
and Hochberg (1995). This algorithm was initially studied by Seeger (1968),
who conjectured that, when m0 = m, Algorithm 4 provides weak control of the
FWER. The formal proof of the conjecture was given in Simes (1986). The
proof that Algorithm 4 strongly control the FDR was given by Benjamini and
Hochberg using an induction argument, while the latest proof using martingales
was given in Storey (2003);
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v) the Benjamini and Yuketieli (BY) procedure (2001) substitutes the (2.13) with

k̂ = max

{
k : p(k) ≤ α · k/

m∑

i=1

1/i

}
. (2.14)

Sometimes it is convenient to consider these five procedures in terms of adjusted
p-values, because raw p-values obtained from m tests are adjusted (or calibrated) to
control a particular Err. More formally, let p̃(i) be the adjusted p-value of a single
hypothesis Hi, for a particular adjusting procedure that control the Err at level α we
have

p̃i = inf {α : Hi is rejected at level Err = α} .

For example, consider the Bonferroni procedure, the adjusted p-values are the raw p-
values divided by the number of tests: p̃(i) = p(i)/m. Assuming that the raw p-values
are U (0, 1) under the null hypothesis, that is p(i) = α, then rejecting all hypotheses
with p̃(i) ≤ α assures that we are bearing with a FWER ≤ α. If the raw p-values were
conservative than we are bearing with FWER < α and if they were anticonservative
then we have no control of the FWER. These considerations apply to all other Err

controlling procedures, so it is necessary to have frequentist p-values for the MHT.
Finally, we consider the control of the pFDR by using the q-values that have been

introduced by Storey (2003). Let qi be the corresponding q-values for the p-value
pi. Storey (2003) pointed out that, differently from procedures, the q-values are not
adjusted p-values, but this point is not shared by other authors (Ge et al., 2003). qi

provides an estimation of pFDR that we are bearing in rejecting all hypotheses with
q-values less than qi. This is our sixth procedure which also need frequentist p-values
as we will show later.

We mention here a procedure that strongly controls the PCER at level α. It
simply compare each p-value with α: k̂ = max

{
k : p(k) ≤ α

}
. Because we are not

interested in controlling the PCER in microarray analysis, we will no longer consider
this procedure.

2.3.3 The comparison of several control procedures

We numerically compare the performance for the six MHT procedures introduced
above by considering Figure 2.6. In the simulated data set we know whether each
p-value came from the null or alternative model, therefore for a level α = 0.05, we
can state whether we made a False Discovery (a points), a True Discovery (P points),
a False Non-rejection (b points) or when the null has been not rejected (O points).
So P indicates the power, a the amount of FDR and b the amount of FNR. The
three procedures, which control the FWER are in the first column of plots. We can
note that procedures i) trough iii) are very conservative: it is unlikely to have False
Discoveries, but the power is smaller than with the other procedures and the FNR is
higher. The practical difference between controlling FWER or FDR is neither trivial
nor small and the larger m the more dramatic the difference is.

Figure 2.6 shows that in controlling the FDR or pFDR it is likely to have false
discoveries, but the power is significantly higher for BH procedure and q-values, while
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the BY procedure is quite conservative because it deals with a form of dependent
hypotheses which is not needed in this simulated data. Moreover, we can note that
controlling pFDR with q-values provides more power than with the BH procedure, in
fact we can see that with q-values and α = 0.05 we make only 1 false rejection out of
20 rejections.

Comparing the behavior of all procedures by using different notions of p-value is
the goal of the thesis, but before doing this, it is important to formally compare the
procedures and to provide their operating characteristics when using frequentist p-
values. In particular we will concentrate on describing the operational characteristics
of the BH procedure and q-values. We will then introduce the problem of dependence
tests and then characterize the BY procedure and the q-values when the tests are
dependent.

The Bonferroni’s procedure

Before to provide details about the relative most recent procedures it is worthy to
make some comments about the Bonferroni procedure which is the oldest among the
considered procedures. The Bonferroni procedure is based on the Bonferroni inequality
again based on the Boole’s inequality (2.15). Let Err represents the control level in
the Bonferroni procedure and let M0 = M where M is the set of all hypothesis we
have that the weak control of the FWER is obtained by the following development

FWER = Pr (V > 0)

= Pr

(
m⋂

i=1

Hi = 0

∣∣∣∣∣M
)

= Pr

(
m⋃

i=1

Hi = 1

∣∣∣∣∣M
)

=
m∑

i=1

Pr (Hi = 1|M)− Pr

(
m⋂

i=1

Hi = 1

∣∣∣∣∣M
)

≤
m∑

i=1

Err

m
(2.15)

Using the Bonferroni procedure we are not making any assumption on the dependency
structure among the hypotheses, because we do not compute the term Pr (

⋂m
i=1 Hi = 0|M).

The Bonferroni procedure is the most conservative procedures among all MHT proce-
dures.

The Benjamini and Hochberg procedure

The FDR criterion, and the BH procedure that controls it, has been used successfully
in some problems: tresholding of wavelets coefficients (Abramovich and Benjamini,
1996), studying weather maps (Yuketieli and Benjamini, 1999), and multiple trait
location in genetics (Weller et al., 1998). Their approach calls for controlling FDR at
a desired level α, while maximizing E (R). Two properties of this error rate are easy
to be shown (Benjamini and Hochberg, 1995):
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i) if all null hypotheses are true, then FDR is equivalent to the FWER. So, when
m0 = m the control of the FDR implies the control of the FWER in the weak
sense;

ii) when m0 < m, the FDR is smaller than or equal to the FWER, therefore
any procedure that control the FWER also control the FDR. However, if a
procedure control the FDR only, it can be less stringent, and a gain in power
maybe expected. In particular, the larger the number of non-true null hypotheses
is, (the larger L tend to be), so is the differences between the FWER and FDR.
As a result, the potential for increasing the power is larger when more of the
hypotheses are non-true. This is the case in microarray analysis;

iii) another attractive feature of the FDR criterion is that if it is controlled separately
in several families of hypotheses at some level, then it is also controlled at the
same level in the whole family (as long as the families are large enough, and do
not consist only of true null hypotheses).

It is worthy to examine the relationship between Hochberg’s procedure and the
BH procedure. Both Hochberg and BH procedure are step-up procedures, which start
by comparing p(m) with α, and if p(m) < α then all hypotheses are rejected (as if a
PCER approach had been taken), otherwise if p(m) > α proceed to smaller p-values
until one satisfies the condition (2.13). The procedure ends, if not terminate earlier,
by comparing p(1) with α/m, as a pure Bonferroni comparison. At the two ends
the Hochberg and BH are similar, but in between the sequence of p(i)is compared
with α (1− (i− 1) /m) in the BH procedure, rather then with α/ (m + 1− i) in the
Hochberg’s procedure. The series of linearly decreasing constants of the BH method
is always larger than the hyperbolically decreasing constant of Hochberg’s procedure
and the extreme ratio is as large as 4m/ (m + 1)2 at i = (m + 1) /2. This imply that
the BH procedure rejects samplewise at least as many hypotheses as the Hochberg’s
method and therefore the BH has also greater power than other FWER controlling
methods such as the Holm’s procedure. The Hochberg (1988) procedure was suggested
as a different way to use Simes’s procedure so that it does control the FWER in the
strong sense.

Genovese and Wasserman (2001) investigated the operating characteristics of the
BH procedure. They achieved the following conclusion: asymptotically, the BH pro-
cedure correspond to reject Hi = 0 when the raw p-value pi ≤ u∗, where u∗ is the
solution to the equation

G1 (u∗) =

(
1
α − m0

m

)
(
1− m0

m

) u∗,

where G1 is the common distribution of the p-value under the alternative model.
Furthermore Genovese and Wasserman (2001) showed that

α/m ≤ u∗ ≤ α,

so BH procedure is intermediate between Bonferroni (corresponding to α/m) and
uncorrected testing (corresponding to α).
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The control of FDR can be problematic when R = 0 (when m = m0), on this
purpose Benjamini and Hochberg (1995) defined the ratio Q = V/ (V + L) = 0 when
R = 0, as no error of false rejection can be committed. Q is an unobserved (unknown)
random variable, because we do not observe the realizations v and l, and thus q =
v/ (v + l), even after experimentation and data analysis. Undoubtedly, controlling
the random variable Q at each realization is most desirable. This is impossible, for
example, if m = m0 and even if a single hypothesis is rejected v/r = 1 and Q cannot
be controlled. Controlling (V/R|R > 0) has the same problem - it is identically 1 in
the above configuration. For this problem, let’s consider another formulation given by
Soriç (1989): the proportion of false discoveries among the discoveries Q′ = E (V ) /r.
This quotient is neither the random variable Q nor its expectation but a mixture
of expectation and realizations. It is not the conditional expectation of Q, namely
E (Q|R = r) = E (V |R = r) /r, which have again the problem of control for m0 =
m. Third, consider Q′′ = E (V ) /E (R) and when all hypotheses are true Q′′ = 1
and again it is impossible to control. A remedy may be given by either adding 1
to the denominator, but this is a somewhat artificial solution, or another solution
could be to change the denominator to E (R|R > 0). Modifying both numerator and
denominator in the same way will again run into problems of control when m0 = m.
The FDR, instead, is Pr (R > 0)E (V/R|R > 0) and this is possible to control, but
when Pr (R > 0) is very small and we write the controlling equation as

FDR

Pr (R > 0)
= E (V/R|R > 0)

then the quantity in which we are mainly interested, E (V/R|R > 0), is controlled at
higher level than FDR. The additional term Pr (R > 0) → 1 as m → ∞, therefore
when m is small then Pr (R > 0) could also be too small and the control of FDR

can be problematic and obfuscate its interpretation. This motivated Storey (2003)
to introduce the notion of pFDR and the q-values. In order to take into account
Pr (R > 0) Benjamini and Hochberg (2000) introduced a new procedure based on
Algorithm 4, but instead of computing (2.13) compute

k̂ = max
{
k : p(k) ≤ α/η0 · k/m

}

where η0 is an estimator of the fraction m0/m. In the Benjamini and Hochberg (2000)
η0 is estimated adaptively. In this thesis we will consider the original work of Benjamini
and Hochberg (1995) where η0 = 1.

Controlling the positive false discovery rate with the q-values

The pFDR has a Bayesian interpretation. It can be written as a posterior probability
of making a false discovery once we observed the data. Suppose we wish to perform
m identical tests of a null hypothesis based on statistics T1, T2, . . . , Tm. For a given
rejection region Γ, define the positive False Discovery Rate as previously done:

pFDR (Γ) = E
(

V (Γ)
R (Γ)

∣∣∣∣R (Γ) > 0
)
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where V (Γ) = # {Ti under Hi = 0 : Ti ∈ Γ} and R (Γ) = # {Ti : Ti ∈ Γ}. Suppose Hi

is a random variable Hi = 0 when the ith null hypothesis is true and Hi = 1 when
the alternative is true, i = 1, . . . , m. Let π0 be the priori probability that the null
hypothesis is true. That is, we assume that Hi are i.i.d. Bernoulli random variables
with Pr (Hi = 0) = π0 and Pr (Hi = 1) = 1 − π0 = π1. Storey (2003) showed the
following Theorem 5.

Theorem 5 (Storey, 2003). Suppose m identical hypothesis tests are performed with
the statistics T1, . . . , Tm and rejection region Γ. Assume that Ti|Hi

i .i .d .∼ (1−Hi) ·F0 +
Hi · F1 for null distribution F0 and alternative distribution F1 and assume Hi

i .i .d .∼
Bernoulli (π1) for i = 1, . . . , m. Then

pFDR (Γ) = Pr (H = 0|T ∈ Γ) (2.16)

where π0 = 1−π1 is the implicit prior probability used in the above posterior probability.

Note the following facts (Storey, 2003):

i) posterior probability (2.16) does not depend on m;

ii) Pr (Hi = 0|Ti ∈ Γ) is the same for each i and for this reason we left out the index
in the statement of the theorem;

iii) we can explicitly write

pFDR (Γ) = Pr (H = 0|T ∈ Γ)

=
π0 Pr (T ∈ Γ|H = 0)

π0 Pr (T ∈ Γ|H = 0) + π1 Pr (T ∈ Γ|H = 1)

=
π0 {Type I error of Γ}

π0 {Type I error of Γ}+ π1 {Power of Γ}
this shows that the pFDR increases with increasing Type I error and decreases
with increasing power.

Note that if the Hi were not random, then this theorem no longer holds since there
is the deterministic constraint that

∑m
i=1 Hi = m1. However, the mixture distribution

assumption, Ti|Hi
i .i .d .∼ (1−Hi) ·F0 + Hi ·F1 avoid this problem, and this assumption

generally holds for large m (Storey, 2002).
Two corollaries easily follow from Theorem 5:

Corollary 6 (Storey, 2003). Under the assumptions of Theorem 5, for k > 0 we have

E
(

V (Γ)
R (Γ)

∣∣∣∣R (Γ) = k

)
= Pr (H = 0|T ∈ Γ)

and the Bayesian interpretation of pFDR holds for all k > 0.

Corollary 7 (Storey, 2003). Under the assumptions of Theorem 5,

E
(

V (Γ)
R (Γ)

∣∣∣∣R (Γ) > 0
)

=
E [V (Γ)]
E [R (Γ)]

.
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pFDR (Γ) = Pr (H = 0|T ∈ Γ) gives a global measure in which it doesn’t provide
specific information about the value of each statistic: only whether it falls in Γ or not.

The measure of significance with respect to the pFDR, for each test statistic, is
called the q-value. This continues to have a Bayesian interpretation, allowing one to
make simultaneous inferences.

Definition 8 (Storey, 2003). For an observed statistic T = t define the q-value of t

to be:

q-value (t) = inf
{Γa:t∈Γα}

pFDR (Γα)

= inf
{Γa:t∈Γα}

Pr (H = 0|T ∈ Γα)

=
π0 Pr (T ≥ t|H = 0)

π0 Pr (T ≥ t|H = 0) + (1− π0) Pr (T ≥ t|H = 1)

The q-value is a measure of strength of an observed statistic with respect to the
pFDR. It is the minimum pFDR which can occur when rejecting a single hypothesis
H once observed t. The q-values are thus Bayesian versions of p-values, analogous to
the “Bayesian posterior p-values” of Morton (1955).

According to Storey (2003) the q-value it is not an adjusted p-value in order to
control the pFDR in the sense that it does not satisfy the definition of adjusted p-value
given by Shaffer (1995): “Given any test procedure, the adjusted p-value corresponding
to a test of a single hypothesis Hi can be defined as the level of entire test procedure at
which Hi would be rejected, given the values of all test statistics involved”. Therefore,
since the pFDR cannot be controlled by a test procedure, then it cannot be used to
define adjusted p-values. An argument against to this original view of Storey (2003)
was given in Ge et al. (2003) where the q-values are viewed as the product of a step
wise procedure.

We can calculate the q-value by finding the minimizer of Pr (H = 0|T ∈ Γα), that
is

arg min
{Γa:t∈Γα}

Pr (H = 0|T ∈ Γα)

= arg min
{Γa:t∈Γα}

π0 Pr (T ∈ Γα|H = 0)
π0 Pr (T ∈ Γα|H = 0) + (1− π0) Pr (T ∈ Γα|H = 1)

(2.17)

= arg min
{Γa:t∈Γα}

Pr (T ∈ Γα|H = 0)
Pr (T ∈ Γα|H = 1)

Therefore the rejection region which determines the q-value minimizes the ratio of the
Type I error to the power over all rejection regions that contain the observed test
statistic. This interpretation agrees with the fact that the pFDR is concerned with
measuring how frequent the false positives occur in relation to true positives.

Let G1 (α) and G0 (α) be respectively the cdf of the null and alternative p-values:

G1 (α) = Pr (T ∈ Γα|H = 1) =
∫

Γα

dF1

G0 (α) = Pr (T ∈ Γα|H = 0) =
∫

Γα

dF0

then the following theorem hold.
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Theorem 9 (Storey, 2002). For m identical hypothesis tests,

pFDR (Γα) = pFDR (p : p ≤ α) ,

which implies that the q-value can be calculated from either the original statistics or
their p-values. Also, when the statistics are independent and we assume G0 (α) = α

then
q-value (t) = pFDR (p : p ≤ p-value (t))

if and only if G1 (α) /a is decreasing in α.

This theorem justifies the definition of a q-value in terms of a p-value rather than
the original test statistic, because the q-value is the same as if it were calculated on
the original test statistics.

For p-values based rejections, all rejection regions are of the form [0, p] for some
0 ≤ p ≤ 1. Instead of denoting rejection regions by the more abstract Γ we denote
them by p which refers to the interval [0, p]. In terms of p-values we can write the
result of Theorem 5 as

pFDR (p) =
π0 Pr (P ≤ p|H = 0)

Pr (P ≤ p)
=

π0 · p
Pr (P ≤ p)

,

where P is the random p-value variable resulting from any test.
In Storey (2002) is showed the following non parametric method which have been

used in this work to estimate π0 and Pr (P ≤ p) from the data. However the estimation
of Pr (P ≤ p) can be performed using the parametric model available for the single
hypothesis testing. This is done in the relevant example in the next Chapter.

Since π0 ·m of the p-values are expected to be null, then the largest p-values are
most likely to come from the null. Moreover π0 · (1− λ) of the null are expected to
fall in the region (λ, 1], and a small proportion of alternative p-values will fall outside
(λ, 1]. Hence a good estimate of π0 (Storey, 2002) is

π̂0 (λ) =
# {pi > λ}
(1− λ) m

=
W (λ)

(1− λ) m
(2.18)

for some well chosen λ, where W (λ) = # {pi > λ}. From now on we assume λ to be
fixed, the estimation of λ we will be provided in Algorithm 11 later showed. Storey
(2002) showed that the estimation of pFDR with λ = 0 leads to the BH procedure,
generalizing in this way the BH procedure and building a family of estimation proce-
dures, p̂FDRλ (p), indexed by λ. The construction of this family follows by considering
a natural estimate of Pr (P ≤ p)

P̂r (P ≤ p) =
# {pi ≤ p}

m
=

R (p)
m

,

where R (p) = # {pi ≤ p}. Therefore, a good estimate of pFDR (p) for a fixed λ is

Q̂λ (p) =
π̂0 (λ) p

P̂r (P ≤ p)
=

W (λ) p

(1− λ) R (p)
(2.19)

It is also possible to shows that Q̂λ (p) is the MLE of pFDR (p) for a fixed λ and it has
good consistency properties for m →∞ (Storey, 2002). However, due to finite sample
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considerations, we have to make two slight adjustments in order to estimate the pFDR

(Storey, 2003). When R (p) = 0, the estimate would be undefined, which is undesirable
for finite samples. Therefore we replace R (p) with R (p) ∨ 1 = max {R (p) , 1}. This
is equivalent to take a linear interpolation between the estimate of pFDR at

[
0, p(1)

]

and the origin. Note also that 1− (1− p)m is the lower bound for Pr (R (p) > 0) when
the tests are independent, therefore since the pFDR is conditioned on R (p) > 0, we
divide (2.19) by 1− (1− p)m.Therefore we estimate pFDR as

p̂FDRλ (p) =
π̂0 (λ) p

P̂r (P ≤ p)
=

W (λ) p

(1− λ) (R (p) ∨ 1) (1− (1− p)m)
(2.20)

If p̂FDRλ (p) > 1 then we set p̂FDRλ (p) = 1 since it is obviously pFDR (p) ≤ 1.
Assuming independence of p-values we have that p̂FDRλ (p) is a conservative es-

timates of pFDR (p) and that truncating p̂FDR (p) at 1 provides a decrease in the
mean square error.

Since q-value(p) = infs≥p pFDR (s), we can estimate it by

q̂λ (p) = inf
s≥p

p̂FDRλ (s)

where p̂FDRλ (s) has been defined in (2.20). The following Algorithm 10 provides
estimate of the q-value(p).

Algorithm 10 (Storey, 2002).
1. For the m hypotheses tests, calculate the p-values p1, . . . , pm.
2. Let p(1) ≤ . . . ≤ p(m) be the ordered p-values.
3. Set q̂λ

(
p(m)

)
= p̂FDRλ

(
p(m)

)
.

4. Set q̂λ

(
p(i)

)
= min

{
p̂FDRλ

(
p(i)

)
, q̂λ

(
p(i+1)

)}
for i = m− 1,m− 2, . . . , 1.

The q-values can be used in practice in the following way: they give us the minimum
pFDR we can achieve for rejection regions containing

[
0, p(i)

]
for i = 1, . . . ,m. In other

words, for each p-value there is a rejection region with pFDR equal to q-value
(
p(i)

)

so that at least p(1), . . . , p(i) are rejected.
Estimator p̂FDRλ (p) involves the estimator π̂0 (λ) and, in the end, the tuning

parameter λ. We consider choosing λ adaptively to simultaneously minimize the bias
and the variance of the procedures.

Recall that
π̂0 (λ) =

W (λ)
m (1− λ)

=
# {pi : pi > λ}

m (1− λ)
.

Suppose G1 (λ) is the power over [0, λ] averaged over all alternative hypotheses. Then
(Storey, 2003)

E [π̂0 (λ)] = π0 +
1−G1 (λ)

1− λ
(1− π0) ≥ π0,

so clearly π̂0 (λ) is conservatively biased estimate of π0. Moreover, if the p-values are
independent, and each alternative p-value follows the distribution G1, then (Storey,
2003)

Var [π̂0 (λ)] =
π0λ

m (1− λ)
+

(1− π0) [1−G1 (λ)]G1 (λ)
m (1− λ)2

.
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Now it is easy to see that limλ→0 Var [π̂0 (λ)] = 0 and limλ→1 Var [π̂0 (λ)] = ∞. The
bias of π̂0 (λ) is greatest at λ = 0 and then it decreases as λ increase. Therefore, there
is clearly a bias-variance trade-off in the choice of λ and we choose λ that minimizes the
mean-squared error, MSE (λ), which is a common measure to balance a bias-variance
trade-off situation. If one is interested in estimating the rejection region in order to
control the pFDR or the q-value then two functions to minimize in λ would be

E
[(

p̂FDRλ (p)− pFDR (p)
)2

]
(2.21)

and
m∑

i=1

E
{

[q̂λ (pi)− q (pi)]
2
}

(2.22)

But since both estimators (2.21), (2.22) involve estimating π̂0 (λ) then we choose λ

that minimize
E

[
(π̂0 (λ)− π0)

2
]

However, we do not know π0, so we have to form a plug-in estimate of this quantity.
Notice that for any λ we have:

E [π̂0 (λ)] ≥ min
λ′

E [π̂0 (λ)] ≥ π0

therefore the considered plug-in estimate is minλ′∈Λ

[
π̂0

(
λ′

)]
where Λ is a prefixed

grid of values of λ. According to Storey (2003) when the p-values are independent, we
estimate MSE (λ) for all λ ∈ Λ with the bootstrap estimator

M̂SE (λ) =
1
B

B∑

b=1

(
π̂0
∗b (λ)− min

λ′∈Λ

[
π̂0

(
λ′

)])2

(2.23)

where π̂0
∗b (λ) is the bootstrap estimate of π̂0 (λ). We choose B = 100. The whole

estimate procedure is listed in the following Algorithm 11.

Algorithm 11 (Storey et al., 2004).
1. For some range of λ, say Λ = {0, 0.01, 0.02, . . . , 0.95}, calculate π̂0 (λ) using (2.18).
2. For each λ ∈ Λ, form B = 100 bootstrap version π̂0

∗b (λ) of the estimate, b =
1, . . . , B.
3. For each λ ∈ Λ, estimate its respective mean square error using (2.23).
4. Set λ̂ = arg minλ∈Λ M̂SE (λ) and the overall estimate of π0: π̂0 = π̂0

(
λ̂
)
.

We note that, no procedures can give strong or weak control for pFDR, as pFDR =
1 when m0 = m, but this is very unlikely with microarray data, because we expect
to have genes differentially expressed and so m0 < m. Therefore the pFDR can
be conservatively estimated with the q-values under the unknown set of null true
hypotheses M0. The q-values provide an exact control of pFDR. As showed in Storey
et al. (2004) the pFDR is less conservative than the FDR, however the two procedures
are asymptotically equivalent.
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2.3.4 MHT under dependency

It is possible to show (Storey, 2002) that pFDR calculated for a fixed number of tests,
pFDRm (Γα) converge for m →∞ to pFDR (Γα) if

∑m
i=1 (1−Hi) /m → π0 and if the

distribution of the p-values under the null G0m (α) and alternative hypothesis G1m (α)
converge respectively to some functions G0 (α) and G1 (α). This is true even if the
tests are weakly dependent. However for fixed m we could consider some correction
in order to take into account the dependency.

Storey (2002) suggested that a correction for dependency in (2.20) could be to
consider Pr (R (p) > 0) instead of the lower bound 1 − (1− p)m. This probability is
computed by simulating B = 100 p-values under the null hypothesis and then using
the Monte Carlo approximation:

̂Pr (R (p) > 0) =
1
B

B∑

b=0

1(pb>α). (2.24)

The Benjamini and Yekutieli procedure

Benjamini and Yekutieli (2001) proposed the BY procedure that account for multiple
hypothesis testing under dependency. The (2.14) compare the observed p-values with
α · k/

∑m
i=1 1/i instead of α · k/m. The adjustment by

∑m
i=1 1/i ≈ log (m) + 1

2 is
quite often not needed, and yields a too conservative procedure. Still, even if only a
small proportion (≈ log (m) /m) of the tested hypotheses are detected as not true, the
BY procedure is more powerful than the comparable FWER controlling procedures.
However, what Benjamini and Yekutieli (2001) demonstrated is that the BH procedure
control the FDR under the dependency form that they called Positive Regression
Dependency on each one from a Subset (PRDS). The PRDS is formally defined on an
increasing set of statistics. The PRDS is defined an increasing set T and the set of
test statistics T = {T1, T2, . . . , Tm}.
Definition 12 (Benjamini and Yekutieli, 2001). For any increasing set T , and for
each subset of null hypotheses I0, Pr (T ∈ T |Ti = t) is non-decreasing in t for i ∈ I0.

Recall that T is increasing if t ∈ T and t′ ≥ t implies that also t′ ∈ T .
The PRDS property is a relaxed form of the positive regression dependency prop-

erty that characterizes the multivariate normal distributions, often used in modelling
microarray genes expression. The following Theorem 13 makes this point more formal.

Theorem 13 (Benjamini and Yekutieli, 2001). Consider T ∼ N (µ,Σ) a vector
of test statistics each testing hypothesis µi = 0 against the alternative µi > 0, for
i = 1, . . . ,m. For i ∈ I0, the set of true null hypotheses, µi = 0. Otherwise µi > 0.
Assume that for each i ∈ I0, and for each j 6= i, Σij ≥ 0, then the distribution of T is
PRDS over I0.

Benjamini and Yekutieli (2001) demonstrated that the BY procedures always con-
trol the FDR, no matter what kind of dependency is assumed.

Finally Storey et al. (2004) demonstrated that the p̂FDRλ (p) control the pFDR

for m fixed when the PRDS holds and the p-values are frequentist.
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The minP adjustment procedure

We do not further investigate the operating characteristics of other MHT procedures
under dependency, however we mention here other two procedure that takes into ac-
count the dependency structure among the tests. The first was developed by Westfall
and Young (1993). It is a single-step procedure that calculate the minP adjusted
p-values, which are defined by

p̃(i) = Pr
(

min
1≤k≤m

Pk ≤ p(i)

∣∣∣∣ I0

)
. (2.25)

The (2.25) is usually estimated non parametrically using a permutation test procedure
(Westfall and Young, 1993). Another way to incorporate parametrically the depen-
dency structure of the m tests is the single-step maxT adjusted p-values which are
defined in terms of the test statistics Ti,

p̃(i) = Pr
(

max
1≤k≤m

|Tk| ≥ |ti|
∣∣∣∣ I0

)
. (2.26)

By assuming a parametric law for the joint distribution on (T1, T2, ..., Tm) we can
calculate the (2.26). Ge et al. (2003) showed that when adjusted p-values are estimated
by permutation and m is large, procedures based on the minP adjusted p-values tend
to be more sensitive to the number of permutations and more conservative than those
based on the maxT adjusted p-values. If we are using frequentist p-values than the
adjusted p-values in (2.25) and (2.26) are the same as those obtained with the Holm
procedures ii). For more on comparison of multiple hypothesis test procedures under
dependency see Ge et al. (2003) the discussion therein.



Chapter 3

Results

So far we have showed the literature concerning p-values and MHT separately. In this
chapter we use simulations to support the following conjecture.

Conjecture 14 We are more likely to find differentially expressed genes, while main-
taining a control in the FDR (and pFDR) using the Partial posterior predictive p-
value and the Conditional Predictive p-value.

However the goal of this chapter is broader, in fact we will characterize the inference
using the above six MHT procedures jointly with the above four definitions of p-
values: pplug, ppost, pcpred and pppost. We will do this before using simulations and
than considering an application of the Gamma model to three public data sets. The
way we implemented the inference for the Gamma model is really new and we show
that it provides useful results.

Before look at these results, it is useful to have an idea of the error encountered
in using p-values that are not frequentist, or which is the same, when we don’t know
their null distribution G0 (α). This idea is provided in the following relevant example.

3.1 A relevant example

We illustrate the numerical convergency of pFDRm (p) to pFDR (p) for m →∞ either
when we know the distribution of the p-values under the null hypothesis and when we
don’t know it because we are not able to make appropriate inference on the nuisance
parameters involved in hypothesis testing.

Suppose this state of nature

Ti|Hi = 0 ∼ N (0, 1)

and
Ti|Hi = 1 ∼ N (2, 1) .

with the following covariance structure

Cov (Ti, Ti+k) =

{
ρ, for k = 1, 2, . . . , 9 and i = 1, 11, 21, . . . ,m

0, otherwise

54
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where 0 ≤ ρ ≤ 1.
In other words the statistics have correlation ρ in groups of 10. We are simulating

a kind of dependency called clumpy dependency among genes (Storey, 2002), which
is often encountered when measuring genes expression. This kind of dependency is
realistic and it is mainly due to the fact that genes interact in a pathway and there
also tends to be cross hybridization because of molecular similarity at the sequence
level.

Let N−1
(
1− α, µ, σ2

)
indicates the quantile of N

(
µ, σ2

)
at point 1−α and suppose

to be under two inferential situations on the test statistic T .

a) We want to perform this hypothesis testing of each gene

Hi = 0 : Ti ∼ N (µ = 0, 1)

against
Hi = 1 : Ti ∼ N (µ 6= 0, 1) .

In this case the null and alternative distribution of Ti are completely specified
and the rejection region for all tests is

Γα =
[
N−1 (1− α, 0, 1) ,∞)

and so Pr (Ti ∈ Γα|H = 0) = α.

b) We don’t know the variance σ2 and we have to test

Hi = 0 : Ti ∼ N
(
µ = 0, σ2

)
,∀σ2 > 0

against
Hi = 1 : Ti ∼ N

(
µ 6= 0, σ2

)
,∀σ2 > 0

considering some estimator σ̂2 where Pr
(
σ̂2 6= 1

)
> 0. The rejection region for

all tests is
Γ′a =

[
N−1

(
1− α, 0, σ̂2

)
,∞]

, ∀σ̂2 > 0.

Suppose, now, that we ignore that

Pr
(
Ti ∈ Γ′α|H = 0

)
= α′ 6= α

but we behaves as Pr (Ti ∈ Γ′α|H = 0) = α.

Situation a) refers to the use of frequentist p-values, while in situation b) we are
not using frequentist p-values, but we treat them as if they were. In particular if the
p-values were conservative (anticonservative) then α′ < α (α′ > α) which is the case
if σ̂2 > 1 (σ̂2 < 1).

Let again assume Hi
i .i .d .∼ Bernoulli (1− π0 = 0.1) and α = 0.005 and σ̂2 = 2.

Storey (2003) provides the following result

lim
m→∞ sup

α≥0
|pFDRm (Γa)− Pr∞ (H = 0|T ∈ Γα)| = 0.

Therefore
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m ρ=0 ρ=0.2 ρ=0.6 ρ=0.8 ρ=1
100 0.136 (0.007) 0.131 (0.007) 0.105 (0.006) 0.088 (0.006) 0.049 (0.006)
500 0.130 (0.003) 0.135 (0.003) 0.128 (0.003) 0.114 (0.004) 0.089 (0.006)

1000 0.138 (0.002) 0.135 (0.002) 0.129 (0.002) 0.128 (0.003) 0.110 (0.005)
3000 0.139 (0.001) 0.137 (0.001) 0.137 (0.001) 0.134 (0.002) 0.134 (0.003)
5000 0.138 (0.001) 0.137 (0.001) 0.137 (0.001) 0.136 (0.001) 0.130 (0.002)

10000 0.136 (0.001) 0.137 (0.001) 0.137 (0.001) 0.138 (0.001) 0.136 (0.002)

Table 3.1: Simulation results: pFDRm (Γa) → Pr∞ (H = 0|T ∈ Γα) = 0.137

m ρ=0 ρ=0.2 ρ=0.6 ρ=0.8 ρ=1
100 0.020 (0.004) 0.019 (0.004) 0.023 (0.005) 0.014 (0.003) 0.008 (0.003)
500 0.020 (0.003) 0.021 (0.003) 0.021 (0.003) 0.015 (0.003) 0.005 (0.002)

1000 0.027 (0.002) 0.026 (0.002) 0.021 (0.002) 0.017 (0.002) 0.006 (0.002)
3000 0.025 (0.001) 0.023 (0.001) 0.023 (0.001) 0.022 (0.002) 0.019 (0.003)
5000 0.026 (0.001) 0.023 (0.001) 0.023 (0.001) 0.023 (0.001) 0.018 (0.002)

10000 0.024 (0.001) 0.024 (0.001) 0.022 (0.001) 0.024 (0.001) 0.022 (0.002)

Table 3.2: Simulation results: pFDRm (Γa) → Pr∞
(
H = 0|T ∈ Γ′α′

)
= 0.024

- in situation a) we have

Pr∞ (H = 0|T ∈ Γα) =
π0α

π0α + (1− π0) Pr (N (2, 1) ≥ N−1 (1− α, 0, 1))
= 0.137;

- in situation b) where we erroneously believe α′ = α we do not have any convergence
to the quantity which we are supposing to control

Pr∞
(
H = 0|T ∈ Γ′α

)
=

π0α

π0α + (1− π0) Pr
(
N (2, 1) ≥ N−1

(
1− α, 0, σ̂2

)) = 0.47,

but to the following quantity

Pr∞
(
H = 0|T ∈ Γ′α′

)
=

π0α
′

π0α′ + (1− π0) Pr
(
N (2, 1) ≥ N−1

(
1− α, 0, σ̂2

)) = 0.024,

where
α′ = Pr

(
N (0, 1) ≥ N−1

(
1− α, 0, σ̂2

))
= 0.00013

In fact in situation b) the following two results apply

lim
m→∞ sup

α≥0

∣∣pFDRm

(
Γ′a

)− Pr∞
(
H = 0|T ∈ Γ′α

)∣∣ > 0

and
lim

m→∞ sup
α≥0

∣∣pFDRm

(
Γ′a′

)− Pr∞
(
H = 0|T ∈ Γ′α′

)∣∣ = 0.

Table 3.1 shows, for different values of ρ, the convergency of pFDRm (Γa) to
Pr∞ (H = 0|T ∈ Γα) and Table 3.2 to Pr∞

(
H = 0|T ∈ Γ′α′

)
. For high values of m

the differences are within the Monte Carlo standard errors (in parenthesis).
In this numerical example the difference between pFDRm

(
Γ′a′

)
= 0.024 and pFDRm (Γ′a) =

0.47 is remarkable. We believe to control the pFDR at level pFDRm (Γ′a), but in the
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end we are controlling at the smaller and more conservative level pFDRm

(
Γ′a′

)
. In

this way we are likely to miss some genes truly altered in the two experimental con-
ditions. Moreover using non frequentist p-value we may also loose all the advantages,
in terms of power, that the recent MHT procedure has provided to the researcher.

3.2 Controlling FDR and pFDR using different p-values.

We further investigate the problem of choosing the appropriate p-value in MHT by
examining the behavior of the six MHT procedures across the three p-values. We start
with the normal model and then we consider the gamma model.

We simulated B replications of microarray experiments under different setups.
Each experiment is composed by a panel of m genes, but only five genes are simulated
as differentially expressed. After each simulations we calculated the adjusted p-values
and the q-values according to procedures illustrated Chapter 2. We finally ranked all
genes according to the adjusted p-values and save the B ranks assigned to the five
overexpressed genes. The empirical distributions of this ranks was showed (in box
plots) in order to compare the results among the across different notions of p-values
and MHT procedures. We will see that pcpred in the normal case and the pppost in the
gamma case outperform the others p-values uniformly, that is over all the considered
MHT procedures.

3.2.1 Results for the Normal model using different controlling pro-

cedures across different notions of p-value

We simulated B = 1000 microarray experiments of m = 20000 genes each. Each
independent experiment has been replicated three times: nX = nY = 3. We considered
two situations: when all genes are independent and when there exists strong clumpy
dependency. We draw the first five genes in the case (X) according to

X ∼ N20000 (µX = (10.0, 8.5, 7.0, 5.5, 4.0, 2.0, . . . , 2.0) ,Σ = I20000)

and while for the control (Y) according to

Y ∼ N20000 (µY = (2, . . . , 2) ,Σ = I20000) ,

where N20000 (µ,Σ) is a multivariate normal of dimension 20000 and I20000 is the iden-
tity matrix of the same dimension. We repeat the same experiment for the dependency
case by simulating X and Y according to

X ∼ N20000 (µX ,Σ)

and
Y ∼ N20000 (µY ,Σ) ,
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where Σ is the following covariance matrix of dimension m×m

Σm×m=




ρ11 · · · ρ1k 0 0 0 · · · 0
...

. . .
... 0 0 0 · · · 0

ρk1 · · · ρkk 0 0 0 · · · 0
0 0 0 ρ11 · · · ρ1k · · · 0

0 0 0
...

. . .
... · · · 0

0 0 0 ρk1 · · · ρkk · · · 0
...

...
...

...
...

...
. . . · · ·

0 0 0 0 0 0 · · · ρkk




therefore for ρij = 0.9, i = 1, . . . , k, j = 1, . . . , k we have that all genes are dependent
in groups of k = 10.

Figures 3.1-3.6 show the results in the situation of independents genes expression,
while Figures 3.7-3.12 under the clumpy dependency described above.

The box plots represent the distributions of the ranks for the five genes: the more
the distribution is centered on lower values, the more is the likely to recognize the five
altered genes as differentially expressed. We note that this happened if we use the q-
values and the BH procedure combined with the pcpred. Using the other MHT methods
it is in general very unlikely to find these genes in the top list of the differentially
expressed genes, but still using the pcpred we are more likely to find them. In fact we
can see that the isolated observations of very small rank’s values happened using the
pcpred rather then pplug or ppost.

In the case of dependency we can see that the conclusions do not change, in fact
we can note only an inflation in the variance of the rank distributions, but still, the
location of the medians, for q-values and the BH procedure with the pcpred, corroborate
our conjecture.
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Figure 3.1: Normal model (Independence case): Distribution of the ranks of the 5 over-
expressed genes with the p-values adjusted according to the Bonferroni’s procedure.
We can see that the boxplots are concentrated even if some spikes appear for pppost.
In order to recognize the 5 overexpressed genes the boxplots should be concentrated
around 0.
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Figure 3.2: Normal model (Independence case): Distribution of the ranks of the 5
overexpressed genes with the p-values adjusted according to the Holm’s procedure.
We can see that the boxplots are concentrated even if some spikes appear for pppost.
In order to recognize the 5 overexpressed genes the boxplots should be concentrated
around 0.
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Figure 3.3: Normal model (Independence case): Distribution of the ranks of the 5
overexpressed genes with the p-values adjusted according to the Hochberg’s procedure.
We can see that the boxplots are concentrated even if some spikes appear for pppost.
In order to recognize the 5 overexpressed genes the boxplots should be concentrated
around 0.
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Figure 3.4: Normal model (Independence case): Distribution of the ranks of the 5
overexpressed genes with the p-values adjusted according to the BH’s procedure. We
can see that the boxplots referring to the pppost are more concentrated around zero
than those for other p-values. In order to recognize the 5 overexpressed genes the
boxplots should be concentrated around 0.
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Figure 3.5: Normal model (Independence case): Distribution of the ranks of the 5
overexpressed genes with the p-values adjusted according to the BY’s procedure. We
can see that the boxplots are concentrated even if some spikes appear for pppost. In
order to recognize the 5 overexpressed genes the boxplots should be concentrated
around 0.
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Figure 3.6: Normal model (Independence case): Distribution of the ranks of the 5
overexpressed genes with the p-values adjusted according to the q-values. We can see
that the boxplots referring to the pppost are more concentrated around zero than those
for other p-values. In order to recognize the 5 overexpressed genes the boxplots should
be concentrated around 0.
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Figure 3.7: Normal model (Dependency case, ρ = 0.9): Distribution of the ranks of
the 5 overexpressed genes with the p-values adjusted according to the Bonferroni’s
procedure. We can see that the boxplots are concentrated even if some spikes appear
for pppost. In order to recognize the 5 overexpressed genes the boxplots should be
concentrated around 0.
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Figure 3.8: Normal model (Dependency case, ρ = 0.9): Distribution of the ranks of the
5 overexpressed genes with the p-values adjusted according to the Holm’s procedure.
We can see that the boxplots are concentrated even if some spikes appear for pppost.
In order to recognize the 5 overexpressed genes the boxplots should be concentrated
around 0.
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Figure 3.9: Normal model (Dependency case, ρ = 0.9): Distribution of the ranks
of the 5 overexpressed genes with the p-values adjusted according to the Hochberg’s
procedure. We can see that the boxplots are concentrated even if some spikes appear
for pppost. In order to recognize the 5 overexpressed genes the boxplots should be
concentrated around 0.
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Figure 3.10: Normal model (Dependency case, ρ = 0.9): Distribution of the ranks of
the 5 overexpressed genes with the p-values adjusted according to the BH’s procedure.
We can see that the boxplots referring to the pppost are more concentrated around
zero than those for other p-values. In order to recognize the 5 overexpressed genes the
boxplots should be concentrated around 0.
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Figure 3.11: Normal model (Dependency case, ρ = 0.9): Distribution of the ranks of
the 5 overexpressed genes with the p-values adjusted according to the BY’s procedure.
We can see that the boxplots are concentrated even if some spikes appear for pppost.
In order to recognize the 5 overexpressed genes the boxplots should be concentrated
around 0.
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Figure 3.12: Normal model (Dependency case, ρ = 0.9): Distribution of the ranks of
the 5 overexpressed genes with the p-values adjusted according to the q-values. We can
see that the boxplots referring to the pppost are more concentrated around zero than
those for other p-values. In order to recognize the 5 overexpressed genes the boxplots
should be concentrated around 0.
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3.2.2 Results for the Gamma model using different controlling pro-

cedures across different notions of p-value

We simulated B = 100 microarray experiments of m = 1000 genes each. Each inde-
pendent experiment has been replicated five times: nX = nY = 5. Each replication in
the case has been drawn independently according to:

Xi ∼ Gamma (1, θi)

where
θ1 = 20.00, θ2 = 16.25, θ3 = 12.50, θ4 = 8.75, θ5 = 5.00

and
θ5<i≤m = 1.00.

Each replication in control has been drawn according to

Yi ∼ Gamma (1, 1) , i = 1, . . . , m.

In this simulation setup X and Y exhibit the same relative error, in particular the
choice of CV = 1 correspond to experiments where the amount of signal equals the
amount of noise. This situation is commonly encountered in practical cases.

The number of simulated experiment, (B = 100), maybe somewhat low, but we
replicated another time the simulations and we did not find any significative differences
from the results reported in Figures 3.13-3.18.

The results for the gamma model lead to the same conclusions as for the normal
model: they corroborated the conjecture, because we recognize the five altered genes
using the q-values and the BH combined with the pppost. Moreover, in this case, it is
even more clear that using the pppost we are more likely to detect the five genes also
with very conservative methods that control the FWER rather than the FDR.
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Figure 3.13: Gamma model: Distribution of the ranks of the 5 overexpressed genes with
the p-values adjusted according to the Bonferroni’s procedure. We can see that the
boxplots are concentrated even if some spikes appear for pppost. In order to recognize
the 5 overexpressed genes the boxplots should be concentrated around 0.
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Figure 3.14: Gamma model: Distribution of the ranks of the 5 overexpressed genes
with the p-values adjusted according to the Holm’s procedure. We can see that the
boxplots are concentrated even if some spikes appear for pppost. In order to recognize
the 5 overexpressed genes the boxplots should be concentrated around 0.
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Figure 3.15: Gamma model: Distribution of the ranks of the 5 overexpressed genes
with the p-values adjusted according to the Hochberg’s procedure. We can see that the
boxplots are concentrated even if some spikes appear for pppost. In order to recognize
the 5 overexpressed genes the boxplots should be concentrated around 0.
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Figure 3.16: Gamma model: Distribution of the ranks of the 5 overexpressed genes
with the p-values adjusted according to the BH’s procedure. We can see that the
boxplots referring to the pppost are more concentrated around zero than those for
other p-values. In order to recognize the 5 overexpressed genes the boxplots should be
concentrated around 0.
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Figure 3.17: Gamma model: Distribution of the ranks of the 5 overexpressed genes
with the p-values adjusted according to the BY’s procedure. We can see that the
boxplots are concentrated even if some spikes appear for pppost. In order to recognize
the 5 overexpressed genes the boxplots should be concentrated around 0.
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Figure 3.18: Gamma model: Distribution of the ranks of the 5 overexpressed genes
with the p-values adjusted according to the q-value procedure. We can see that the
boxplots referring to the pppost are more concentrated around zero than those for
other p-values. In order to recognize the 5 overexpressed genes the boxplots should be
concentrated around 0.
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3.3 Applications to three public data sets

We consider here an application of the Gamma model to three public and well known
data sets.

The Swirl data set is usually used as an example to show some issues in normal-
ization across arrays and within the array, because we have to take into account the
print-tips effects in cDNA experiments. The goal here in using this data set is to show
that only by using the pppost and the q-values we are ably to detect those genes that
we expect to be differentially expressed.

The second data set is the Golub data set which is an extended study on Leukemia.
The experiment was designed to find a classification role for two different kinds of
Leukemia and even discover other type of Leukemias. A classifier for the two kinds of
Leukemia is constructed using the expression profile of a small number of genes. The
goal, in this case, is to show that only the pppost allows us to find those genes that can
be fruitfully used to discriminate among the two types of Leukemia.

The third data set is what is usually referred as a controlled experiment where
sixteen genes have been spiked in at different known concentrations in different hy-
bridizations and they are thus differentially expressed. Therefore among these sixteen
genes some are very likely to be detected while other less. For this data set we applied
the gamma and the normal model and we show that only the gamma model along
with q-values with the pppost is able to detect those genes with altered expression.

3.3.1 The Swirl data set

This experiment was carried out with cDNA arrays using zebrafish as a model organism
to study early development in vertebrates and to determine the gene that distinguish
the vertebrate wild-type zebrafish (wt), from the invertebrate swirl mutant.

Swirl is a point mutant in the BMP2 gene. The BMP2 gene causes defects in the
organization in the developing embryo along its dorsal-ventral axis. When BMP2 is
not expressed then ventral fates such as blood are reduced, whereas dorsal structures
such as somites and notochord are expanded.

The data come from four replicate slides: two sets of dye-swap pairs. For each of
these slides the target cDNA from the swirl mutant was labelled using one of the Cy3
and Cy5 dyes and the same has been done for the cDNA from the wild-type zebrafish.
Target cDNA was hybridized to microarrays containing 8,448 cDNA probes. The
microarrays were printed using 4 × 4 print-tips and are thus partitioned into 4 × 4
matrix of subarrays. Each sub-array consists of 22× 24 spot matrix that was printed
with a single print-tip. The expression quantities from each probe were measured
using the GenePix software (http://www.axon.com). These data were provided by
Katrin Wuennenberg-Stapleton from the Ngai Lab at UC Berkeley (U.S.A.). The swirl
embryos for this experiment were provided by David Kimelman and David Raible at
the University of Washington (U.S.A.).

This well known experiment is the case study number one in Speed et al. (2003). It
is often used to show the main issues in normalization of raw data from the experiment,



3. Results 79

M−values Array 11 2 3 4

4

3

2

1

A−values Array 11 2 3 4

4

3

2

1

M−values Array 21 2 3 4

4

3

2

1

A−values Array 21 2 3 4

4

3

2

1

M−values Array 31 2 3 4

4

3

2

1

A−values Array 31 2 3 4

4

3

2

1

M−values Array 41 2 3 4

4

3

2

1

A−values Array 41 2 3 4

4

3

2

1

Figure 3.19: Analysis of Swirl data set: M and A values for the 6 array under analysis.
The grids on the array represent different subarrays spotted with different print tips.
It is evident a print tip effect, a spatial effect (on the edges of the array) and an array
effect, in fact some arrays are systematically brighter than others.

because it is evident the print-tip effects and the array effect as shown in Figure 3.19.
These artifacts can be modelled and then removed by using non-parametric regression
techniques with splines. Here we will use the normalized data and we sent the reader
to the review book of Speed et al. (2003) for more details on the normalization process
for this data set.

We modelled the experiment outcome according to the Gamma model and for each
of 8,448 genes we computed the pplug, ppost and pppost. We then computed the adjusted
p-values and the q-values using the (2.24) which takes into account dependency in the
tests. We compare the results obtained from our ranks to the rank obtained using
only the M = log2 R/G values computed on the normalized data set. The goal here
is to show that the q-value calculated on pppost can be useful in order to detect the
BMP2 gene.

Table 3.3 shows the list of the top 10 genes ordered according to the observed M

values. We can see that the BMP2 gene is in the list and it is located in position 27
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Gene names Rank of pplug pplug Rank of ppost ppost Rank of pppost pppost

18-F10 843 1.000 843 1.000 8 0.045
BMP2 1608 1.000 1608 1.000 27 0.203
Dlx3 28 1.000 28 1.000 1 0.000
6-I1 61 1.000 61 1.000 29 0.203
11-L19 1300 1.000 1300 1.000 6 0.000
7-K10 699 1.000 699 1.000 20 0.174
7-K22 702 1.000 702 1.000 820 1.000
18-G18 845 1.000 845 1.000 30 0.203
vent 2150 1.000 2150 1.000 21 0.184
7-G6 698 1.000 698 1.000 20 0.174

Table 3.3: Analysis of Swirl data set: rank of the genes according to the M values.
The q-values with the pppost provide the greatest evidence for the BMP2 gene to be
differentially expressed in the two organisms.

using the q-values and pppost, while using the other p-values we have to consider the
first 1608 genes in order to find this gene. The declared pFDR of gene BMP2 is 0.2
which means that, given the data, this is the probability of making a false discovery
by declaring as differentially expressed the BMP2 gene and other 26 genes. This
probability may seems too high, but it can be accepted if we are in a merely exploratory
data analysis where instead of bounding the probability of making a mistakes we are
essentially interested in the list of the most differentially expressed genes. So usually a
list from 10 to 50 genes is selected and then analyzed with other laboratory techniques.

Using the other MHT methods we are not able to find the BMP2 gene in the first
positions. The behavior of these methods is shown in Figures 3.20, 3.21 and 3.22.
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Figure 3.20: Analysis of Swirl data set: MHT with pplug. We can see that after the
p-value adjustment no gene is suspected to be differentially expressed.
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Figure 3.21: Analysis of Swirl data set: MHT with ppost. We can see that after the
p-value adjustment no gene is suspected to be differentially expressed.
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Figure 3.22: Analysis of Swirl data set: MHT with pppost. We can see that we using
the BH’s procedure and the q-value we can find many altered genes. Among this there
is the BMP2 gene.
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3.3.2 The Golub data set

The goal of this experiment is to find a suitable subset of genes that allows to make
cancer classification. In particular we want to discover which genes are able to differ-
entiate the Acute Lymphoblastic Leukemia (ALL) from the Acute Myeloid Leukemia
(AML). It is important to analyze gene expression profile of human blood in order
to predict which kind of Leukemia a patient is exhibiting, because they are treated
differently. A correct classification give the opportunity to increase the probability of
a patient to survive from Leukemia.

The experiment was performed and first analyzed by Golub et al. (1999). It was
carried out by using 72 Affymetrix U68 gene chips. Each chip produce measurements
for 7129 different expressed sequence tags (ESTs). Some of these ESTs map to the
same genes and others are used for quality control purposes, this lead to 6817 dif-
ferent genes mapped on the array. The data are available at the following web site:
http://www.genome.wi.mit.edu/MPR. We choose to use a subset of 56 chips divided
into two subsets:

i) a training subset that consist of 22 samples: 11 from patient that exhibit AML
and 11 from those that exhibit ALL;

ii) a test subset that consist of 34 samples: 14 AML and 20 AML.

We proceed in this way: we use the training subset to select those genes that
are the most differentially expressed, then we use this list in order to make class
prediction in the test subset. We will suppose that the gene expression follows a
gamma distribution and exhibit the same variation coefficient. The normalized AD

quantity from the experiment are distributed around 0 and in order to have all positives
number we simply shifted all the observations by C = 1 + min (x,y). This translation
does not alter the features of x and y distribution with respect to a common variation
coefficient for X and Y. Where x and y are the observed samples of 7129 genes of 11
replications for both the case and the control. We calculate the p-values on each gene
using 11 replications, then we calculate the q-values and pick up the first 10 genes that
provide the lowest q-values. We use these genes in order to make class prediction using
the k-Nearest Neighbor Classifier as described in Chapter 1. In particular, we used
k = 3 neighborhoods to assign a test set to a class. We are interested in making class
prediction using the smallest number of genes, because the larger the number of genes
we use the more is the likely to make unreliable predictions due to gene’s expression
measurement uncertainty. Figure 3.23 shows the number of misclassified cases using
up to the first 10 genes. It is possible to see that the genes picked up according to the
q-values calculated on pppost are those that provide the lowest number of misclassified
cases.

We underline that we are not saying that the q-values calculated by using pppost

are tailed to make class prediction, but that they just select relevant genes for further
statistical analysis, such as classification. We again remark that the p-values should
be employed in an merely exploratory data analysis.
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Figure 3.23: Analysis of Golub data set: number of misclassified cases according to the
q-values and the three p-values. We can see that in the training set the genes detected
with the pppost lead to a smaller number of misclassified cases.
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Gene names Conc. in Pop.1 Conc. in Pop.2
684-at 0.00 1024.00
38734-at 0.25 0.50
39058-at 0.50 1.00
36311-at 1.00 2.00
36889-at 2.00 4.00
1024-at 4.00 8.00
36202-at 8.00 16.00
36085-at 16.00 32.00
40322-at 32.00 64.00
1091-at 128.00 256.00
1708-at 256.00 512.00
33818-at 32.00 128.00
546-at 8.00 16.00
37777-at 512.00 1024.00
407-at 512.00 1024.00
1597-at 0.00 0.25

Table 3.4: Analysis of Eset3 data set: Concentrations of the sixty genes in the two
reference populations.

3.3.3 The Eset3 data set

This data set consists of 6 HGU95a Affy chips, each containing 12626 genes. The data
can be downloaded at the following Bioconductor web page
http://www.bioconductor.org/repository/Courses/bioclabs 0.1.zip. Among
these 12626 genes 16 have been altered in different concentrations as showed in Table
3.4. We have two reference populations and 3 replicates for each one. We may see that
the gene 1597 is the most difficult to detect as differentially expressed, because the
level of concentration is very low. However, this is in general true for all those genes
that have extreme concentration levels either too low or too high. The MA-plot for
all genes is showed in Figure 3.24. We can see that gene 684-at is highly differentially
expressed, because it lays out of the horizontal lines indicating the double fold change
in the expression level.

In fact as pointed out above, their variability is related to their mean. Therefore
they could be detected as differentially expressed if we take into account the variability
instead of the variance. For this reason we compared the gamma model with the normal
model where the nuisance parameter σ2 represent the variance. The standard analysis
on this data set is to consider the M and A values and model them as they were
normally distributed. This lead to perform t-tests and adjust the p-values according
to FDR and q-values. Here we show that the choice of the model is critical. In fact
even if we consider the M and A as normally distributed we are not able to detect
most of the 16 genes as shown in Figures 3.25-3.27. We have then to consider another
model. By doing so we are more likely to face with the problem that we may not handle
sufficient and ancillary statistics for the unknown parameter. This case is considered
here by using the Gamma model. This can be solved by calculating the pppost. In fact
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Figure 3.24: Analysis of Eset3 data set: MA-plot. We may quickly see that gene
684-at is differentially expressed.
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Figure 3.25: Analysis of Eset3 data set (Normal model): results of the MHT using the
pplug. The dotted line represent the reference error level 0.05. The legend reports the
genes which are not significative differentially expressed.
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Figure 3.26: Analysis of Eset3 data set (Normal model): results of the MHT using the
ppost. The dotted line represent the reference error level 0.05. The legend reports the
genes which are not significative differentially expressed.
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Figure 3.27: Analysis of Eset3 data set (Normal model): results of the MHT using the
pcpred. The dotted line represent the reference error level 0.05. The legend reports the
genes which are not significative differentially expressed.
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Figure 3.28: Analysis of Eset3 data set (Gamma model): results of the MHT using
the pplug. The dotted line represent the reference error level 0.05. The legend reports
the genes which are not significative differentially expressed.

the behavior of the three p-values in the gamma model can be observed in Figures
3.28-3.30. We can see in Figure 3.30 that the combination of pppost and the q-values
results in successfully detect almost all 16 genes. Comparing now the pppost with the
other p-values we can see that they perform better because they do not make a double
use of the data as the ppost, which is critical with 3 replications. Moreover using the
pppost we are taking into account uncertainty on variability which is not considered in
the pplug.

In this data set the number of altered genes is very small with respect to the total
number and then π0 = m0/m = 16/12626 ≈ 0, so we find again that controlling the
FDR or pFDR correspond for this data set to weakly control the FWER. However
we can see that the gain in power of the BH procedure and q-values can be achieved
if we use an asymptotic frequentist p-value such as the Partial posterior Predictive
p-value.

We also analyze a more extended version of this study which have 12 replications
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Figure 3.29: Analysis of Eset3 data set (Gamma model): results of the MHT using
the ppost. The dotted line represent the reference error level 0.05. The legend reports
the genes which are not significative differentially expressed.



3. Results 93

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pppost and Bonferroni

Rank

Bo
nf

er
ro

ni

36311_at
1597_at
38734_at
36085_at

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pppost and Holm

Rank

Ho
lm

36311_at
1597_at
38734_at
36085_at

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pppost and Hochberg

Rank

Ho
ch

be
rg

36311_at
1597_at
38734_at
36085_at

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pppost and BH

Rank

BH

1597_at

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pppost and BY

Rank

BY

36311_at
36085_at
38734_at
1597_at

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pppost and q−values

Rank

q−
va

lue
s

1597_at

Figure 3.30: Analysis of Eset3 data set (Gamma model): results of the MHT using
the pppost. The dotted line represent the reference error level 0.05. The legend reports
the genes which are not significative differentially expressed.



3. Results 94

per population. The eset12 data set can be downloaded at the same location as
eset3. As expected, and pointed out in Chapter 3, in this data set all three p-values
provides the same results.



Chapter 4

Conclusions

Our main conclusions is that the MHT techniques investigated in this work need
to use frequentist p-value. The case, where frequentist p-values are available, are
limited to situations in which we have sufficient test statistics. Therefore in order to
properly extend the MHT techniques to more general situations, (within a parametric
framework), we showed that the pcpred (when available) and pppost are useful.

We further illustrated that the pppost is approximately uniform distributed even
with small sample sizes, such as 3-4 replications for each experimental condition. With
larger sample size the pplug and ppost are also approximately uniform distributed in
(0, 1) and the lack of uniformity is negligible for large sample size. However, we
also showed that even if the null distribution of the p-values is not too far from the
uniform the compound error in MHT is remarkable and convergency theorems for
FDR procedures do not hold.

In this thesis we used a simple model, as the Gamma model, and we found that
despite its simplicity it can be useful to draw inference if the evidence against H = 0
is obtained using appropriate p-values. We showed this with the analysis of the eset3
data set. This reason is due to the fact the pppost avoids the double use of the data.
This issue turns out to be relevant in MHT when the sample size is small.

4.1 Other approaches

We briefly mention other approaches either to MHT and to calibrated the p-values in
the error scale. These approaches have not been considered here mainly because the
are beyond the scope of the thesis or because they are computationally unfeasible.

4.1.1 The Empirical Bayes approach

Too simple models may be incompatible with the data and more complicated models
should be used in order to capture the variance left from the normalization process. In
this sense the Empirical Bayes models can be useful and they also have been applied
to analyze the outcome of a microarray experiment (Efron et al., 2001). However
the relationship between the FDR and Empirical Bayes models is not clear, because
the Empirical Bayes naturally account for the multiplicity of the tests. In fact if we
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have m tests and each gene i came from the distribution Xi ∼ f (xi, θi) and we pose
θi ∼ g (γ̂), we are naturally considering the multiple inference on the θi’s because the
MLE of γ, γ̂ has been calculated on the expression of all m genes. As pointed out
by Kendiorski, in the discussion of Ge et al. (2003), the inference drawn from the
posterior distribution of an Empirical Bayes model often does not require adjustments
in order to control the FDR. Therefore the approach of Empirical Bayes models to
MHT is different from the one considered here.

4.1.2 Calibrating p-values with the Bootstrap

Another different approach to derive frequentist p-values is the one illustrated by
Davison and Hinkley (1997, pp. 175-176). They propose the following approach
summarized in Algorithm 15.

Algorithm 15 (Davison and Hinkley, 1997). Let P be the p-value regarded as a
random variable and p the observed value. Let F̂0 be the empirical distribution of the
null model F0 (corresponding to H = 0). We first simulate P ∗

1 , P ∗
2 , . . . , P ∗

B by drawing
B samples from F̂0. The null distribution of the test statistic have to be approximated
by in each of the B sample. We then approximate the adjusted p-value

padj = Pr ∗
(
P ∗ ≤ p|F̂0

)
(4.1)

with a Monte Carlo sum.

Note that one must be careful to interpret the (4.1) because the outer probability
relates to sampling from the empirical distribution F̂0 rather than from F0. This
method has two non negligible issues in microarray data analysis:

a) the approximation of F̂0 to F0 can be problematic when the sample size is small;

b) the method can be potentially very computational intense, because we have to
implement a bootstrap procedure for each replication P ∗

1 , P ∗
2 , . . . , P ∗

B and we
have to repeat it for every m genes under test.

For these reasons we did not implemented the method even if it provides useful
results in some parametric models as shown in Davison and Hinkley (1997, pp. 176-
177).

4.1.3 The Bayes Factors in MHT: a feasible approach

As pointed out in the first chapter we can construct Γa by using other test statistics
more than the p-values. For example we could use Bayes Factors. Let m0 (xi,yi) and
m1 (xi,yi) be the two predictive distribution respectively under Hi = 0 and Hi = 1.
Here the alternative hypothesis can be not so vague as in the setup considered in this
thesis. The alternative hypothesis must be embedded in a parametric model which is
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supposed to hold when the gene is not differentially expressed. Then the Bayes Factor
(BF ) for a single gene under test is defined

BFi =
m0 (xi,yi)
m1 (xi,yi)

.

The BF s are more in favor to Bayesian than the p-values because if the null hypothesis
is true then BF →∞ as n →∞. However BF s present two relevant issues:

a) the distribution of BF is often unknown and can be very difficult to approximate
when the marginal distributions of t are not known analytically;

b) often they are not defined when the prior are improper or the hypotheses are not
nested.

Many techniques have been developed in order to solve issue (b) by choosing suit-
able noninformative priors on the unknown parameter involved in the hypotheses.
See for example, the intrinsic procedure of Berger and Pericchi (1996), the fractional
Bayes factor of O’Hagan (1995) and the intrinsic procedures in Moreno, Bertolino and
Racugno (1998).

However, issue (a) still remains a problem especially in microarray data analysis
where there are thousand of hypotheses under test and therefore thousand of BF s to
approximate. This issue can be partially mitigated if we assume the same models and
the same prior for all genes under testing. In this way we have only to approximate
the unique null distribution for the BF and then calculate the Type I error concerning
the decision of rejecting each Hi = 0 for BFi ≤ BF . Once we have the rejection region
Γa = BF ≤ BF and we know α then we can estimate the FDR corresponding to the
chosen threshold BF .
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Appendix A

P -values for the Normal model

In the Appendix we provide the details for the calculations of the p-values for the
Normal model.

A.1 Plug-in p-value

The Likelihood under H = 0 is:

L
(
µ, σ2

)
=

nX∏

i=1

1√
2π

1√
σ2

exp

(
−(xi − µ)2

2σ2
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∑nY

i=1 yi)+(nX + nY ) µ2. The MLE
for µ and σ2 are
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i=1 xi +
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x = x2 − x2, S2

y = y2 − y2 and x2 =
∑n
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∑n
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i /nY are the
second sampling moments. The Plug-in p-value is:

pplug = 2


1− Φ
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1
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where Φ (·) is the cumulative distribution function of a standard normal distribution.

A.2 Posterior p-value

Using the Reference prior for µ and σ2:

π
(
µ, σ2

) ∝ 1/σ2, σ ∈ R+
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the marginal posterior distribution for σ2 is

π
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nX+nY +1

2

)
exp

{
− 1

2σ2

[∑nX
i=1 x2

i +
∑nY

i=1 y2
i

nX + nY
− µ̂2

]}
×

×
∫

R
exp

{
−nX + nY

2σ2
(µ− µ̂)2

}

︸ ︷︷ ︸
Kernel of N

(
µ̂, σ2

nX+nY

)

dµ

∝ (
σ2

)−(
nX+nY +1

2

)
exp

{
− 1

σ2
σ̂2

} √
2π

σ2

nX + nY

∝ (
σ2

)−(
nX+nY

2
−1+1

)
exp

{
− σ̂2

σ2

}

= Ga−1

(
nX + nY

2
− 1, σ̂2

)

where Ga−1
(

nX+nY
2 − 1, σ̂2

)
is an inverse gamma distribution with scale parameter

σ̂2. The marginal posterior distribution for t (x,y) is

mpost (t|x,y) =
∫ ∞

0
f

(
t|σ2

)
π

(
σ2|x,y

)
dσ2

=
1√

2π nX+nY
nXnY

(
σ̂2

)nX+nY
2

−1

Γ
(

nX+nY
2 − 1

) ×

×
∫ ∞

0

(
σ2

)−(
nX+nY +1

2

)
exp

{
− 1

σ2

(
nXnY t2

2 (nX + nY )
+ σ̂2

)}

︸ ︷︷ ︸
kernel of Ga−1

(
nX+nY +1

2
−1,

nXnY t2

2(nX+nY )
+σ̂2

)

dσ2

=

(
σ̂2

)nX+nY
2

−1

√
2π nX+nY

nXnY

Γ
(

nX+nY +1
2 − 1

)

Γ
(

nX+nY
2 − 1

)
(

nXnY t2

2 (nX + nY )
+ σ̂2

)−(
nX+nY +1

2
−1

)

=
1√

2σ̂2 nX+nY
nXnY

1√
π

Γ
(

ν+1
2

)

Γ (ν/2)

(
t2

2σ̂2 nX+nY
nXnY

+ 1

)− ν+1
2

, ν = nX + nY − 2

=
1√

2σ̂2 nX+nY
νnXnY

1√
νπ

Γ
(

ν+1
2

)

Γ (ν/2)


1 +

1
ν


 t√

2σ̂2 nX+nY
νnXnY




2

− ν+1

2

= ζnX+nY −2

(
0, σ̂2 nX + nY

nXnY

2
nX + nY − 2

)

where ζnX+nY

(
0, σ̂2 nX+nY

nXnY

2
nX+nY −2

)
represents the density of a centered t-student
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distribution with nX + nY degrees of freedom and σ̂2 nX+nY
nXnY

2
nX+nY −2 is the scale

parameter. Therefore the Posterior p-value is given by:

ppost = 2


1−ΥnX+nY


 |t (x,y)|√

σ̂2 nX+nY
nXnY

2
nX+nY −2







where ΥnX+nY (·) is the c.d.f. of a standard t-student distribution with nX + nY

degrees of freedom.

A.3 Conditional Predictive and Partial Posterior Predic-

tive p-value

Using the same notation as in Bayarri-Berger

u (x,y) = the specific proposal for U

= arg max
µ,σ2

L
(
µ, σ2

)

f (t|σ2)

= arg max
σ2

(
σ2

)−(
nX+nY

2

)
exp

(
− 1

2σ2
B (µ̂)

) √
nX + nY

nXnY
σ2 exp

(
t (x,y)2

2nX+nY
nXnY

σ2

)

= arg max
σ2

(
σ2

)−(
nX+nY −1

2

)
exp

(
− 1

2σ2

(
B (µ̂)− (x− y)2

nX+nY
nXnY

))

= arg max
σ2

−
(

nX + nY − 1
2

)
log σ2 − 1

2σ2

(
B (µ̂)− (x− y)2

nX+nY
nXnY

)
= l

(
σ2

)

⇒ l′
(
σ2

)
= 0

⇒ σ̂2
cMLE =

1
(nX + nY − 1)

(
B (µ̂)− (x− y)2

nX+nY
nXnY

)

=
n2

Xx2 + n2
Y y2 + nXnY x2 + nXnY y2 − n2

Xx2 − n2
Y y2 − nXnY x2 − nXnY y2

(nX + nY ) (nX + nY − 1)

=
n2

XS2
x + n2

Y S2
y + nXnY

(
S2

x + S2
y

)

(nX + nY ) (nX + nY − 1)

=
nX

nX + nY − 1
S2

x +
nY

nX + nY − 1
S2

y

⇒ u (x,y) =

(
µ̂cMLE = µ̂, σ̂2

cMLE =
nXS2

x + nY S2
y

nX + nY − 1

)

Note that σ̂2
cMLE is stochastically proportional to two independent quantities: S2

x and
S2

y (because of the independence between X and Y ). S2
x and S2

y are independent from
T (also from µ̂cMLE) and they are jointly sufficient for σ2 and µ, therefore, the Partial
Posterior Predictive p-value is equal to the Conditional predictive p-value.

Let f
(
u (x,y) , µ, σ2

)
represent the joint density of U , then the U -conditional dis-

tribution for the parameter is given by:

π
(
µ, σ2|u (x,y)

) ∝ f
(
u (x,y) , µ, σ2

)
π

(
µ, σ2

)
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∝ f
(
µ̂, µ, σ2|H0

)
︸ ︷︷ ︸

N
(
µ,

(
1

nX
+ 1

nY

)
σ2

)
f

(
σ̂2

cMLE , µ, σ2|H0

)
︸ ︷︷ ︸

χ2
nX+nY −1

1
σ

as σ̂2
cMLE ⊥ µ̂cMLE

= π

(
µ|σ2,

nXx + nY y

nX + nY

)
π

(
σ2|σ̂2

cMLE

)
marginal conditional distribution

where:

π

(
µ|σ2,

nXx + nY y

nX + nY

)
= N

(
nXx + nY y

nX + nY
,
σ2

n

)

π
(
σ2|σ̂2

cMLE

)
= π

(
σ2|σ̂2

cMLE

)
does not depend on µ

= Ga−1

(
nX + nY − 2

2
,
nX + nY − 1

2
σ̂2

cMLE

)

The marginal distribution of t|u (x,y) is given by:

m (t|u (x,y)) =
∫

R

∫

R+

f
(
t|σ2, u (x,y)

)
π

(
µ, σ2|u (x,y)

)
dµdσ2

=
∫

R+

f
(
t|σ2, σ̂2

cMLE

)
π

(
σ2|σ̂2

cMLE

)
dσ2

∫

R
π

(
µ|σ2,

nXx + nY y

nX + nY

)
dµ

=
∫

R+

f
(
t|σ2

)
π

(
σ2|σ̂2

cMLE

)
dσ2 because σ̂2

cMLE ⊥ T

=
∫

R+

1√
2π nX+nY −1

nXnY
σ2

exp

(
− t2

2nX+nY −1
nXnY

σ2

)
×

×
(

nX+nY −1
2 σ̂2

cMLE

)nX+nY −2

2
(
σ2

)−(
nX+nY −2

2
+1

)

Γ
(

nX+nY −2

2

) ×

× exp
{
−(nX + nY − 1) σ̂2

cMLE

2σ2

}
dσ2

=
1√

2π nX+nY
nXnY

(
nX+nY −1

2 σ̂2
cMLE

)nX+nY −2

2

Γ
(

nX+nY −2

2

) ×

×
∫

R+

(
σ2

)−(
nX+nY −1

2
+1

)
exp

{
− 1

σ2

(
nX + nY − 1

2
σ̂2

cMLE +
t2

2nX+nY
nXnY

)}

︸ ︷︷ ︸
Kernel of Ga−1

(
nX+nY −1

2
,
nX+nY −1

2
σ̂2

cMLE+ t2

2
nX+nY
nXnY

)

dσ2

=
1√

2π nX+nY
nXnY

(
nX + nY − 1

2
σ̂2

cMLE

)nX+nY −2

2

×

×Γ
(

nX+nY −1
2

)

Γ
(

nX+nY −2

2

)
(

nX + nY − 1
2

σ̂2
cMLE +

t2

2nX+nY
nXnY

)−nX+nY −1

2

=
Γ

(
ν+1
2

)

Γ
(

ν
2

) 1√
π (nX+nY )(nX+nY −1)

nXnY
σ̂2

cMLE

×, where ν = nX + nY − 2

×
(

1 +
t2

(nX+nY )(nX+nY −1)
nXnY

σ̂2
cMLE

)− ν+1
2
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=
Γ

(
ν+1
2

)

Γ
(

ν
2

) 1√
νπ

1√
(nX+nY )(nX+nY −1)

νnXnY
σ̂2

cMLE

×

×

1 +

1
ν


 t√

(nX+nY )(nX+nY −1)
νnXnY

σ̂2
cMLE




2

− ν+1

2

= ζnX+nY −2

(
0,

(nX + nY ) (nX + nY − 1)
(nX + nY − 2)nXnY

σ̂2
cMLE

)

Then the Conditional Predictive p-value is equal to:

pcpred = 2


1−ΥnX+nY −2


 |t (x,y)|√

S2
pooled







where S2
pooled = (nX+nY )(nX+nY −1)

(nX+nY −2)nXnY
σ̂2

cMLE =
(

1
nX

+ 1
nY

)(
nXS2

x+nY S2
y

nX+nY −2

)
is the pooled

sample variance in the classical test for the difference of two means under normal
assumption with equal variance.



Appendix B

P -values for the Gamma model

In this Appendix we provide the details of the calculations for the p-values in the
Gamma model. We also show that the partial posterior distribution for the Gamma
model is a proper probability distribution.

The density (2.9) has been obtained by constraining the random variable D = X/Y

to be greater than 1. For ρ = θY /θX , the distribution of random variable D is a
Multiple Scale Beta distribution of II kind (B.1) (see Kendall and Stuart 1969, p.
151):

f (d; a, ρ) =
Γ (2na)
Γ2 (na)

(
1
ρ

)
(d/ρ)na−1

(1 + d/ρ)2na (B.1)

Algorithm 16 We estimate the c.d.f. of T for a given a using the following fact:

b =
d

d + 1
∼ Beta (na, na)

then we generate values of T in this way: first we generate b from Beta (na, na) and
then we apply the transformation t∗ = b

1−b and collect only the values t∗ ≥ 1. We
generated I values of statistic T , t∗1, . . . , t

∗
I , and approximate a p-value by the following

Monte Carlo sum: ∑I
i=1 1 {t∗i > tobs}

I

At the beginning we considered the statistic t =
∣∣∣x
y − 1

∣∣∣ with the following null
density:

f

(
t =

∣∣∣∣
x

y
− 1

∣∣∣∣ |a
)

=
Γ (2na)
Γ2 (na)

(
(1 + t)na−1

(2 + t)2na + 1(0,1) (t)
(1− t)na−1

(2− t)2na

)

This density leads to a numerical problem. In fact when t < 1 we have to com-
pute the log of the sum

(
(1+t)na−1

(2+t)2na + 1(0,1) (t) (1−t)na−1

(2−t)2na

)
and is often the case that(

(1+t)na−1

(2+t)2na + 1(0,1) (t) (1−t)na−1

(2−t)2na

)
≈ 0. Therefore we cannot gain the numerical advan-

tages of a log-scale. This does not happen when t > 1.
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B.1 Plug-in p-value

The Likelihood under H0 is:

L (θ, a) = θ2naΓ−2n (a)

(
n∏

i=1

xiyi

)a−1

exp {−θn (x + y)}

and the maximum likelihood estimators for θ and a are respectively θ̂ and â given by

θ̂ = â
2

x + y

â : ψ(0) (a)− log (a) =
1
2

(∑n
i=1 log xi +

∑n
i=1 log yi

n

)
− log

(
x + y

2

)
(B.2)

where ψ(k) (a) is

ψ(k) (a) =
∂k

∂ak
log Γ (a)

therefore ψ(0) (a) and ψ(1) (a) are respectively the digamma and trigamma function.
The equation (B.2) is implicit in a and it has been solved using the Bisection method
(or Bolzano’s method). The expression of θ̂ has been reported here but has not been
calculated. The algorithm used to calculate the trigamma is from Schneider, (1978)
based on the following approximation

ψ(k) (a) ≈ (−1)k−1

[
(k − 1)!

ak
+

k!
2ak+1

+
∞∑

i=1

B2i
(2i + k − 1)!

(2i)!a2i+i

]
,

where B2i, i = 1, . . . ,∞ are the Bernoulli Numbers. The algorithm used for the
digamma function is based on Bernardo, (1976) where we can find the following re-
mark.

Remark 17 (Bernardo, 1976). Note that the trigamma function behaves in the limits
according to

ψ(1) (a) ≈
1
a

+
1

2a2
+

1
6a3

− 1
30a5

+
1

45a7
− 1

30a9
+ O

(
1

a11

)
for a →∞(B.3)

ψ(1) (a) ≈
1
a2

+ o (1) for a → 0, (B.4)

where

o (1) <
∞∑

i=1

1
i2

=
π2

6

We approximate the pplug using Algorithm 16 for a = â.

B.2 Posterior p-value

The prior

Two non-informative priors were considered: the Jeffreys’s prior and the Reference
prior (Berger and Bernardo, 1992a, 1992b, 1992c). The inference under the Reference
prior provides better results than with the Jeffreys’s prior as showed in Liseo (1993).
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According to the algorithm provided by (Berger and Bernardo, 1992a) the refer-
ence prior is obtained by maximizing an asymptotic version of the expected Shannon
information. Using Remarks 17 we have that this prior is improper because is un-
bounded for a → 0. Applying the factorization theorem to the prior in (2.10) we have
that θ and a are independent parameters

π (θ, a) ∝ π (θ) π (a) .

The kernel of the posterior of the joint distribution is given by:

π (θ, a|x,y) ∝ L (θ, a) π (θ, a)

∝ Γ−2n (a)
n∏

i=1

(xiyi)
a−1

√
aψ(1) (a)− 1

a
θ2na−1 exp {−θn (x + y)}︸ ︷︷ ︸

π(θ|a,x,y)=Gamma(2na,n(x+y))

and the marginal posterior distribution for a is:

π (a|x,y) ∝ Γ (2na)
Γ2n (a)

∏n
i=1 (xiyi)

a−1

[n (x + y)]2na

√
aψ(1) (a)− 1

a

the posterior predictive distribution for T is given by:

mpost (t|x,y) =
∫

R+

∫

R+

f (t|a) π (θ, a|x,y) dθda

=
∫

R+

f (t|a) π (a|x,y) da

=
∫

R+

22naΓ
(

1
2 + na

)

Γ (na)
√

π

tna−1

(1 + t)2na

Γ2 (2na)
Γ2 (na) Γ2n (a)

∏n
i=1 (xiyi)

a−1

[n (x + y)]2na ×

×
√

aψ(1) (a)− 1
a

da

This integral has been approximated by first obtaining π (a|x,y) through a Metropo-
lis Hastings Sampler (MH) with a gamma proposal distribution with mode on a =

arg maxa π (a|x,y) and variance
(
− ∂2

∂a2 π (a|x,y) |a=a

)−1
. The MH chain has been

run for 51000 steps with a burn-in of 1000. Figure 2.3 (top) suggests that this number
of replicates is enough because the modes of the simulated are located appropriately
respect to the maximum estimate with a gaussian kernel. The initial point was set in
the mode of the posterior and the percentage of acceptance rate of our MCMC sampler
was around 30% - 50%.

We approximate the ppost using Algorithm 16 where the values of a are obtained
from the posterior.

B.3 Partial Posterior Predictive p-value

The marginal partial posterior distribution for parameter a is given by:

π (a|x,y\t (x,y)) ∝
∫

R+

L (θ, a) π (θ, a)
f (t (x,y) |a)

dθ
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∝ π (a|x,y)
f (t (x,y) |a)

∝ Γ2 (2na)
Γ2 (na) Γ2n (a)

∏n
i=1 (xiyi)

a−1

[n (x + y)]2na

√
aψ(1) (a)− 1

a
×

×
(

22naΓ
(

1
2 + na

)

Γ (na)
√

π

t (x,y)na−1

(1 + t (x,y))2na

)−1

.

The partial posterior distribution was approximated using the same MH chain as for
the posterior, except that the initial point and the proposal setup was made accord-
ing to π (a|x,y\t (x,y)) rather than π (a|x,y). We calculated the Partial Posterior
predictive p-value, pppost, by approximating the integral

m (t|x,y\t (x,y)) =
∫

R+

f (t|a) π (a|x,y\t (x,y)) da

using Algorithm 16 where the values of a are those obtained from the partial posterior
distribution π (a|x,y\t (x,y)).

B.3.1 The Metropolis Hasting algorithm for approximate the poste-

rior and the partial posterior distribution of a.

We provide here more details on the approximation of π (a|x,y\t (x,y)) and π (a|x,y).
The differences between the two algorithm stay only in the density to be approximated
and not in the procedure, therefore we will illustrate it referring to the approximation
of π (a|x,y\t (x,y)). We will refer to the numerical example of inference under the
Gamma model provided in Chapter 3. In particular we will refer to the analysis
reproduced in Figure 2.3 where we run a chain of length 51000 steps.

Figure B.1 compare the proposal distribution with the kernel of π (a|x,y\t (x,y))
and its approximation. For approximating the π (a|x,y\t (x,y)) we setup a gamma
distribution with mode in a = arg maxa π (a|x,y\t (x,y)) and variance

(
− ∂2

∂a2
π (a|x,y\t (x,y)) |a=a

)−1

.

This choice of the proposal distribution was suggested because of the similarity of the
shape of a Gamma density with the kernel density as shown in Figure B.1, therefore to
mimic the π (a|x,y\t (x,y)) was just necessary to match the proposal mode with the
mode of the π (a|x,y\t (x,y)). In this way we guarantee us to explore all the support
where the kernel provide significant probability mass. The convergence of the Markov
chain to the stationary distribution is guaranteed because the proposal distribution
has the same support of the π (a|x,y\t (x,y)). In fact the Autocorrelation Function
plotted in Figure B.2 (b) suggests that the chain behaves acceptably, because the
mixture of the posterior and the proposal allows the chain to jump with a fairly high
acceptance rate (about 50%). Moreover the burn in period of 1000 steps seems to be
adequately because the chain seems to stationary as shown in Figure B.2 (a).
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Figure B.1: Kernel of the partial posterior distribution, proposal and approximated
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Figure B.2: (a) Time series of the Markov chain and (b) Auto Correlation Function.
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B.3.2 The partial posterior distribution is proper

We provide here the proof of proposition (3), which states that π (a|x,y\t (x,y)) is a
proper probability density for n ≥ 2.

Proof. The proof is based on the integrability of π (a|x,y\t (x,y)) for a →∞ (a)
and for a → 0 (b).

a) π (a|x,y\t (x,y)) can be written in the following form

π (a|x,y\t (x,y)) ∝ K (a) =
Γ2 (2na)

Γ2 (na) Γ2n (a) Γ
(

1
2 + na

)
√

ψ(1) (a)− a−1Ca

where C is the following constant

C =
∏n

i=1 xi
∏n

i=1 yi

4 (
∑n

i=1 xi)
n (

∑n
i=1 yi)

n

=
1
4n

GxGy

xy
.

and Gx, Gy represent respectively the geometric mean of x and y. Using (B.3)
we can approximate √

ψ(1) (a)− a−1 ≈ 1
2a2

and the asymptotic behavior of the gamma function are

Γ2 (2na)
Γ2 (na) Γ2n (a) Γ

(
1
2 + na

) ≈ Γ2 (a)
Γ2 (a) Γ2n (a) Γ (a)

≈ 1
Γ2n+1 (a)

.

Therefore for a →∞ we have

K (a) → 1
2a2

1
Γ2n+1 (a)

Ca,

Note also that C < 1, which is always true because of the well known relation
between geometric and arithmetic means:

Gx ≤ x,Gy ≤ y.

Therefore π (a|x,y\t (x,y)) is integrable for a →∞.

b) Using approximations (B.4) for a → 0 we have

lim
a→0

K (a) = lim
a→0

√
a−1 − 1
(2na)2

(na) a2n

(
1
2

+ na

)

︸ ︷︷ ︸
∼1/2

1√
a

= lim
a→0

Ca−1/2a−2aa2na−1/2, C =
1
8n

= lim
a→0

Ca2n−2

and π (a|x,y\t (x,y)) is integrable if n− 1 > 0 which is satisfied for n ≥ 2.


