
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Marco J .  Lombardi ,  
G iorg io Ca lzo lar i  

 
 
 
 
 
 

 

 
U n i v e r s i t à  d e g l i  S t u d i  

d i  F i r e n z e  
 
 
 
 
 
 
 
 
 

 

 

Ind irect  est imat ion 

of  a lpha-stable d istr ibut ions 

and processes 

 

W
O

R
K

I
N

G
 

P
A

P
E

R
 

2
0

0
4

/
0

7
 

D
ip

a
rt

im
e

n
to

 d
i 

S
ta

ti
s
ti

c
a

 “
G

. 
P

a
re

n
ti

” 
–

 V
ia

le
 M

o
rg

a
g

n
i 

5
9

 –
 5

0
1

3
4

 F
ir

e
n

z
e

 -
 w

w
w

.d
s
.u

n
if

i.
it

 

S t a t i s t i c s ,  E c o n o m e t r i c s



Indirect estimation ofα-stable
distributions and processes

Marco J. Lombardi∗ Giorgio Calzolari

Abstract

The α-stable family of distributions constitutes a generalization of the
Gaussian distribution, allowing for asymmetry and thicker tails. Its practical
usefulness is coupled with a marked theoretical appeal, as it stems from a
generalized version of the central limit theorem in which the assumption of
the finiteness of the variance is replaced by a less restrictive assumption con-
cerning a somehow regular behavior of the tails. Estimation difficulties have
however hindered its diffusion among practitioners.

Since simulated values fromα-stable distributions can be straightfor-
wardly obtained, the indirect inference approach could prove useful to over-
come these estimation difficulties. In this paper we provide a description
of how to implement such a method by using a skew-t distribution as an
auxiliary model. The indirect inference approach will be introduced in the
setting of the estimation of the distribution parameters and then extended to
linear time series models withα-stable disturbances. The performance of
this estimation method is then assessed on simulated data. An application on
time-series models for the inflation rate concludes the paper.

1 Introduction

The central limit theorem is one of the cornerstones of statistical inference. In
the formulation provided by Lindeberg and Lévy, it basically states that, given a
sequence ofn independent and identically distributed random variables with finite
variance, their sum converges, asn grows, to a normal distribution regardless of
the individual shape. This is of crucial importance in statistical inference for two
basic reasons:

– most of the sample statistics are built by adding up random variables related
to the individuals in the sample.

– several phenomena of statistical interest may be thought as aggregations of
contributions of smaller factors.

∗Corresponding author; emailmjl@ds.unifi.it . A preliminary version of this paper was
presented at the conference S.Co. 2003 in Treviso. We thank Adelchi Azzalini, Silvano Bordignon
and Mauro Grigoletto for their insightful comments.
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The consequence of this result is that the normal distribution is quite wide-
spread both in statistical inference and in statistical modelling. As an example, if
we hypothesize that the noise term in regression and time series models is the result
of a large number of small effects with finite variances, its distribution should be
normal. Since it turns out that the estimation residuals are often roughly normal-
like, the theoretical property of the normal distribution as a limit law matches with
the empirical evidence: these two aspects support and encourage the widespread
use of the normal distribution in statistical applications.

However, there are situations in which empirical findings clash with what one
would expect provided the theoretical assumptions made. In the specific case, one
may observe that in some cases the estimation residuals turn out to have much
thicker tails than those expected according to the normal law. This means that one
of the two assumptions we made, i.e. that the noise is given by the contribution of
a high number of factors and that those factors have finite variance, must be wrong.

1.1 α-Stable Distributions

When the central limit theorem fails because of the non-finiteness of the variance,
one should not expect anymore the Gaussian distribution as a limit law. Instead,
provided that the following condition concerning the tail behavior

lim
x→∞

x2 [1− F (x) + F (−x)]
u(x)

=
2− α

α
<∞, (1)

whereu(x) is a slowly varying function, holds, one should observe aα-stable
limiting distribution. This generalized version of the central limit theorem and
the related family of distributions were introduced by Gnedenko & Kolmogorov
(1954); the Gaussian distribution is thus a particular case ofα-stable distribution.
This family of distributions has a very interesting pattern of shapes, allowing for
asymmetry and thick tails, that makes them suitable for the modelling of several
phenomena; moreover, it is closed under linear combinations.

The family is identified by means of the characteristic function

φ1(t) =
{

exp
{
iδ1t− γα|t|α

[
1− iβsgn(t) tan πα

2

]}
if α 6= 1

exp
{
iδ1t− γ|t|

[
1 + iβ 2

π sgn(t) ln |t|
]}

if α = 1
(2)

which depends on four parameters:α ∈ (0, 2], measuring the tail thickness (thicker
tails for smaller values of the parameter),β ∈ [−1, 1] determining the degree and
sign of asymmetry,γ > 0 (scale) andδ1 ∈ R (location).

While the characteristic function (2) has a quite manageable expression and
can straightforwardly produce several interesting analytic results, it unfortunately
has a major drawback for what concerns estimation and inferential purposes: it is
not continuous with respect to the parameters, having a pole atα = 1.
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An alternative way to write the characteristic function that overcomes this prob-
lem, due to Zolotarev (1986), is the following:

φ0(t) =
{

exp
{
iδ0t− γα|t|α

[
1 + iβ tan πα

2 sgn(t)
(
|γt|1−α − 1

)]}
if α 6= 1

exp
{
iδ0t− γ|t|

[
1 + iβ 2

π sgn(t) ln(γ|t|)
]}

if α = 1
(3)

In this case, the distribution will be denoted asS(α, β, γ, δ0). The formulation of
the characteristic function is, in this case, quite more cumbersome, and the analytic
properties have less intuitive meaning; but it is much more useful for what concerns
statistical purposes and, unless otherwise stated, we will refer to it in the following.
The only parameter that takes needs to be “translated” according to the following
relationship isδ:

δ0 =
{
δ1 + βγ tan πα

2 if α 6= 1
δ1 + β 2

πγ ln γ if α = 1
(4)

On the basis of the above equations, aS1(α, β, 1, 0) distribution corresponds to a
S0(α, β, 1,−βγ tan πα

2 ), provided thatα 6= 1.
Unfortunately, (2) and (3) cannot be analytically inverted to yield a closed-

form density function except for a very few cases:α = 2, corresponding to the
normal distribution1, α = 1 andβ = 0, yielding the Cauchy distribution, and
α = 1

2 , β = ±1 for the Lévy distribution.
This difficulty, coupled with the fact that moments of order greater thanα do

not exist wheneverα 6= 2, has made impossible the use of standard estimation
methods such as maximum likelihood and the method of moments. Researchers
have thus proposed alternative estimation procedures, mainly based on quantiles
(McCulloch 1986) or on the empirical characteristic function (Koutrouvelis 1980),
the performance of which is judged unsatisfactory in a number of respects.

With the availability of powerful computing machines, it has become possible
to employ computationally-intensive estimation methods for the estimation ofα-
stable distributions; in particular, likelihood-based inference has been carried out
by approximating the density with the FFT of the characteristic function (Mittnik,
Doganoglu & Chenyao 1999) or with numerical quadrature (Nolan 1997). How-
ever, the accuracy of both these approximations is quite poor for small values ofα
because of the spikedness of the density function. The latter method, furthermore,
is of very difficult implementation. The Bayesian approach has also benefited from
the introduction of modern computers: simulation based MCMC methods have
been proposed by Buckle (1995), Qiou & Ravishanker (1998), Lombardi (2004)
and Casarin (2004).

Despite the computational burden associated with the evaluation of the proba-
bility density function, stably distributed pseudo-random numbers can be straight-
forwardly simulated using the algorithm proposed by Chambers, Mallows & Stuck
(1976). LetW be a random variable with exponential distribution of mean 1 and
let U be an uniformly distributed random variable on

[
−π

2 ,
π
2

]
. Furthermore, let

1Note, though, that in this caseβ becomes unidentified.
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ζ = arctan
(
β tan πα

2 /α
)
. Then

Z =


sinα(ζ + U)
α
√

cosαζ cosU

[
cos (αζ + αU − U)

W

] 1−α
α

if α 6= 1

2
π

[(π
2

+ βU
)

tanU − β ln
π
2W cosU
π
2 + βU

]
if α = 1

(5)

hasS0(α, β, 1, 0) distribution. Random numbers for the general case containing
also the position and scale parametersδ andγ may be straightforwardly obtained
exploiting the fact that, ifX ∼ S(α, β, γ, δ), thenZ = X−δ

γ ∼ S(α, β, 0, 1). Sim-
ilarly, random numbers from anα-stable distribution expressed in parameterization
(2) can be readily obtained using (4).

1.2 α-Stable ARMA Processes

One of the most promising fields of applications ofα-stable distributions is that of
time series models. As one can in fact note, several empirical phenomena that are
observed over time exhibit asymmetry and leptokurtosis (e.g. intensity and dura-
tion of rainfalls analyzed in environmetrics, activity time of CPUs and networks or
noise in degraded audio samples in engineering, asset returns in finance).

Formally, a process is said to be ARMA(p, q) with α-stable innovations if it
takes the form

Yt =
p∑

i=1

ϕiYt−i +
q∑

j=1

ψjεt−j + εt, εt ∼ Sk(α, β, γ, 0) ∀t, k = 0, 1, 2. (6)

By defining a lag operatorL such thatLqyt = yt−q, it is possible to rewrite (6) as

Φ(L)Yt = Ψ(L)εt. (7)

Provided thatΦ(z) andΨ(z) do not have common roots and that the roots of the
former are outside the unit circle, the process can be expressed as an infinite mov-
ing average:

Yt =
∞∑

j=0

cjεt−j , (8)

where thecjs are the coefficients of the series expansion ofΨ(z)
Φ(z) . From (8), it is

straightforward to note thatYt, being a linear combination ofα-stable random
variables, isα-stable too with the same characteristic index (Samorodnitsky &
Taqqu 1994). It is also immediate to observe that the sequence (8) is strictly station-
ary; however it is important to remark that, being the variance infinite, the concept
of covariance stationarity is meaningless. It can be also demonstrated (Kokoszka
& Taqqu 1994) that thecjs decrease at an exponential rate, so that there exists a
M > 1 such that|cj | < M−j and the resulting process is short memory.
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Since the variance does not exists, however, one cannot use the autocovariance
function in order to describe the dependence structure of the process and get in-
sights about an appropriate specification as in the Gaussian case. Methods to iden-
tify the appropriate order of AR and MA lags to be used are discussed in Nardelli
(1997).

2 Indirect inference for α-stable distributions

The indirect inference (Gouriéroux, Monfort & Renault 1993) is an inferential ap-
proach which is suitable for every situation in which the estimation of the statistical
model of interest is too difficult to be performed directly while it is straightforward
to produce simulated values from the same model. It was first motivated by econo-
metric models with latent variables, but it can be applied in virtually every situation
in which the direct maximization of the likelihood function turns out to be difficult.

The underlying principle is very simple: suppose we have a sample ofT ob-
servationsy and a model whose likelihood functionL?(y; θ) is difficult to handle
and maximize; the model could also depend on a matrix of explanatory variables
X. The maximum likelihood estimate ofθ ∈ Θ, given by

θ̂ = max
θ∈Θ

T∑
t=1

lnL?(θ; yt),

is thus unavailable. Let us now take an alternative model, depending on a parameter
vectorζ ∈ Z, which will be indicated asauxiliary model, easier to handle, and
suppose we decide to use it in the place of the original one. Since the model is
misspecified, the quasi-ML estimator

ζ̂ = max
ζ∈Z

T∑
t=1

ln L̃(ζ; yt),

is not necessarily consistent: the idea is to exploit simulations performed under the
original model to correct for inconsistency.

The first step consists of computing the quasi maximum likelihood estimate of
ζ, which will be denoted aŝζ. Next, one simulates a set ofS vectors of sizeT from
the original model on the basis of an arbitrary parameter vectorθ̂(0). Let us denote
each one of those vectors asys(θ̂(0)). The simulated values are then estimated
using the auxiliary model, yielding

ζ̃(θ̂(0)) = max
ζ∈Z

S∑
s=1

T∑
t=1

ln L̃
[
ζ; ys

t (θ̂
(0))
]
. (9)

The idea is to numerically update the initial guessθ̂(0) in order to minimize the
distance [

ζ̂ − ζ̃(θ)
]′

Ω
[
ζ̂ − ζ̃(θ)

]
, (10)

5



whereΩ is a symmetric nonnegative matrix defining the metric.
An alternative but similar approach, introduced by Gallant & Tauchen (1996),

considers directly the score function of the auxiliary model:

T∑
t=1

∂ ln L̃(ζ; yt)
∂ζ

, (11)

which is clearly zero for the quasi-maximum likelihood estimator ofβ. The idea is
to make as close as possible to zero the score computed on the simulated observa-
tions, namely

min
θ

{
S∑

s=1

T∑
t=1

∂ ln L̃ [ζ; ys
t (θ)]

∂ζ

}′∑{
S∑

s=1

T∑
t=1

∂ ln L̃ [ζ; ys
t (θ)]

∂ζ

}
, (12)

whereΣ is a symmetric nonnegative definite matrix. This approach is especially
useful when an analytic expression for the gradient of the auxiliary model is avail-
able, since it allows us to avoid the numerical optimization routine for the compu-
tation of theζ̂(θ)s.

The indirect inference estimators are consistent and asymptotically normal un-
der certain regularitiy conditions. The most difficult one to establish is that the
binding function, that is the function that maps the parameter space of the auxiliary
model onto the parameter space of the true model, is one-to-one. In general, the
binding function cannot be expressed analytically and the above condition needs
to be verified numerically.

Once one manages to specify an adequate auxiliary model, indirect inference
estimators for the parameters ofα-stable distributions can be readily implemented
and exploited by relying on the simulation algorithm of Chambers et al. (1976).

2.1 The auxiliary model

The auxiliary model we have decided to use is the skew-t distribution recently
introduced by Azzalini & Capitanio (2003). The idea follows from an extension of
the skew-normal distribution (Azzalini 1985), in which the symmetry of the density
function is perturbated by means of the distribution function evaluated at a certain
point. More formally, the univariate skew-normal density function is defined as:

f(x; β̃, µ, σ) = 2fN (z)FN (β̃z), (13)

wherefN andFN denote, respectively, the density and the distribution function
of the standard normal distribution andz = x−µ

σ . The parameter2 β̃ ∈ R deals
with the degree of skewness of the distribution and thus determines the shape of
the density function.

2In the original papers,̃β is denoted byα; in this work we have adopted this different notation to
avoid confusion and mark similarities with theα-stable distribution parameters.
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The skewed variant of thet distribution is defined by means of the same per-
turbation strategy.

f(x; ν, β̃, σ, µ) =
2
σ
ft(z; ν)Ft

(
β̃z

√
ν + 1
z2 + ν

; ν + 1

)
(14)

= 2
Γ
(

ν+1
2

)
σΓ
(

ν
2

)√
πν

[
1 +

z2

ν

]− ν+1
2

Ft

(
β̃z

√
ν + 1
z2 + ν

; ν + 1

)
,

where, as before,zi = xi−µ
σ .

This distribution has four parameters: since it has similarities to aα-stable
distribution, given the potential to accommodate asymmetry and heavy tails, it is
a good candidate for our purposes. The preferred estimation method for skew-t-
based models is maximum likelihood. The log-likelihood function for a skew-t
sample ofn observations is:

lnL(ν, β̃, σ, µ|x) = n
[
ln 2

σ + lnΓ
(

ν+1
2

)
− ln Γ

(
ν
2

)
− 1

2 ln(πν)
]

(15)

+
n∑

i=1

lnFt

(
β̃zi

√
ν + 1
z2
i + ν

; ν + 1

)

−ν + 1
2

n∑
i=1

ln
(

1 +
z2
i

ν

)
.

The analytic expressions of the first-order derivatives of the log-likelihood func-
tion were worked out by Azzalini & Capitanio (2003) and are of great advantage
for the implementation of a indirect inference approach, allowing the use of the
less computationally-intensive method of Gallant & Tauchen (1996). Since we
are dealing with an auxiliary model with one or more constraints, indirect estima-
tion is possible following the method developed by Calzolari, Fiorentini & Sentana
(2004). Setting

τi = β̃zi

√
ν + 1
z2
i + ν

,
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the analytic gradient is reported below in (16):

∂ lnL
∂ν

=
n

2

[
Ψ
(
ν + 1

2

)
−Ψ

(ν
2

)
− 1
ν

]
+ (16)

+
1
2

n∑
i=1

[
ν + 1
ν2

z2
i

1 + z2
i /ν

− ln
(

1 +
z2
i

ν

)]
;

∂ lnL
∂β̃

=
n∑

i=1

zi
ft(τi; ν + 1)
Ft(τi; ν + 1)

√
ν + 1
z2
i + ν

;

∂ lnL
∂σ

= −n
σ

+
n∑

i=1

[
ν + 1
σν

z2
i

1 + z2
i /ν

+z2
i

β̃

σ

ft(τi; ν + 1)
Ft(τi; ν + 1)

√
ν + 1(
z2
i + ν

)3 −
√

ν + 1
z2
i + ν

]
;

∂ lnL
∂µ

=
1
σ

n∑
i=1

zi

[
ν + 1
ν

(
1 +

z2
i

ν

)−1

+ β̃zi
ft(τi; ν + 1)
Ft(τi; ν + 1)

√
ν + 1(
z2
i + ν

)3
]

+

− β̃
σ

n∑
i=1

ft(τi; ν + 1)
Ft(τi; ν + 1)

√
ν + 1
z2
i + ν

.

2.2 The binding function

The binding function is in general very difficult to be expressed in analytic terms.
In order to assess that the estimator is indeed consistent, one must thus rely on
graphical information. The most striking difference between skew-t andα-stable
distributions is that, for the latter, the asymmetry parameter becomes unidentified
asα approaches two; in the sequel we will see that this could be a serious problem.
Nevertheless, the binding function seems to generally behave remarkably well, as
illustrated in figure 1.

The behavior of the binding function is however less pleasant asα approaches
2, since in such a caseβ is unidentified. As one can glance from the first graph
in figure 1, whenα is very close to 2, the binding curves for two very different
values ofβ are nearly indistinguishable. The three-dimensional plot of the binding
function displayed in figure 2 highlights this situation: asα approaches 2, the
surface gets very steep with respect toβ̃ and completely flat with respect toβ.
We will show in what follows that this can be a major source of trouble in the
estimation procedure.

2.3 Simulation Results

The simulation study we have conducted to explore the properties of indirect in-
ference estimators yields very promising results; each of the experiments we will
present is based on a set of 1000 replications withS = 10 and was run on a
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Figure 1: Profiles of the binding function for various parameter values.

Figure 2: Surface of the binding function with respect toβ̃ asα andβ vary.
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2.66GHz Pentium IV processor using a Fortran 77 compiler; 30Mb of RAM were
sufficient to handle the largest dimensional case (N = 3000, S = 10). The first ex-
periment we have conducted was aimed at assessing the general consistency prop-
erties of the indirect inference estimators. Random samples of three different sizes,
namely 500, 1000 and 3000, were generated fromα-stable distribution with dif-
ferent parameter choices. For this first validation experiment, the starting values
supplied to the optimization algorithm were “not too wrong”, that is not too far
from the actual ones; the effect of the choice of starting values will be examined in
one of the following experiments. Results are reported in table 1.

Table 1: Monte Carlo mean and standard error (in parentheses) for various param-
eter values and sample sizes.

α = 1.4 β = 0 γ = 1 δ = 0
N = 500 1.4058 0.0025 0.9987 0.0012

(0.0760) (0.1268) (0.0559) (0.0831)
N = 1000 1.4049 0.0023 0.9987 – 0.0011

(0.0527) (0.0886) (0.0388) (0.0569)
N = 3000 1.4014 0.0007 0.9992 0.0003

(0.0296) (0.0517) (0.0222) (0.0335)

α = 1.1 β = 0.7 γ = 2 δ = 10
N = 500 1.1044 0.7060 2.0021 10.0053

(0.0579) (0.0693) (0.1224) (0.1573)
N = 1000 1.1028 0.7028 1.9958 10.0001

(0.0397) (0.0505) (0.0866) (0.1118)
N = 3000 1.1010 0.7009 1.9986 10.0011

(0.0222) (0.0281) (0.0491) (0.0646)

α = 0.7 β = −0.3 γ = 2 δ = 10
N = 500 0.7035 – 0.2959 1.9989 9.9971

(0.0360) (0.0621) (0.1725) (0.1166)
N = 1000 0.7027 – 0.2996 1.9971 9.9974

(0.0249) (0.0438) (0.1196) (0.0774)
N = 3000 0.7006 – 0.2997 1.9956 10.0002

(0.0146) (0.0255) (0.0725) (0.0454)

The second experiment we have performed consisted in evaluating whether
different choices of the scale and position parameters affect the performance of the
estimators forα andβ. The results, displayed in table 2, suggest that the estimator
are still asymptotically unbiased, but the presence of “low” or “high” values of the
scaleγ negatively affects the standard error of bothγ andδ and has a very mild
effect onα andβ, whereas different values ofδ have apparently no effect.

The estimator provides reliable and consistent results, at least for what con-
cerns values ofα andβ situated far away from the boundary. Furthermore, the
empirical distribution of the estimator behaves remarkably well, as the exemplifi-
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Table 2: Monte Carlo mean and standard error (in parentheses) for changing scale
and location,N = 1000.

α = 1.5 β = 0.5 Varyingγ δ = 10
γ = 0.5 1.5037 0.5052 0.4993 10.0000

(0.0532) (0.0961) (0.0180) (0.0298)
γ = 3 1.5037 0.5052 2.9955 10.0003

(0.0532) (0.0961) (0.1082) (0.1789)
γ = 30 1.5037 0.5052 29.9550 10.0026

(0.0532) (0.0960) (1.0819) (1.7887)

α = 1.5 β = 0.5 γ = 3 Varying δ
δ = −5 1.5036 0.5052 2.9955 – 4.9997

(0.0532) (0.0961) (0.1082) (0.1789)
δ = 0 1.5037 0.5051 2.9957 0.0005

(0.0532) (0.0960) (0.1081) (0.1788)
δ = 5 1.5037 0.5052 2.9955 5.0003

(0.0532) (0.0961) (0.1082) (0.1789)

cation presented in figure 3 reveals.
For what concerns the limiting cases forα andβ, the situation is a little bit

different and the optimization procedure tends to fail quite often. The solution
for perfectly skewed (or apparently symmetric) distributions is to fixβ to ±1 (or
to 0). The situation whenα is close to 2 is quite different, and is often encoun-
tered in practical applications when heavy tailed distributions border normality. In
this case, the indirect inference approach tends to fail because, as it can be easily
glanced from (2) or (3),β loses relevance and eventually becomes unidentified.
This difficulty can be overcome by leaving outβ by pre-estimating it3, possibly
with a quantile-based method, or by fixing it to 0 whenever the empirical distribu-
tion looks symmetric enough. Although this approach rules out inferential consid-
erations on the asymmetry parameter, the results it provides are quite satisfactory,
as displayed in table 3.

Table 3: Monte Carlo mean and standard error for values ofα close to 2,N =
1000. Conv.reports the percentage of replications for which the estimation proce-
dure of the auxiliary model converged.

α γ = 1 δ = 0
Conv. Mean est. Std. err. Mean est. Std. err. Mean est. Std. err.

α = 1.9 99.8% 1.9026 0.0458 1.0002 0.0298 – 0.0005 0.0499
α = 1.95 98.1% 1.9510 0.0357 1.0003 0.0281 – 0.0005 0.0491
α = 1.99 68.3% 1.9836 0.0186 0.9962 0.0254 – 0.0003 0.0484

The other problem we have encountered is that the estimation of the auxiliary

3This obviously implies pre-testing issues that, at this stage, were not considered.
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Figure 3: Kernel densities of the parameter estimators,α = 1.4, β = 0, γ = 1,
δ = 0.
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model tends to fail4 asα approaches 2; those cases were thus discarded and the
results were computed according to the actual number of replications used. It is
worth remarking that the decrease in the standard error ofα̂ asα approaches 2 is
caused by the fact that the asymptotic distribution gets more and more skewed to
the left, cutting off the right tail because of the parameter boundary.

In the case presented in table 3, however,β was fixed to its true value. This
is obviously not the case in real estimation problems, when one can only guess a
value and hope it is close enough to the actual one. Luckily enough, using a guess
as greater as 20% than the true value ofβ and fixingβ̂ to this value seems to have
no relevant impact on the standard errors of the other estimates, as shown in table
4.

Table 4: Monte Carlo mean and standard error of parameter estimates whenβ,
whose true value is 0, is fixed to two different values,N = 1000.

α = 1.8 γ = 1 δ = 0
Mean est. Std. err. Mean est. Std. err. Mean est. Std. err.

β = 0 1.8030 0.0538 0.9990 0.0321 – 0.0003 0.0512
β = 0.2 1.8031 0.0538 0.9997 0.0408 0.0282 0.0512

The last experiment we have performed aims at assessing how the starting
values5 supplied to the optimization algorithm affect the estimates. The param-
eters of the DGP were set toθ = [1.5, 0.5, 1, 0]. The “wrong” starting values
were set tôθ(0) = ζ̂(0) = [0.6,−0.8, 3, 2.5]; those “slightly wrong” werêθ(0) =
[1.3, 0.8, 1.5, 0.5] and ζ̂(0) = [2.0, 0.9, 1.5,−0.3] and finally, for what concerns
the “true” values, besides the obvious choiceθ̂(0) = [1.5, 0.5, 1, 0], we employed
ζ̂(0) = [2.3, 0.8, 1.3,−0.5]. Those values were chosen according to the binding
function. A quick glance highlights that, apart from the obvious increase in com-

Table 5: Monte Carlo mean and standard error (in parentheses) for different starting
values,N = 1000. The column “Time” reports the average time to convergence in
seconds.

α = 1.5 β = 0.5 γ = 1 δ = 0 Time
True 1.5037 0.5052 0.9985 0.0001 4.3477

(0.0532) (0.0960) (0.0360) (0.0596)
Slightly wrong 1.5037 0.5052 0.9985 0.0001 5.6508

(0.0532) (0.0960) (0.0360) (0.0596)
Wrong 1.5037 0.5052 0.9985 0.000128.6396

(0.0532) (0.0960) (0.0360) (0.0596)

putation time, different starting values do yield completely identical results.
4In this case the skew-t distribution converges to the skew-normal (Azzalini 1985) and thus in-

volves the estimation difficulties associated with this distribution.
5Note that, in a indirect inference framework, one has two sets of starting values: those related to

the estimation of the auxiliary model, namelyζ̂(0), and those of the true model,θ̂(0).
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Finally, we have compared the results with those obtained by approximate max-
imum likelihood. As we have already remarked, the quadrature-based numerical
approach of Nolan (1997) is very difficult to implement. Although the author dis-
tributes a program to perform basic estimation, its source code was not made pub-
lic. We have thus confined our attention to the FFT-based approach of Mittnik,
Rachev, Doganoglu & Chenyao (1999); the spacing between each point of the grid
for the FFT was set to 0.01. Furthermore, for observations lying at a distance
greater than30γ away fromδ, we have employed a series expansion in order to
avoid having a too large number of points for the FFT. For both the estimation
approaches, starting values were set equal to the actual parameter values. Results,
displayed in table 6, point out that the indirect inference is only slightly slower
with respect to maximum likelihood. One has to keep in mind, however, that the
likelihood optimization routine ended up in weak convergence6 18% of the times.
In table 6 we will thus report both the Monte Carlo results computed on the whole
set of simulation and those obtained excluding weak convergences. The mean es-
timates are quite similar, except for the case ofα, whereas for the standard errors
a major discrepancy can be highlighted forδ.

Table 6: Monte Carlo mean and standard errors (in parentheses) of the indirect
inference and approximate maximum likelihood estimators for various parameter
values,N = 1000. The column “Time” reports the average time to convergence in
seconds.

α = 1.4 β = 0 γ = 1 δ = 0 Time
Ind. inf. 1.4049 0.0023 0.9987 – 0.00116.4339

(0.0527) (0.0886) (0.0388) (0.0569)
ML, no weak 1.4012 0.0004 0.9959 – 0.00224.4421

(0.0489) (0.0882) (0.0251) (0.0554)
ML, complete 1.3752 – 0.0016 0.9936 – 0.00304.6426

(0.0499) (0.0896) (0.0253) (0.1167)

3 Indirect inference for α-stable ARMA processes

The main selling point of this computationally-intensive approach is that, contrary
to what happens for the other estimation methods, it is very flexible and can be em-
bedded in a variety of structures, provided one can identify a well-behaved skew-t
based auxiliary model. In linear regression models, this carries out straightfor-
wardly: if one wishes to estimate a linear regression model the error term of which
has anα-stable distribution, it is sufficient to use the analog model with skew-t
error distribution.

6For weak convergence we mean that the linear search procedure cannot find a better value along
the direction indicated by the gradient.
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The issue is a little bit more complex for ARMA time series models, which
we will consider in what follows. The idea one could pursue is to use as auxil-
iary model the skew-t analog of the “true” model of interest, e.g. for anα-stable
ARMA(1,1) an auxiliary skew-t ARMA(1,1) model. As far as simple AR models
are concerned, this carries out straightforwardly and a just-identified approach per-
forms well. Unfortunately, the analytic derivatives of the MA terms of the auxiliary
model cannot be obtained by analytic means; the use of the analog skew-t model
thus leads to computational slowness. One could thus use, as an auxiliary model, a
simple AR structure, e.g. for anα-stable MA(1) an auxiliary skew-t AR(1) model,
for which the analytic gradient is available. In a general MA(q) framework, as long
as the roots of the polynomial1 +

∑q
k=1 ψkz

k are outside the unit circle, the MA
model is invertible and can be expressed as an AR(∞), making thus possible to
establish a correspondence between the true and the auxiliary model.

3.1 Simulation results

The first simulations we have performed concern the estimation of simple AR(1)
and MA(1) with α-stable noise models by means of an auxiliary skew-t AR(1)
model. Results are based on a set of 1000 independent replications, each one con-
sisting of 1000 observations, and are reported in table 7.

Table 7: Monte Carlo mean and standard error for the estimation of anα-stable
AR(1) model with skew-t AR(1) and MA(1) auxiliary.

AR(1)
α = 1.5 β = 0.5 γ = 2 δ = 0 ϕ = 0.5

Mean est. 1.5054 0.5077 1.9955 0.0016 0.4994
Std. err. 0.0553 0.0999 0.0727 0.1221 0.0121

α = 1.7 β = −0.2 γ = 1 δ = 0 ϕ = −0.8

Mean est. 1.7036 – 0.2003 0.9982 – 0.0014 – 0.7994
Std. err. 0.0572 0.1473 0.0337 0.0609 0.0128

MA(1)
α = 1.5 β = 0.5 γ = 2 δ = 0 ψ = 0.4

Mean est. 1.5036 0.5065 1.9920 0.0020 0.3988
Std. err. 0.0600 0.1039 0.0896 0.1294 0.0455

α = 1.8 β = −0.4 γ = 1 δ = 0.5 ψ = −0.5

Mean est. 1.8034 – 0.4321 0.9951 0.5148 – 0.5080
Std. err. 0.0608 0.2324 0.0416 0.1017 0.0612

This approach performs satisfactorily as long as the model of interest does not
combine AR and MA terms. In this latter case, unfortunately, the binding function
is no longer one-to-one; if one naively tries to use the indirect inference anyway,
e.g. tries to estimate anα-stable ARMA(1,1) with a just-identified skew-t AR(2)
as an auxiliary model, (s)he would face a bimodal distribution for both the AR and
the MA parameters.

A possible approach to overcome this difficulty is to increase the AR order of
the auxiliary model. In the experiments we have performed it appears that, for
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Figure 4: Kernel densities of the AR and MA parameters estimators of table 7.

what concerns an ARMA(1,1) model, an AR(4) auxiliary structure is sufficient (cf.
figure 5) to get a well-behaved binding function (cf. Di Iorio & Calzolari 2004). As
a rule of thumb, one could thus suggest to double the number of AR coefficients.
This finding, however, deserves further attention.

The results of the simulation experiment we have performed in this framework
are presented in table 8 and are based on a set of 500 replications. We can observe
that the performance of the method is acceptable for all the parameters butψ. In
this case, the estimator displays a strong bias associated with a markedly high
standard deviation. This could be a signal that, albeit the binding function is well-
behaved, the AR order of the auxiliary model is not large enough. Using more
AR lags, however, makes the procedure much slower and unsuitable for a detailed
simulation study. For this reason, we do not report any result concerning this issue.

Table 8: Monte Carlo mean and standard error for the estimation of anα-stable
ARMA(1,1) model with skew-t AR(4) auxiliary.

α = 1.5 β = 0.3 γ = 1 δ = 0 ϕ = 0.7 ψ = 0.1

Mean est. 1.5527 0.3116 0.9981 0.0086 0.7126 0.0453
Std. err. 0.0691 0.1168 0.0375 0.0634 0.0422 0.1475

3.2 An empirical application

As an illustration on how our model performs on real data, we will deal with the
estimation of a simple AR(1) model for the inflation rate of the consumer price
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Figure 5: Various profiles of the binding function for an ARMA(1,1) model with
an AR(4) auxiliary model. The parameters of the underlyingα-stable noise are
α = 1.5, β = 0.5, γ = 1, δ = 0. The first row reports the binding function
with respect to the AR parameterϕ with the MA parameterψ = 0.2, the second is
respect to the MA parameter withϕ = 0.2.
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Figure 6: Monthly data on raw (left) and seasonally adjusted (right) yearly inflation
rates in the US, January 1948 – March 2004.

index in the United States. The data set we will consider is composed of 675
monthly observations on yearly inflation rates and ranges from January 1948 to
March 2004 (cf. figure 6). We will employ both the raw and the seasonally adjusted
versions of the consumer price index, obtained from the Federal Reserve of St.
Louis. Although not too far from the normal, the estimation residuals of a Gaussian
AR(1) model display an excess of kurtosis.

Estimation results for both the Gaussian and theα-stable AR(1) models are
displayed in table 9. As one could expect, the standard deviation of the Gaussian
model is much larger than the scale parameter of theα-stable model, due to the
heavy tailed features of the noise. For what concerns the AR parameterϕ, the
α-stable model indicates much less persistence than the Gaussian. Again, this is
a direct consequence of the heavy tailed features of the noise: large deviations of
the inflation rate away from its expected value are much likely to be interpreted as
noise than in the Gaussian case. As a result, the fitted series is notably smoother,
as displayed in figure 7.

Table 9: Estimates and standard errors (in parentheses) for the parameters of a
Gaussian and anα-stable AR(1) models for the inflation rate.

α-Stable Gaussian
α β γ δ ϕ σ µ ϕ

Raw 1.5713 – 0.4309 0.2097 0.0321 0.7596 0.4577 0.0304 0.9876
(0.0507) (0.1370) (0.0106) (0.0507) (0.0248)(0.0221) (0.0147) (0.0057)

S.adj. 1.5520 – 0.2586 0.2055 0.0392 0.8171 0.4411 0.0290 0.9871
(0.0490) (0.0989) (0.0119) (0.0309) (0.0444)(0.0215) (0.0138) (0.0055)

4 Conclusions

We have introduced a novel indirect inference approach to the estimation of the
α-stable distributions parameters that makes use of a skew-t distribution as auxil-
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Figure 7: Fitted series for the Gaussian (dotted lines) and theα-stable (solid lines)
AR(1) models for both the raw (left panel) and the seasonally adjusted (right panel)
inflation series.

iary model. This approach was shown to perform satisfactorily on simulated data,
although we have to note that some adjustments to the standard indirect inference
scheme are required when the parametersα andβ are close to their boundaries. We
further remarked that its computational requirements are competitive with respect
to the approximate maximum likelihood.

We have then extended this approach to basic ARMA time series models, high-
lighting that AR-based auxiliary models perform well whenever AR and MA terms
are not combined. In the case of more complex ARMA models, one can use as aux-
iliary model an over-identified AR structure. As a practical example, the indirect
inference approach was then used to estimate anα-stable AR(1) model for the US
inflation rate.

This approach seems very promising, especially because it can be easily ex-
tended to various kinds of statistical models. In particular, an extension that could
be very interesting in the setting of time series models is to consider long memory
ARFIMA models (Hosking 1981), whose estimation could be carried out using an
AR auxiliary model.
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