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If you have an apple and I have an apple and we exchange apples
then you and I will still each have one apple.

But if you have an idea and I have an idea and we exchange these ideas,
then each of us will have two ideas.

George Bernard Shaw (1856 - 1950), Irish Writer
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PREFACE

Microarray technology: the genesis

Proteins are the structural components of cells and tissues and perform
many key functions of biological systems. The production of proteins is
controlled by genes, which are coded in deoxyribonucleic acid (DNA).
Protein production from genes involves two principal stages, known
as transcription and translation (see figure 1).
During transcription, a single strand of messenger ribonucleic acid
(mRNA) is copied from the DNA segment coding the gene. After tran-
scription, mRNA is used as a template to assemble a chain of amino
acids to form the protein.
Gene expression investigations study the amount of transcribed mRNA
in a biological system. Although most proteins undergo modification
after translation and before becoming functional, most changes in the
state of a cell are related to changes in mRNA levels for some genes,
making the transcriptome worthy of systematic measurement.
Several techniques are available to measure gene expression, including
serial analysis of gene expression (SAGE), cDNA library sequencing,
differential display, cDNA substraction, multiplex quantitative RT-PCR
and gene expression microarray. Microarray quantify gene expression
by measuring the hybridisation, or matching, of cDNA immobilised
on a small glass, plastic or nylon matrix to mRNA representation from
a sample under study. A separate experiment takes place in each of
many individual spots, arranged as a regular pattern on the matrix,
whence the name array. Arrays can currently have hundreds of thou-
sands of spots. Such ability to measure simultaneously a large pro-
portion of the genes on a genome opens the door to the investigation
of the interactions among the genes on a large scale, the discovery of
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the role of the vast number of genes whose function is not adequately
understood, and the characterisation of how metabolic pathways are
changed under varying conditions.

Figure 1: Central dogma of molecular biology (see color insert following page 99).
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Different technologies

There are several microarray technologies. Currently two approaches
are prevalent: cDNA arrays and oligonucleotide arrays. This work is
based on the the first technology, but now we introduce briefly both.
They both exploit hybridisation, but they differ in how DNA sequences
are laid on the array and in the length of these sequences.
In spotted DNA arrays, mRNA from two different biological samples
is reverse-transcribed into cDNA, labelled with dyes of different colors
and hybridised to DNA sequences, each of which is spotted on a small
region, or spot or glass slide. After hybridisation, a laser scanner mea-
sures dye fluorescence of each color at the fine grid of pixels. Higher
fluorescence indicates higher amounts of hybridised cDNA, which in
turn indicates higher gene expression in the sample. A spot typically
consists of a number of pixels. Image analysis algorithms either assign
pixels to a spot or not and produce summaries of fluorescence at each
spot as well as summaries of fluorescence in the surrounding unspot-
ted area (background). cDNA microarray are described in Schena et al.
(1995) and DeRisi et al. (1997).
For each location on the array, a typical output consists of at least four
quantities, one of each color, for both the spot and the background.
Sometimes these are accompanied by measures of spot quality, to flag
technical problems, or by measures of the pixel intensity variability. It
is conventional to refer to the two colors as red and green. The use
of two channels allows for measurements of relative gene expression
across two sources of cDNA, controlling for the amount of spotted
DNA, which can be variable, as well as other experimental variation.
This has led to emphasis on ratios of intensities at each spot. Although
this ratio is critical, there is relevant information in all four of the quan-
tities above.
The second common approach involves the use of high density oligonu-
cleotide arrays. This is an area of active technological development.
The most widely used oligonucleotide array type is the Affymetrix
GeneChip. In this array, expression of each gene is measured by com-
paring hybridisation of the sample mRNA to a set of probes, composed
of 11-20 pairs of oligonucleotides, with a specified length. The first type
of probe in each pair is known as Perfect Match and is taken from the
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gene sequence. The second type is known as Mismatch and is created
by changing the middle base of the PM sequence to reduce the rate of
specific binding of mRNA from other parts of the genome.
An RNA sample is prepared, labelled with a fluorescent dye and hy-
bridised to an array. Unlike in two-channels arrays, a single sample is
hybridised on a given array. Arrays are then scanned and images are
produced and analysed to obtain a fluorescence intensity value for each
probe, measuring hybridisation for the corresponding oligonucleotide.
For each gene, or probe set, the typical output consists in two vectors
of intensity readings, one for Perfect Match and one for Mismatch.

Variability sources

Gene expression microarray are a powerful tool, but variability arising
throughout the measurement process can obscure the biological signal
of interest. It is useful to classify sources of variation into five phases
of data acquisition: microarray manufacturing, preparation of mRNA
from biological samples, hybridisation, scanning and imaging. Each of
these phases can introduce an amount of artifactual variation and/or
bias that complicates the estimation of expression levels as well as the
comparison of expression changes between arrays. To focus on cDNA
technology, variability arises in the amplification, purification and con-
centration of DNA clones for spotting, in the amount of material spot-
ted, in the ability of the spotted material to bind to the array and in the
shape of the deposited spot. Systematic variation can be determined
by microscopic defects in the print tip of the robotic equipment used
for spotting.
During the preparation of samples, sources of variability depend on the
protocol and the platform used. Important examples include labelling
procedures, RNA extraction and amplification. In cDNA arrays, dye
biases can arise from different ability of the dyes to incorporate into
the samples and can be reduced using dye-swap, a design that pro-
vides for the replication of experiments with inverse assignation of flu-
orochrome at the two conditions (reference and treatment).
During hybridisation, variability arises from ambient conditions such
as temperature and humidity, from edge effects (for the genes spotted
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near the edges of the array), from slight inhomogeneity of the hybridis-
ation solution, from extraneous molecules or dust binding to the array,
from cross-hybridisation of molecules with high sequence identity, and
from washing of non hybridised materials from the array.
During scanning, natural fluorescence and binding of genetic material
to the array in unspotted regions can introduce a nontrivial, spatially
varying background noise. Scanning requires separating the fluores-
cent label from the biological material and capturing it with sensors;
both phases involve randomness and re-scanned slides usually give
slightly different results. Scanning intensity is an important factor, as
higher intensity improves the quality of the signal but increases the
risk of saturation caused by a ceiling occurring when a channel reaches
maximum intensity.
In the imaging step, some technologies require human intervention for
the initialisation of the imaging algorithms or the alignment of the im-
age to a grid.
Although many of the errors are relatively small, the compounding of
their effects can be significant. As a result, we can generally expect vari-
ation in the expression of a given gene across different hybridisations
using the same RNA sample. This variability is involved in identifi-
cation of differential expression through statistic test. In cDNA arrays
many sources of noise can be quantified in the aggregate by a self-self
hybridisation (calibration experiment), in which two sub samples from
the same pool of RNA are labelled with different dyes and then hy-
bridised on the same array.

Outline of the work

As described in the previous section, variability plays an important role
in the analysis of microarray; the aim of this work is the variability
modelling for cDNA microarray data. Starting from the analysis and
the comparison of the relevant approaches in literature, we propose a
Full Bayesian model taking advantage from calibration experiment.
In particular, chapter 1 presents and compares the different methodolo-
gies to model variability; chapter 2 proceeds the comparison in terms of
computation aspects and of results for the approaches that give a free
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software. Chapter 3 presents the original modelling that takes prior
information from calibration experiment. Chapter 4 analyses the re-
sults of the proposed model applied to LPS- and un-stimulated human
leukocytes.
This work is structured in articles that can be read separately. However,
in chapter 1-3 some references to other chapters are put in brackets, to
make easy passing through the different works.
In the following pages I give some outline of what are the goals of the
works.

Estimating variability in microarray experiments

In this paper, we define how to model the variability for each gene and
to find a valid way to take into account gene specific information is a
central point in the analysis of microarray data. Many authors have
tackled this problem under different point of view and a researcher
who for the first time approach this topic can find difficulties moving
around. We introduce the approaches in section 1.4, clustering them as
follow: modified t tests are in section 1.4.1, ANOVA models in section
1.4.2, error models in section 1.4.3 and Mixture models in section 1.4.4.
In section 1.5 we try evaluating advantages and drawbacks for each of
them.

An application to compare variability on microarray data

In this paper we present and compare the performance of five different
approaches, which are based on a modification of t statistic.
t test is a natural choice to identify differentially expressed genes, but
it is unsatisfactory for low variability level. Two problems which af-
fect the t statistic in the microarray framework are considered here: the
availability of only few replicates (e.g. 2,3) for each gene; the depen-
dence between mean and standard deviation of gene log expression
(the t statistic numerator and denominator, respectively).
In this research field the amount of data to work with is very large
(usually from 1000 to 14000) and the computational aspects are as im-
portant as the methodological ones, but there is not a gold standard
at the moment. R project (www.r-project.org) seems a good ex-
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change tool for the researchers. In this perspective, we have written an
add on package (R/compvar), that gives the results of 5 considered ap-
proaches in terms of differential expression and of variability estimate.
This can be useful under two different perspective: the biologist can
use the package to evaluate the power of each approach to determine
differentially expressed genes; the statistician can avail of this package
as a starting point, to go through and understand the different method-
ologies with the aim of propose an own approach to the problem.
To evaluate the library we used two public cDNA datasets, that differ
for some relevant features and we discuss the results.

Using a calibration experiment to assess gene specific information:
Full Bayesian and Empirical Bayesian models for microarray data

In this paper, we propose an original approach to model the variabil-
ity, taking advantage of calibration experiments (Tseng et al., 2001), in
which the probes hybridised on the two channels come from the same
population (self-self experiment). From such an experiment, it is pos-
sible to estimate the gene-specific variance, to be incorporated in com-
parative experiments on the same tissue, cellular line or species.
In section 3.4 we present two different approaches to introduce prior
information on gene-specific variability from a calibration experiment.
The first is an Empirical Bayes model derived from Tseng et al., while
the second one is a full Bayesian hierarchical model. We apply the
methods in the analysis of human LPS-stimulated leukocyte experi-
ments comparing the results (section 3.5 and 3.6) and investigating the
differences (section 3.7).

Calibration experiment for the analysis of microarray data: an application on
un-and-LPS stimulated human leukocyte model

In this paper we present an original application of the models pre-
sented in the previous paper on peripheral blood mononuclear cells.
We use the Bayesian hierarchical model to identify differentially ex-
pressed genes, taking into account the variability at gene level through
calibration experiments and we compare the result to whom obtained
by Tseng model, as a standard method for taking information from cali-
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bration experiment. Our data on LPS-inducible gene expression profile
both identified novel genes (e.g. IFI30, MLSN1, CFL2, AXIN1) suggest-
ing new targets of study in order to better understand the pathophys-
iology of sepsis and inflammatory disease and confirmed the involve-
ment of many cytokines and chemokines (IL-1b, IL-1RA, MIP-1a, -1b,
-2b, -3a).
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1 ESTIMATING VARIABILITY IN

MICROARRAY EXPERIMENTS

1.1 Abstract

Microarray technology is a powerful tool to analyse and classify thou-
sands of genes at the same time. It is commonly used in many biolog-
ical fields to compare mRNA levels between two or more conditions.
A central point in the analysis of microarray data is how to model the
variability for each gene and to find a valid way to take into account
gene specific information. Many authors have tackled this problem
under different point of view. In this paper we consider 4 types of
approaches: modified t test, ANOVA model, two components error
model and mixture model. We try evaluating advantages and draw-
backs for each of them.

1.2 Introduction

Experiments based on microarray technology has assumed a very im-
portant role in the biological research field. Statistical aspects are rel-
evant in each phase of the experimental procedure, especially in the
design of experiment, quality control and normalisation, to the aim of
taking under control variability sources. Under this aspect, if the choice
of experimental design permits to control the sources of variability be-
fore performing the experiment, quality control and to a greater extent
normalisation, take into account and try eliminating the non biologi-
cal variability, that is the noise one. After normalisation, there are two
main goals: one is the identification of differentially expressed genes
among several varieties (class comparisons), while the other is the dis-
covery of clusters within a collection of samples (class discovery). Class
comparison is related to exposure or treatment (i.e. comparison of gene
expression for a population of smokers and non smokers) and the com-
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parison between two (or more) varieties are performed directly (i.e.
loop design) or indirectly (i.e. reference design). Conversely, class dis-
covery is based on distances between gene profiles of pairs of samples
(Dobbin et al., 2002). To the aim of class comparison, from a very naı̈f
point of view two methods are mostly used: the first simply compares
the expression in experimental condition versus control condition and
selects the genes for which the expression values are very different in
the two conditions (considering as significant the genes with at least 2
or 3 fold) (DeRisi et al., 1996). The second method consists in selecting
genes for which the ratio between experimental and control condition
is far from the mean of experimental/control ratio (Tao et al., 1999). In
this framework, the variability within conditions is not taken into ac-
count making such approaches not very refined. In fact, they tend to
be too much conservative at high expression level and too less conser-
vative at low expression level.
In a classical statistical approach, it seems extremely natural to use t
tests where for each gene at the numerator there is the difference be-
tween gene expression levels in two conditions to be tested as differ-
entially or not and at the denominator there is the variance divided by
the square root of the replicates number. In this context a crucial point
is how to obtain a valid estimate of the denominator. Actually, when
the number of replicates is small (i.e. 2,3) the sampling distribution
of variance is very asymmetric, with higher probability for small val-
ues, producing an underestimate of variability and a consequent over-
price of differentially effect between the two conditions. For this rea-
son in literature many authors try stabling the measure of variability
to be used. One way is to consider a global variance for the whole set
of genes, or try calculating a function of the variance common for all
the genes. However, this causes a loss of power, because tends to be
very conservative and to increase the number of false negative. In the
present work we describe the principal methods on microarray exper-
iments that take into account the variability at gene-level. The paper
follows this structure: in section 1.3 we present a brief introduction on
microarray experiment and preprocessing techniques, in section 1.4 we
take an excursus on the approaches we intend to treat and introduce
the notation used thereafter; then subsections 1.4.1- 1.4.4 treat different

2



methodologies in details; the Discussion (section 1.5) gives some focal
differences within the treated approaches.

1.3 Background on microarray

DNA microarray analysis has become the most widely used technique
for the study of gene expression patterns on a genomic scale (Schena
et al., 1995), (Schena et al., 1996). There are many microarray technolo-
gies and the more used are two: cDNA microarray and oligonucleotide
arrays. They differ in how the sequences of DNA are processed to pro-
duce the array and in the length of the sequences used. For more details
see the preface; thereafter we refer to the first technology.

1.3.1 Data Preprocessing

During the complex procedure of microarray fabrication, many sources
of variability arise and can obscure the biological signal of interest (see
the preface). In each phase of data acquisition an amount of system-
atic variation can be introduced and it should be taken under control.
To this aim, quality controls and normalisation procedures are used to
detect and eliminate the artifacts and the systematic variations, both
within a single array and across arrays.

Quality control Simon et al. (2004) suggest some rules to identify
low quality spots. They are both at the single channel intensity level
and at the relative intensity level. The first includes the number of
pixels used to calculate the intensity and the strength of the intensity
signal; the second comprises the ratio between the average foreground
intensity and the median background intensity and spots with a large
signal for one channel and low signal for the other channel (not to be
eliminated, but modified to be analysed).

Normalisation After quality control data are commonly normalised.
We do not treat the different aspects of this procedure, but refer to
the complete review on microarray normalisation methods that can be
founded in Yang et al. (2002). In this paper we only want to point
out it is possible to normalise the data externally or treating normali-
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sation as part of the modelling. Actually some of the approaches we
refer to consider normalisation as a preliminary step in the analysis of
the variability and the identification of differentially expressed genes.
They generally use a local A-dependent normalisation (loess) calcu-
lated for each slide or for single print tip. On the other side, some
approaches analyse directly raw data and perform a normalisation as
a part of the analysis. In chapter 2 the effect of normalisation on two
dataset is pointed out and in chapter 3 the importance of evaluating
the differences in normalisation is a focal point.

1.4 Approaches to variability

Many authors consider a gene-specific variance at the denominator of
the t test, and add a global constant for the whole set of genes to stable
the variance. The aim of this constant is to take under control the rela-
tion between low intensity and low variability, that increases the num-
ber of false positives. The different methods treated lie on a paramet-
ric Empirical Bayesian framework (Lönnstedt and Speed, 2002), non
parametric frequentist (Tusher et al., 2001), non parametric Empirical
Bayesian (Efron et al., 2001) or parametric fully Bayesian (Baldi and
Long, 2001)
Similarly it is possible to specify linear models on log expression in-
cluding terms for slide, gene, treatment and dye, a subset of the inter-
actions between terms and a random error. These terms can be treated
all as fixed effects in a non parametric optic (Kerr et al., 2000), or assum-
ing some effects as fixed and some other as random. In the latter case
the variance is decomposed in a sum of components and the model is
framed in a parametric approach (Wolfinger et al., 2001).
Instead of considering different component of variance for each gene, it
is possible to decompose it accordingly to the expression values. This
approach starts from the idea that the standard deviation for expres-
sion measure increases exponentially to the level of expression for high
levels and linearly for low levels (not expressed genes). Mean and vari-
ance for response variable are parameterized differently for high or low
values in a parametric perspective (Rocke and Durbin, 2001).
Not far from this point of view, Delmar et al. propose a mixture model
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on gene specific variance distribution, identifying cluster of genes with
equal variance under a non parametric point of view.
For our purposes, we consider M as the matrix of log ratio

mgi = log
(expression level in sample 1)gi

(expression level in sample 2)gi
(1.1)

with G rows and I column, where mgi represents the logratio for gth

gene in the ith array. When we consider the absolute expression level
we work with X, matrix of log intensity with G rows and 2I columns,
where xgik denotes the log intensity level for gth gene, ith array and
kth condition. We refer to the natural logarithmic scale, even if some
authors model the base 2 logarithm.

1.4.1 Modified t test

Adding a constant to the denominator of t-test is the simplest method
to try finding a valid variability measure. It permits both to eliminate
the problem of asymmetric distribution of variance that arises for small
number of replicates, and to reduce the loss of power that occurs when
a global estimate of variability is used.

Non parametric frequentist SAM Tusher et al. (2001) introduce a
non parametric approach that considers a modification of t test. For
each gene a score is assigned on the basis of the change in its nor-
malised expression divided by the ratio of standard deviation of re-
peated measures for that gene and the square root of replicates num-
ber. The t statistic proposed by the authors has a global component of
variability and a gene specific one:

tg =
mg.

sg/
√

I + s0

(1.2)

where mg. is the mean log ratio for the gth gene over the I arrays. The
component sg is the standard deviation for the gth gene coming from
repeated measurements:

sg =

√√√√ 1

I − 1

{
∑

i

[mgi − mg.]
2

}
(1.3)
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For the choice of s0 let sα be the α percentile of sg distribution and
tαg = mg.

sg/
√

I+sα
The authors compute the 100 quantiles of sg(q1, .., q100)

and for α ∈ (0, .05, . . . , 1) they compute the absolute deviation from
the median of tg and its coefficient of variation. The chosen α̂ is which
minimise the coefficient of variation and s0 = sα̂.
To find differentially expressed genes, this approach identifies a thresh-
old and estimates the number of false positives through an approach
based on permutations. The genes are ranked according to the tg score
in descending order and a large number of permutations of the labels
of I samples are calculated. The relative differences are computed as
tgp statistic for each permutation and the expected relative difference is

tEg =
∑

tgp

np
where np is the total number of permutations considered.

The plot of tg vs tEg shows a percentage of genes that lie far from the
tg = tEg line by a distance greater than a specified threshold ∆ and that
are potentially differentially expressed. To determine the number of
false positive genes, horizontal cutoffs are drawn corresponding to the
smallest positive tg and the biggest negative tg. At each permutation
the number of false positive is calculated as the number of genes that
pass these thresholds and the average over all the permutations is the
estimated number of false positive.
A modification of the previous approach is carried out by Efron et al.
(2003). They start from the same statistic in (1.2) for normalised data
and the variability estimate is equivalent to that in (1.3). But, differ-
ently from the previous approach, the estimate of the ”fudge factor”
s0 is the 90th percentile of the distribution of sg. After the identifica-
tion of the t statistic, this approach varies from the previous one in the
identification of differentially expressed genes: the p is the probability
that a gene is affected by the considered state (treatment) and a com-
plementar probability 1−p is that the same gene is unaffected. Both the
tg for affected or unaffected genes have a density fp and f1−p that are
estimated empirically. From these estimates, applying Bayes rule the
posterior probabilities p1 and p0 that a gene with score tg was affected
or unaffected by treatment are obtained. For an application of these
two methodologies see chapter 2.
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Parametric Empirical Bayesian Lönnstedt and Speed (2002) sug-
gest calculating a Bayesian log posterior odds statistic that originates
from the classical t test, but has different assumptions. In particu-
lar, normalised mgi are treated as realizations from Gaussian random
variables, whose parameters µg | σ2

g , σ
2
g have prior normal and inverse

gamma distribution respectively. The indicator variable Ig = 0 identi-
fies that a gene is unchanged (µg = 0) with 1−p prior probability, while
Ig = 1 shows that a gene changes (µg 6= 0) with p prior probability.
The log posterior odds for a gene g to be expressed is the following:

bg = log
Pr(Ig = 1 | mgi)

Pr(Ig = 0 | mgi)

The authors propose an explicit formula for bg, that is a function of p
and of µg, σ

2
g hyperparameters:

bg = log
p

1 − p

1

1 + nc

[
a + s2

g + mg.
2

a + s2
g + mg .2

1+nc

]ν+ n
2

where a and ν are hyperparameters in the inverse gamma prior for the
variances and c is a hyperparameter in the normal prior. The p param-
eter is externally set (a grid of different values is suggested), while the
σ2

g and µg hyperparameters are empirically estimated.
For an application of this methodology see chapter 2.

Parametric Full Bayesian Baldi and Long (2001) use a fully Bayesian
hierarchical model for the raw log-expression. They consider the inde-
pendence for the observations and models xgik ∼ N(xµg,xσ2

g).
Prior distribution on (xµg,xσ2

g) is considered jointly, avoiding to assume
independence between xµg and xσ

2
g . In particular, the distribution on

parameters is conjugate as follow:

xµg |xσ2
g ∼ N(µ0,xσ

2
g/λ0)

P (xσ
2
g) ∼ Γ−1(ν0,xσ2

0g)

where µ0 and xσ
2
g/λ0 can be interpreted as the location and scale of xµg,

while ν0 and xσ
2
0g as the degrees of freedom and scale of xσ

2
g and Γ−1
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indicates the inverse Gamma distribution.
To estimate xσ

2
0g it is possible to use the entire set of genes, but the au-

thors suggest a flexible implementation in which the genes are ranked
accordingly to their expression and for each gene xσ

2
0g is the result of

pooling together all the neighboring genes contained in a window of
size w. Using the Bayes theorem, the authors give the posterior joint
distribution of interesting parameters xµg, xσg. The posterior estimate
of xµg (after integration over xσg) has a t distribution and gives a mea-
sure of expression for the gth gene.
For an application of this methodology see chapter 2.

1.4.2 ANOVA models

Linear models and ANOVA models seem to be very useful in microar-
ray experiments, when replicates are available, because they allow to
decompose the variability distinguishing its different sources. They
were applied in the microarray area firstly by Kerr et al. (2000).

Non parametric ANOVA The principal model presented in the first
paper by Kerr et al. is identified by 4 principal factor and some interac-
tions as follow:

xgikj = µ + Ai + Dj + Vk + Gg + GAgi + GVgk + ǫgikj (1.4)

where Ai identifies the array effect (i = 1, . . . , A) , Dj identifies the dye
effect (j = 1, 2), Vk identifies the condition effect (k = 1, 2) and Gg iden-
tifies the gene effect (g = 1, . . . , G). The normalisation is part of the
model.
This is the basic formulation, but more recent complex specifications
have been proposed (Kerr et al., 2002). In this last version to account
for non linear effects of the dyes the authors suggest using the loess
adjustment (Yang et al., 2002), array-by-array. The authors perform an
adjustment on the log expressions instead of the logratios that are then
incorporated in the linear model.
The term of interest is (GVg2 −GVg1) (equivalent to mgi in section 1.4.1)
that estimates the differential expression between the two conditions
for the gth gene. To infer about differential expression they use the
bootstrapping technique.
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The authors specify fixed effect models where the residual
ǫgikj ∼ N(0,ǫ σ2) are homoscedastic. However, they observe that even
after the loess normalisation it seems a source of heteroscedasticity re-
mains in the data. To model this component they consider two possible
methods:

• heteroscedasticity for ǫgikj

• Intensity-dependent distribution of ǫgikj

The first method does not seem to work well, apart for the experiments
with a very large number of replicates.
The second method starts from the observed relation between errors
and intensity. The procedure adopted standardises the residuals to
make independent from the intensity values.

Parametric ANOVA Wolfinger et al. (2001) present a mixed ANOVA
model distinguishing between a normalisation model and a gene model.
He does not model the dye effect, that is confused with the condition
effect, working in absence of dye-swap. The normalisation model in-
cludes the same normalisation terms as in Kerr model (1.4) (µ, Vk, Ai, AVik

and a residual ǫgik).
The gene model is the following:

rgik = Gg + (GV )gk + (GA)gi + γgik

where rgik is the residual obtained subtracting the fitted values x̂gik

from xgik and the other effects have the same meaning as in Kerr et al.
model. This is a mixed model, assuming random and fixed effects. In
particular, Ai, ǫgik, (GV )gk, GAgi, γgik are random effects assumed nor-
mally distributed with 0 mean. The variance is decomposable as fol-
low:

V ar(x) = σ2
A + σ2

γ + σ2
GV + σ2

GAg
+ σ2

ǫg

The random effect are assumed to be independent across index and
with each other; σ2

(GAg) and σ2
ǫg

have also a gene specific component
(heterogeneity for genes). To estimate the effect and the variance com-
ponents Restricted Maximum Likelihood is used (?). The interesting
measure is (GV )gk and t tests for mixed models are used to test for
differences in expression within each gene.
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1.4.3 Two-components error model

A different point of view on estimating variability is carried out by
Rocke and Durbin (2001), who start from a two-components model for
the response y at concentration µ:

y = α + µ exp (η) + ǫ

η ∼ N(0, ση)

ǫ ∼ N(0, σǫ)

where (y − α) is the background corrected intensity and α is estimated
from replicates of not expressed genes (usually considered as 10% of
lowest expression genes) or from blank spots; ǫ is the residual effect for
the genes that are not expressed and η is the residual effect for high ex-
pressed genes. Actually, the model is differently specified if we distin-
guish between high and low intensity genes; in fact, for medium-high
expression the logarithmic transformation stabilises the variance, but
produces high variability for low expression levels. Then, for the gth

gene, the ith array and the kth condition:

{
ygik ≈ αik + ǫgi + ǫgik (Low)

log(ygik) ≈ log(αik + µgk) + ηgi + ηgik (High)
(1.5)

Then the variability is decomposed accordingly to the previous speci-
fication:

{
Var(ygik) ≈ σ2

ǫgi
+ σ2

ǫgk
(Low)

Var(log(ygik)) ≈ σ2
ηgi

+ σ2
ηgk

(High)
(1.6)

The interesting quantities are the differences between the two inten-
sities on natural scale (low intensity) and on logarithmic scale (high
intensity). Then the variance components to be estimate are only σ2

ǫgi

and σ2
ǫgk

, σ2
ηgi

and σ2
ηgk

.

1.4.4 Mixture models

Some authors discuss the too stringent assumption of the homoscedas-
tic assumption on variance and the overparametrised model using a
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gene specific variance. An intermediate approach can be found in mix-
ture models. For statistical methodology we refer to McLachlan and
Basford (1999), while there are several applications on microarray (Al-
lison et al., 2002), (Pan et al., 2003), (Parmigiani et al., 2002). These appli-
cations consider a mixture on the expression levels and try identifying
groups of genes with homogeneous measure of expression assigning
a variance for each group. Under a different point of view, Delmar et
al. (2004) work to the identification of cluster of genes with equal vari-
ance. They consider a mixture models on variance distribution and
assign each gene to specific groups according to the largest posterior
probability to belong to.
The normalised log ratio for gene and replication is specified as follow:

mgi = µg + ǫgi

where ǫgi is normally distributed centered on 0. The measure of differ-
ential expression is mg. as defined in equation (1.1) and the variability
measure is the same as (1.3). The differential score is:

tg =
mg.√
ŝ2

Eg
/I

(without any correcting global factor). If the degrees of freedom are
ν = I − 1, the distribution of Xg = S2

Eg
is Γ(σ2

g , ν); however, the true

value of σ2
g is unknown. The authors propose a mixture of gamma

distributions in which each component represents a group of genes
with an homogeneous variance. Let h be the number of components,
pj, j ∈ [1, ..., h] be the probability that a gene belongs to the jth group
and σ2

j be the variance for the jth group. The model on variance is the
following:

Xg ∼
h∑

j=1

pjΓ(σ2
j , ν)

The parameters of the model are estimated according to the maximum
likelihood principle; maximization of the log likelihood function is car-
ried out by EM algorithm. To identify the number of variability groups
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(mixture components) the BIC statistic is used (McLahan and Peel, 2000).
After estimating parameters (p1, . . . , ph) and (σ2

1, . . . , σ
2
h) each gene g is

assigned to a group j according to the highest posterior probability τgj .
The gene variance σ2

g can be assigned in two different ways. The first is
attributing to each gene the variability of the group it belongs to:

σ̂2
g = σ̂2

j

The second is calculating for each gene a sum of h variances, weighted
by the estimated posterior probability of a gene to belong to the jth

group. Identification of differentially expressed genes is performed
through the t statistic:

tg =
mg.

σ̂g√
I

For an application of this methodology see chapter 2.

1.5 Discussion

Considering a scale for the different levels of variability estimate, the
modified t test lies on the first step. It is the simplest method that per-
mits to stable the gene specific variability measure. It can be seen as
the most intuitive approach and the easiest to implement, considering
only the ”global” variability component to be estimate in addition to
the gene specific ones. Choosing of the s0 to minimize the coefficient of
variation (Tusher et al., 2001), as well as the 90% percentile (Efron et al.,
2001) or estimated by data (Lönnstedt and Speed, 2002), takes under
control the genes with low expression (and low variance) and avoid to
call them significant. Moreover, using a full Bayesian approach (Baldi
and Long, 2001), the problem is decomposed in different levels of con-
ditional distributions and the entire distribution of all the parameters
can be studied, instead of the summary statistic (i.e. mean, median).
In addition, the observed relation between mean and variance is taken
into account modelling jointly the distribution of (µg, σg) parameters.
That issue is particularly important in chapter 2. The authors point out
the possibility to pass from the full Bayesian to the empirical Bayesian
approach, setting the estimate of µ0 empirically.
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On an upper step, fixed ANOVA models (subsection 1.4.2) distinguish
between variability of the effects included in the model and residual
variability. The approach carried out by Kerr et al. (2000, 2002), has the
advantage to be non parametric, avoiding distributional assumption.
On the other side, to estimate parameters needs bootstrap technique,
that presumes homoscedasticity on residuals quantities and that is not
observed on the data. The gene specific alternative does not seem to
work well, apart for the experiments with a very large number of repli-
cates. In fact, when the replicates are few, what is in most of experi-
ments, this procedure originates narrow confidence intervals for some
genes, that are called significant even if the difference in log expression
is very small between the two channels. For this reason the authors
suggest using the intensity-dependent distribution for residuals. In ad-
dition, they consider all the effect as fixed, even if for some effects (as
AG) randomness could be very appropriate, but not used for the heavy
tailed residuals.
Random effects are used by Wolfinger et al. (2001) under a perspective
that permits to decompose the variance in several components. In par-
ticular, the heterogeneity in gene model (rgik = Gg + (GV )gk + (GA)gi +
γgik) for GV gives different degrees of variability to the genes, that have
backlashes to the identification of confidence intervals resulting in dif-
ferentially expressed genes.
On the same step of decomposition level, but under a different perspec-
tive, Rocke and Durbin try assigning different variability for the two in-
tensity levels (low level versus high level). It can be seen as a different
way to take into account the relation between intensity level and vari-
ability: under a frequentist point of view it does not model jointly the
mean and variance parameters (as Baldi e Long do in a Bayesian per-
spective), but specify separately the two models for the two different
levels of intensity, developing a methodology that can be considered a
naı̈f mixture model.
On the highest step and quite close to the previous approach, Delmar
et al. focus the attention on a cluster strategy for genes on the basis
of equal variability. It limits the number of parameters and estimating
variability gains strength from the closer genes (in terms of variance).
However, it does not consider the relation between variance and inten-
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sity level making this approach incomplete for some aspects.
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2 AN APPLICATION TO COMPARE

VARIABILITY ON MICROARRAY DATA ∗

2.1 Abstract

Microarray experiments are a new tool that permits to consider and
treat thousands of genes at the same time. They are used to compare
the levels of expressions for genes in different biological samples. A
natural choice to identify differentially expressed genes is perform a
classical t test. This approach is in general unsatisfactory. Two prob-
lems which affect the t statistic in the microarray framework are consid-
ered here: the availability of only few replicates (e.g. 2, 3) for each gene;
the dependence between mean and standard deviation of gene log ex-
pression (the t statistic numerator and denominator, respectively). Sev-
eral methods are propose to avoid these problems. We present and
compare the performance of five different approaches, which are based
on average and standard deviation values of each gene, analogously of
naı̈f t statistic.
Finally we consider the computational performances offered by freely
available codes proposed by the authors.
The methods are applied to two public cDNA datasets, that differ for
some relevant features and we discuss the results.

2.2 Introduction

Experiments based on microarray technology have assumed a very im-
portant role in the biological research field. Statistical aspects are rel-
evant in many phases of the experimental procedure, as the design of

∗An extract from this chapter was submitted to Computational Statistics titled: ”Es-
timating variability in microarray experiments: a comparative review of software”,
in collaboration with Simona Toti and Annibale Biggeri
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experiment, quality control and normalisation, to the aim of taking un-
der control sources of non biological variability.
After normalisation, a statistical analysis is performed to determine
whether for each gene, observed difference in expression levels be-
tween different experimental conditions (e.g. cells from case versus
control subjects) is significant or not.
In the classical statistical approach, a t test is achieved to characterise
the differences between standardized means from two populations.
For the microarray data, a t statistic is performed for each gene: the
difference between gene log-expression levels in two conditions to be
tested is at the numerator and the variance of this difference divided
by the number of replicates is at the denominator.
However, a crucial issue that emerges using this statistic in the microar-
ray framework is the limited number of repetition due to the high cost
(and lack of material) to perform an experiment. Typically for thou-
sands genes considered in the analysis only 2, 3 replicates for each gene
are available causing underestimates of variances. Small variances lead
the t values to be large even if its numerator is small carrying out false
positives genes.
Many authors have tackled the problem under different perspectives.
In the present work we describe the principal methods arising from
classical t tests that try taking under control the issue explained above.
The considered methods are: SAM (Tusher et al., 2001), Non Parametric
Empirical Bayes (Efron et al., 2001), Parametric Empirical Bayes (Lönnst-
edt and Speed, 2002), Full Bayesian (Baldi and Long, 2001) and mixture
model (Delmar et al., 2004).
In the microarray literature, with the aim of identifying differentially
express genes, also approaches different from the t tests were presented
(ANOVA by Kerr et al., error models by Rocke and Durbin), but for the
sake of comparability we do not treat them.
The performance of a specific methodology considered is evaluates on
its computational aspects too. Actually, for this research field charac-
terised by a large amount of data, specific computational tools are re-
quired. So we focus the attention on the methodologies that present a
freely available software.
The paper follows this structure: in section 2.3 we introduce the no-
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tation used thereafter and the approaches to identify differentially ex-
pressed genes, focussing the attention on variability modelling. Section
2.4 describes the dataset we use and the preprocessing we perform; sec-
tion 2.5 presents the results in terms of differentially expressed genes
and of variability estimate; finally we explain some discussion points
in section 2.6.

2.3 Estimating Variability

In this section we introduce the notation used thereafter. The data ma-
trix can be presented in two different forms: an absolute expression
matrix X in which each row identifies a gene and each column corre-
sponds to a channel (k = 1, 2) for each array (i = 1, . . . , I) and xgik

denotes the log intensity for gth gene, ith array and kth channel. Al-
ternatively, the data matrix can be considered as a relative expression
matrix M, in which each row corresponds to a gene and each column
identifies an array: mgi denotes the log ratio (as the difference between
xgi1 and xgi2) for gth gene and ith array. We also define A as the matrix
of mean intensities, the arithmetic mean of the two channels log inten-
sities and its elements as agi

A classical tool for descriptive analysis of data is the M versus A plot.
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Figure 2.1: M vs A plot for raw data (TCDD dataset).

From figure 2.1 the relation between intensity level (agi) and variability
in the sense of difference between channel intensities (mgi) emerges. In
particular, the association between the two variables is characterised
by high variability associated with extremely intensity values.
An other explorative tool is the histogram for the observed variances of

raw data sg =
√

1
I−1

{∑
i [mgi − mg.]

2}, where mg. is the mean log ratio

for the gth gene over the I arrays.
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Figure 2.2: Histogram for variance of raw logratio. (The frequency of the first bin is
truncated at 200, but it is 1400).

In figure 2.2 the hypothesis of homoscedasticity appears reliable for the
genes belonging to the first bin (the frequency is 1400) but for the other
bins heteroscedasticity is checked.
The issues of relation between M and A and of heteroscedasticity cover
a central role in the analysis of microarray and can originate substan-
tial differences in the results. On the basis of them, we try evaluating
5 approaches to the analysis: all of them take into account the het-
eroscedasticity problem; some of them take into account also the re-
lation between M and A.
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2.3.1 SAM and Non Parametric Empirical Bayes

The classical statistic for t test in microarray analysis is defined as
tg = mg.\ sg√

I
.

Adding a global constant to the denominator of t test is the simplest
method to try finding a robust variability measure. It permits both to
eliminate the problem of asymmetric distribution of variability and to
reduce the loss of power, when small number of replicates is available.

Variability For each gene a score is assigned on the basis of the
change in its normalised expression divided by the standard deviation
of repeated measures of that gene. The t statistic has a global compo-
nent of variability and a gene specific one:

tg =
mg.

sg√
I

+ s0

(2.1)

Different choices of s0 are available: Tusher et al. (2001), assign s0 to the
percentiles of the sg distribution, for each percentile compute the me-
dian absolute deviation from the median of tg, the coefficient of varia-
tion for these values and choose the percentile that minimise the coef-
ficient of variation as s0.
Efron assigned s0 to the 90% percentile of the sg distribution (Efron
et al., 2001).

Differential Expression Both the methods are based on the non para-
metric theory, but their approach to the identification of differentially
expressed genes is quite different.

SAM Tusher et al. identifies a threshold (∆) for a gene to be differ-
entially expressed and estimate the number of false positives through
an approach based on permutations. This approach does not assign a
p-value, but uses the q-value. It is defined as the minimum pFDR that
can be achieved over all the rejection regions that contain the observed
statistic, where pFDR is:

pFDR(∆) = E

[
V (∆)

R(∆)
|R(∆) > 0

]
(2.2)

for V false positive over R rejected hypothesis for ∆. The q-value gives
the strength that a gene is differentially expressed.
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Non Parametric Empirical Bayesian Efron et al. consider the probabil-
ity that a gene is affected by the considered state (treatment) and the
complementary probability that the same gene is unaffected. The den-
sities for the two probabilities are empirically obtained and through the
Bayes rule the posterior probability to be expressed or not is calculated.

As for the relation between M and A, these two methods do not
propose any particular solutions. However, they suggest performing a
loess normalisation usually considered able to eliminate this relation.

2.3.2 Parametric Empirical Bayesian

Lönnstedt and Speed (2002) treat mgi as realizations from Gaussian ran-
dom variables:

mgi ∼ N(µg, σ
2
g) (2.3)

where µg and σ2
g have prior normal and inverse gamma distribution

respectively.

Variability The hyperparameters of σ2
g prior distribution are em-

pirically estimated. The relation between mean and variance is taken
into account assuming the conditional dependence of µg from σ2

g . So,
µg ∼ N(0, cσ2

g) where c is a positive scale parameter.

Differential Expression The indicator variable Ig = 0 identifies that
a gene is unchanged (µg = 0) with 1 − p prior probability, while Ig = 1
shows that a gene changes (µg 6= 0) with p prior probability.
The authors suggest the test statistic bg:

bg = log
Pr(Ig = 1 | mgi)

Pr(Ig = 0 | mgi)
(2.4)

which is the log posterior odds for the g gene. For a specific threshold
of probability to be differentially expressed (p∗) a gene is retained dif-
ferentially expressed if bg > log p∗

1−p∗
. The authors propose an explicit

formula for bg, that has a gene specific component and a global one; the
first is function of mg. and σ2

g , while the second is a function of p and of
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µg, σ
2
g hyperparameters; the p parameter is externally set (a grid of dif-

ferent values is suggested),while µg hyperparameters are empirically
estimated.

2.3.3 Parametric Full Bayesian

Baldi and Long (2001) use a fully Bayesian hierarchical model for the
raw log expression. They model

xgik ∼ N(xµg,xσ2
g) (2.5)

Variability Analogously to the previous model, the authors take
into account the relation between xµg and xσ

2 through a conditional
dependence of the former to the latter. The distribution on parameters
is normal and inverse gamma respectively. The original point of this
approach is in the specification of shape hyperparameter for inverse
gamma distribution (xσ

2
0g). To estimate it the genes are ranked accord-

ingly to their expression and for each gene xσ
2
0g is the result of pooling

together all the neighboring genes contained in a window of size w.
In this way the correction factor of gene-specific variance is not global,
but calculated grouping genes of similar expression.

Differential Expression Using the Bayes theorem, the authors give
the posterior joint distribution of xµg and xσg. Integrating over the last,
the marginal distribution of xµg is a Student t . The hypothesis of dif-
ferential expression for g gene is tested by the t statistic p-value.

2.3.4 Mixture Models

In the previous paragraphes we have presented several models for a
global correction of gene specific variance. An alternative can be found
in the clustering of variances. There are several applications of mix-
ture models on microarray data (Allison et al., 2002), (Pan et al., 2003),
(Parmigiani et al., 2002). These applications consider a mixture on the
expression levels and try identifying groups of genes with homoge-
neous measure of expression assigning a variance for each group. Un-
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der a different point of view, Delmar et al. (2004) work to the identi-
fication of cluster of genes with equal variance. They consider a mix-
ture models on variance distribution and assign each gene to specific
groups according to the largest posterior probability to belong to.

Variability The authors propose to model the variability as a mix-
ture of gamma distribution in which each component is computed from
a group of genes with an homogeneous variance. Let h be the number
of components, pj, j ∈ [1, ..., h] be the probability that a gene belongs
to the jth group and σ2

j be the variance for the jth group. Let S2
g be

the variance of logratio and ν the degrees of freedom ν = I − 1, then
Xg = νS2

g is a gamma mixture:

Xg ∼
h∑

j=1

pjΓ(σ2
j , ν) (2.6)

The parameters of the model are estimated according to the maximum
likelihood principle; maximization of the log likelihood function is car-
ried out by EM algorithm. To identify the number of variability groups
(mixture components) the BIC statistic is used (McLahan and Peel, 2000).

Differential Expression Identification of differentially expressed genes
is performed through the t statistic:

tg =
mg.

σ̂g

√
I (2.7)

where σ̂g can be calculated in two different ways. The first one is σ̂2
g =

σ̂2
j . The second is a sum of the h variances weighted by the estimated

posterior probabilities of a gene to belong to the jth group.
The distribution of tg is calculated taking into account the uncertainty
of gene assignment to a specific group.
Data are normalised externally before analysis; the relation between
mean and variance is considered only through normalisation.
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2.4 Data and Preprocessing

2.4.1 TCDD Dataset

The data presented here were published in Kerr et al. (2002) and are an
experiment to study tetrachlordibenzo- p-dioxin (TCDD). It is known
that this compound induce several biological and biochemical responses,
including gene induction. The experiment used the human hepatoma
cell line HepG2 as an in vitro model to study TCDD. HepG2 is an es-
tablished cell line for which metabolic enzymes are known to be in-
ducible (Kikuchi et al., 1998), (Li et al., 2003). Thus it can be considered
a prototype of the TCDD response. The experimental design included
replication to control the noise that is associated with microarray data,
obtained using six arrays. A separate labelling reaction was performed
for each hybridisation. Each gene is singly spotted. Each array has 1900
genes. Table 2.1 summarizes the triple dye-swap experimental design.

Cy3 Cy5
Array 1 Variety 2 Variety 1
Array 2 Variety 2 Variety 1
Array 3 Variety 1 Variety 2
Array 4 Variety 2 Variety 1
Array 5 Variety 1 Variety 2
Array 6 Variety 1 Variety 2

Table 2.1: Design of TCDD experiment.
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2.4.2 E-Coli Dataset

This dataset was presented in Tseng et al. (2001) and it is relative to
a calibration experiment on Escherichia coli cells grown in glucose.
Calibration experiments used the same mRNA pool divided into two
aliquots and labelled separately with two different dyes in order to in-
vestigate variations in this technology. Two array were performed, in
which genes are singly spotted on each of them. The number of genes
considered is 4129. This dataset is particularly interesting, because the
calibration design permits to exclude the presence of any variety ef-
fect that can originate systematic differences in the expression for the
two dyes (the probability of a false negative is 0). For this reason all
the variability is the non biological one and it seems very useful to the
aim of comparing the performance of different methodologies in which
variability estimate play a valuable role. In table 2.2 we present the ex-
perimental design for this dataset.

Cy3 Cy5
Array 1 Variety 1 Variety 1
Array 2 Variety 1 Variety 1

Table 2.2: Design of E-Coli experiment.
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2.4.3 Quality control and normalisation

We perform quality control according to Simon criteria (Simon et al.,
2003). In particular, we excluded a spot if the number of pixels used
to calculate the intensity is less than 25 for the foreground intensity in
either channel, if the signal is lower than 200 for both the channels or
if the ratio between the average foreground intensity and the median
background intensity is smaller than 1.5 in either channel. Viceversa,
spots with a large signal for one channel and low signal for the other
are not eliminated, but modified to become analysable, forcing the low
intensity signal (defined as less than 200) to 200.
Moreover, when the method requires normalisation, we normalise the
data through a local A-dependent normalisation (loess) globally calcu-
lated for each slide (Yang et al., 2002). It is pointed out that a loess for
each print tip is better than the one for the entire array, but we are not
able to apply the first, due to the absence of information about the grid
definition for the two datasets.
The number of genes remained after quality controls is 1887 for TCDD
dataset and 3880 for E-Coli dataset.
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2.5 Results
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Figure 2.3: Mean vs variance plot.

Figure 2.3 visualises the relation between mean of logratio intensity
and variability for each gene.
The TCDD dataset shows the high capability of normalisation in reduc-
ing variability. It points out the effect of loess normalisation in correct-
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ing the relation between M and A (see figure 2.1). On the other hand,
the E-Coli M vs A plot (not reported) does not show a systematic rela-
tion. The visible normalisation effect is the translation of the scatterplot
to be centered in 0 (correction of dye effect).
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Figure 2.4: Observed variance kernel density.

Figure 2.4 points out the observed variability distribution for the two
datasets and the effect of normalisation in variance distribution. Actu-
ally, the loess normalisation tends to reduce the extreme values to the
centre of the distribution and its effect is more visible on a compara-
tive experiment (on the left) than on a calibration one (on the right).
However, a non negligible heteroscedasticity remains even after nor-
malisation.
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Figure 2.5: Comparison between raw and normalised variability.

In figure 2.5 there are the confirms of what described above: the plot
of raw logratio variability versus normalised logratio variability shows
a reduction for the comparative dataset (TCDD) and a substantial un-
change for the E-Coli dataset.
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2.5.1 Comparison within methods

Variability comparison First we point out the comparison of different
methodologies in terms of effects on the variability estimate.

ParametricEB NonParametricEB SAM FullBayesian Mixture
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Figure 2.6: Boxplot for variability measures.

In particular, figure 2.6 shows that parametric EB is the method that
reproduces the highest dispersion. Viceversa, mixture model presents
the most concentrate distribution of variance. The other approaches
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display an intermediate dispersion, with an evident shift due to the
global variability component at denominator of t statistic. In partic-
ular, non parametric EB and SAM present a very similar distribution
apart from the strength of the shift, for the different way of computing
the global component of variability.
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Figure 2.7: Kernel density for estimated variability (see color insert following page
99).

Figure 2.7 shows the kernel density of variability for the 5 approaches.
In terms of relative comparisons, let EB be the reference approach as the
method with the density distribution of variability closest to 0: it has
a narrow distribution, but with a long right tail. The mixture model
is the method with the highest and narrowest distribution, but it is
shifted to be centered around 0.25. For the TCDD dataset there is a
strong distinction between the other three distribution: Non Paramet-
ric Empirical Bayesian and SAM show a similarity, but are centered on
different values, while Full Bayesian approach has a larger distribution
and a longer tail. For E-Coli dataset the densities for the other three ap-
proaches are more confused: the full Bayesian model presents a lower
variability and a narrower distribution than SAM and non parametric
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empirical Bayesian one.

Differential expression comparison The way to estimate variability car-
ried out above influences the number of differentially expressed genes.

SAM NonParEB Mixture FullBay ParEB
SAM 264

NonParEB 79 79
Mixture 72 56 72
FullBay 62 55 63 63
ParEB 43 33 39 38 43

Table 2.3: Table of differentially expressed genes for TCDD dataset.

Table 2.3 shows the number of genes differentially expressed with the
5 different methodologies for TCDD dataset. SAM analysis returns the
largest number of differentially expressed genes (264), including the
results of all the other analysis. Also there is the complete overlap-
ping between mixture and Empirical Bayesian approach, that is the
approach finding the minimum number of genes as differentially ex-
pressed. For the other pair of methods a large but not complete over-
lapping is observed.
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Figure 2.8: Differentially expressed genes by SAM plot (see color insert following
page 99).
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In figure 2.8 the observed relative difference (tg) are plotted versus ex-
pected relative difference under H0 hypothesis (mean of tg calculated
on permutated data). The solid line is the 45◦ line (observed equal
to expected). Genes highlighted with different color and size are the
differentially expressed by the 5 approaches. It better characterises
the overlapping within the different methodologies for TCDD dataset
(top): moving to the extreme values, the agreement within the method-
ologies increases. If the coordinates of a gene lie on the bisector, the
observed value is equal to the expected one. In fact, in E-Coli plot (bot-
tom) all the points are spread on the bisector and only 4 are identified
as significant by SAM analysis.
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Figure 2.9: m1g vs m2g plot for normalised data.
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Figure 2.9 presents the plot of normalised logratio for the two array of
E-Coli. The four genes with highlighted ID are founded differentially
expressed by SAM method. They lie on the first quadrant of the plot,
characterised by positive logratio for both the arrays. However, the q-
values associated with the four genes is quite high (0.36), indicating a
not negligible probability that the gene is a false positive.

2.6 Discussion

For a comparative purpose we used calibration experiment as an al-
ternative to simulation study: like simulation, it permits to validate a
methodology, but has the advantage of being a real experiment. As
such, it presents all the problem linked to the RNA extraction, array
fabrication, scanning and fluorescence calculation. Due to the absence
of a hypothetical differentially effect of treatments, the genes individ-
uated as differentially expressed are false positive for sure, while false
negative are not present at all.
From E-Coli experiment it seems that all the methodologies are able
to identify the absolute absence of differentially expressed genes. The
only exception is SAM analysis, that identifies 4 genes as differentially
expressed. Actually, figure 2.9 shows that for the 4 genes found signifi-
cant with SAM the logratio of the two arrays are very far from 0 (where
they should lie for the absence of whatever difference between the two
channels). However, the q-values determined by SAM, inform the re-
searcher that when the 4 genes are significant, the minimum probabil-
ity to find a false positive is 0.36. The q-value is defined as the prob-
ability that the null hypothesis is true given a statistic as extreme or
more extreme than the observed. It is the minimum positive false dis-
covery rate for calling a gene significant. As a reference, let us consider
the q-values (table 2.4) for differentially expressed genes of TCDD ex-
periment (real comparative experiment): they range between 0.01508
and 0.06893, showing a high strength of being differentially expressed.
In comparison, for the E-Coli dataset, a minimum expected number of
36 genes false positives between 100 individuates as differentially ex-
pressed, is an index of low reliability.
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qvalue SAM EB NonParEB FullBay Mixture
0.01508 21 21 21 21 21
0.01552 2 2 2 1 2
0.01562 5 4 5 2 4
0.01626 6 6 6 4 6
0.01648 2 1 2 1 1
0.01659 4 2 4 2 2
0.01704 1 1 1 0 1
0.01739 9 7 6 4 7
0.01755 1 1 1 0 1
0.01875 1 1 1 0 1
0.01901 3 3 2 1 3
0.01957 1 1 1 0 1
0.02018 13 8 11 0 8
0.02046 2 1 0 2 1
0.02078 4 2 2 1 2
0.02084 1 0 0 1 0
0.02096 1 0 1 0 0
0.02185 1 0 1 0 0
0.02189 1 1 0 1 1
0.02250 1 0 0 1 1
0.02414 1 0 0 0 0
0.02458 1 0 0 0 0
0.02568 1 0 1 0 0
0.02627 1 0 1 0 0
0.02636 2 0 2 0 0
0.02685 2 0 0 0 0
0.02692 2 1 0 0 1
0.02705 2 0 0 1 1
0.02708 1 0 1 0 0
0.02727 1 0 1 0 0
0.02799 1 0 0 0 1
0.02980 1 0 1 0 0
0.03042 1 0 0 0 0
0.03068 1 0 1 0 0
0.03077 2 0 0 0 1
0.03101 1 0 0 0 0
0.03116 5 0 1 0 0
0.03128 2 0 1 0 1
0.03150 1 0 0 0 1
0.03353 9 0 2 0 1
0.03377 2 0 0 0 0
0.03573 1 0 0 0 0
0.03663 1 0 0 0 0
0.03682 1 0 0 0 1
0.03728 2 0 0 0 0
0.03741 2 0 0 0 0
0.03829 1 0 0 0 0
0.03850 1 0 0 0 0
0.03879 5 0 0 0 0
0.04047 4 0 0 0 0
0.04087 1 0 0 0 1

0.04136-0.06893 125 0 0 0 0

Table 2.4: Comparison of differentially expressed genes: this table presents the ranked
q-values for the 264 genes emerged by SAM analysis.
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In table 2.4 the frequency distribution of differentially expressed genes
on the basis of SAM q-values is performed for the 5 methodologies.
The other columns report the frequencies for the other methods. We
remark that differentially expressed genes with q-values from 0.01508
to 0.01659 are indicated as differentially expressed by all the method-
ologies; then the different power to find differentially expressed gene
emerges, up to the 125 genes with q-value from 0.04136 to 0.06893,
called differentially expressed only by SAM.
The issue of heteroscedasticity is tackled in terms of global correction
of gene specific variance (SAM and Non Parametric Empirical Bayes)
on one hand, and in terms of mixture model on gene specific variability
distribution on the other hand. In between, the Empirical Bayesian ap-
proach is closer to the first, considering an hyperparameter of variance
distribution as the global variability component; more close to mixture
model, the full Bayesian approach, introduces the idea of gene group-
ing through the sliding window on which the correction term for gene
specific variance is calculated.
The other issue of the relation between M and A is taken into account
properly only by EB and full Bayesian approach, while the other ap-
proaches consider it through the normalisation: the first are the most
conservative methods, but eliminate an important problem, that can
originate false positive (negative).
In conclusion the 5 approaches treated are comparable methodologies
of different complexity level that rise from the Student t and propose
some modifications lying under very different point of view, but tak-
ing into account the problem of heterogeneity. They present a different
power of identification of differentially expressed genes, but all seem
to give a good capability to recognise false positive.

39



2.7 R Library

This is a note to introduce R/compvar, a library written in R. It analyses
and compares the different methodologies described in section 2.3 and
provides the output presented and discussed in the previous sections.

2.7.1 Introduction

R/compvar is an add-on package for the freely available statistical lan-
guage R (www.r-project.org) to analyse microarray data. It can be
obtained on request (blangiar@ds.unifi.it).
The name compvar stands for comparison of variability. It performs a
complete analysis of microarray including:

• Creation of data matrix from raw log intensity and normalise data

• Visualisation of the data focussing the attention on heteroscedas-
ticity and on relation between M and A

• The following analysis

1. SAM (Tusher et al., 2001)

2. Non Parametric Empirical Bayesian (Efron et al., 2001)

3. Parametric Empirical Bayesian (Lönnstedt and Speed, 2002)

4. Full Bayesian (Baldi and Long, 2001)

5. Mixture model (Delmar et al., 2004)

• Comparison of different methodologies in terms of variability and
differential expression

The dataset used for example are the two described in section 2.4.

40



2.7.2 Functions

We present the single functions that form the R/compvar library fol-
lowing the order in which they should be called. We better describe
each of them, focusing on input and output variables and giving some
additional notes when needed.

CreateData

This function takes the raw intensities and returns log2 intensities, raw
and normalised logratio to be used to perform the analysis.

Input

Data Matrix of raw intensity (n genes, 2x n array)

ID Array of ID

norm Normalisation method to be performed

The normalisation is performed array by array. The type of normalisa-
tion allowed are: ”n” for no normalisation; ”m” for median normalisa-
tion ”l” for global loess normalisation ”p” for print tip normalisation
”s” for print tip resized normalisation.

Output
A list object that contains:

log.intensity A matrix of log intensities (n genes, 2x n array)

raw.logratio A matrix of raw logratio (n genes, n array)

norm A matrix of normalised logratio (n genes, n array)
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preprocessing

This function uses the raw and normalised logratio and returns plots
of kernel densities, M vs A and variance of raw logratio vs variance
of normalised logratio. It is very useful for understanding and evalu-
ating the relation between intensity and variability as well as the het-
eroscedasticity.

Input

log.intensity A matrix of log intensities (n genes, 2 x n array)

raw.logratio A matrix of raw logratio (n genes, n array)

norm A matrix of normalised logratio (n genes, n array)

directory.out The directory to store the output

Output
Three plots:

MvsAAllData.ps a M vs A plot that explain the relation between these
two quantities.

DensityAllData.ps a Kernel Density plot for variance of raw logra-
tio and for variance of normalised logratio (through CreateData
function)

rawVSnorm.ps a plot to compare the two variances (for raw and nor-
malised logratio)
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sam.analysis

This function performs the SAM analysis (Tusher et al., 2001). It builds
a modified t statistic, adding a constant (fudge factor) to the denomi-
nator to stable the variance. A plot shows the observed t statistic vs the
expected values under the null hypothesis (calculated through permu-
tations)

Input

ID Array of ID for the genes

M Matrix of normalised logratio (n genes, n array)

cl The number of classes for the analysis (by default it is one class-
paired analysis)

B Number of permutation to perform

delta A gene will be called differentially expressed, if its posterior prob-
ability of being differentially expressed is large than or equal to
delta.

alpha.s0 The possible values of the fudge factor s0 in terms of quan-
tiles of the standard deviations of the genes.

thres.fdr For each value contained in thres.fdr, two lines parallel to the
45-degree line are generated in the SAM plot.

lambda.p0 Number between 0 and 1 that is used to estimate p0. If set
to 1 (default), the automatic p0 selection using the natural cubic
spline fit is used.

vec.lambda.p0 Vector of values for λ used in the automatical compu-
tation of p0.

na.rm If TRUE the missing values are not considered; if FALSE they
are replaced by the genewise mean.

R.fold If TRUE (default), the fold change for each differentially ex-
pressed gene will be computed.

43



R.unlog If TRUE, 2data will be used in the computation of the R.fold.
This is recommend if data contains the log2 transformed gene ex-
pression levels.

directory.out The directory to store the output

The relation between M and A is taken into account only through nor-
malisation. The global factor to correct gene specific variance is calcu-
lated as that minimize the variation coefficient of t statistic distribution.

Output
Two files and the SAM plot. The files contain:

SAMvariance values of estimated variance. The variance is the sum
of two component, the gene specific one and the global one.

samOutput information about all the genes.

samDiff information about the differentially expressed genes.

The SAM plot draws the observed relative difference versus the ex-
pected relative difference): the solid line in green is the 45◦ line (when
observed is equal to expected).
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NonParEB

This function performs the non parametric Empirical Bayesian analy-
sis (Efron et al., 2002). builds a modified t statistic, adding a constant
(fudge factor) to the denominator to stable the variance. To find dif-
ferentially expressed genes it considers the probability that a gene is
affected by the considered state (treatment) and the complementary
probability that the same gene is unaffected. The densities for the two
probabilities are empirically obtained and through the Bayes rule the
posterior probability to be expressed or not is calculated.

Input

ID Array of ID for the genes

M Matrix of normalised logratio (n genes, n array)

cl The number of classes for the analysis (by default it is one class-
paired analysis)

B Number of permutation to perform

delta A gene will be called differentially expressed, if its posterior prob-
ability of being differentially expressed is large than or equal to
delta.

na.rm If TRUE the missing values are not considered; if FALSE they
are replaced by the genewise mean.

R.fold If TRUE (default), the fold change for each differentially ex-
pressed gene will be computed.

R.unlog If TRUE, 2data will be used in the computation of the R.fold.
This is recommend if data contains the log2 transformed gene ex-
pression levels.

directory.out The directory to store the output

The relation between M and A is taken into account only through nor-
malisation. The global factor to correct gene specific variance is calcu-
lated as the 90th percentile of the variance distribution.
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Output
Two files and the volcano plot. The files contain:

NonParEBvariance values of gene specific variance. The variance is
the sum of two component, the gene specific one and the global
one.

NonParEBOutput information about all the genes.

NonParEBDiff information about the differentially expressed genes.

The volcano plot highlights the differentially expressed genes.
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EB

This function performs the parametric Empirical Bayesian analysis (Lönnst-
edt and Speed, 2002). It takes the normalised logratio and observed
variability and through a Bayesian model returns an odds ratio for each
gene: log( Pr(the gene is differentially expressed) / Pr(the gene is not
differentially expressed)).

Input

ID Array of ID for the genes

M Matrix of normalised logratio (n genes, n array)

p The threshold of probability to be not differentially expressed al-
lowed for a gene to be called differentially expressed

directory.out The directory to store the output

This method takes into account the relation between mean (A) and
variance (M), modelling at the same time, mean and variance. The
authors calculate a B statistic, as log( Pr(the gene is differentially ex-
pressed) / Pr(the gene is not differentially expressed)). A closed form
is found for the B statistic, that has a gene specific component and a
global one.

Output
Four files and the volcano plot. The files contain:

EBvariance values of gene specific variance. The variance has invgamma
distribution: σ2 ∼ Γ−1(ν, 1).

EBOutput Information about all the genes (M,posterior variance, pos-
terior log odds)

EBDiff Information about differentially expressed genes (M,posterior
variance, posterior log odds)

EBVolcano values to perform the volcano plot (x is the B statistic and
y the posterior log odds)

The volcano plot highlights the differentially expressed genes.
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fullbay

This function performs the full Bayesian approach (Baldi and Long,
2001). It considers a gene specific variance and a correction calculated
over a sliding window of neighbors genes in terms of expression.

Input

data Matrix of raw intensity values (n genes, 2 x n array)

ngenes Number of genes (number of rows of M, raw.logratio, log.intensity
and data matrix)

narray Number of arrays

cs The first column contain data

ce The last column contain data (for paired analysis equal to the num-
ber of arrays)

experror The error allowed for identifying differentially expressed genes

winsize The size of the sliding window to calculate the correction fac-
tor for gene specific variance

conf The confidence on prior estimate

minrep The minimum number of non missing replicates to be able to
calculate the variability estimates

directory.out The directory to store the output

The method considers the Bonferroni correction. It takes into account
the relation between mean (A) and variance (M).

Output
Four files that contain:

FullBayOutput Information about all the genes, including values of t
test and p-values.

FullBayDiff information about significant genes including values of t
test and p-values.
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FullBayVariance values (as sum of gene specific component and global
component calculated through the sliding window)

FullBayVolcano values to build volcano (plot of t statistic (x) versus
posterior log odds (y), to evaluate the differentially expressed
genes)
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mixture

This is the function to perform the mixture analysis (Delmar et al., 2004)
in a multi slide microarray experiment. It identifies cluster of genes
with equal variance considering a mixture models on variance distri-
bution and assign each gene to specific groups according to the largest
posterior probability to belong to.

Input

ID Array of ID for the genes

M Matrix of normalised logratio (n genes, n array)

log.intensity The matrix of log intensity (as output from CreateData)
(n genes, 2 x n array)

pval The p value to call a gene differentially expressed

directory.out The directory to store the output

The measure of variability at the denominator of t statistic is gene spe-
cific in the sense that is a sum of the group variances weighted by the
estimated posterior probabilities of a gene to belong to the jth group.

Output
Four files that contain:

MixtureOutput Information about all the genes, including values of t
test and p-values.

MixtureDiff information about differentially expressed genes includ-
ing values of t test and p-values.

MixtureVariance gene specific variance estimates as a sum of the group
variances weighted by the estimated posterior probabilities of a
gene to belong to the jth group.

MixtureVolcano values to build volcano (plot of t statistic (x) versus
posterior log odds (y), to evaluate the differentially expressed
genes)
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and three plots:

• Plot of log-variance versus mean intensity (the genes belonging
to different mixture components are highlighted with different
colors)

• Plot of mean logratio versus mean log-intensity

• Plot t statistic versus denominator

51



comp.var

This function compare the different methodologies (SAM, EB, Non-
ParEB, FullBay, Mixture) in terms of variability estimates.

Input

ngenes Number of genes (number of rows of M, raw.logratio, log.intensity
and data matrix)

SAM If different from NULL means that SAM analysis was performed.
It should be the variance array output from sam.analysis

EB If different from NULL means that EB analysis was performed. It
should be the variance array output from EB

NonParEB If different from NULL means that NonParEB analysis was
performed. It should be the variance array output from NonParEB

FullBay If different from NULL means that FullBay analysis was per-
formed. It should be the variance array output from fullBay

Mixture If different from NULL means that Mixture analysis was per-
formed. It should be the variance array output from mixture

directory.out The directory to store the output

At least two approaches are needed to compare in terms of variability.

Output
Two plots:

• Kernel density for variability distribution

• Boxplot of variances
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comp.volc

This function plots the volcano to compare the different methodologies
(EB, FullBay, Mixture) in terms of differential expression.

Input

ngenes Number of genes (number of rows of M, raw.logratio, log.intensity
and data matrix)

EB If different from NULL means that EB analysis was performed. It
should be the variance array output from EB

FullBay If different from NULL means that FullBay analysis was per-
formed. It should be the variance array output from fullBay

Mixture If different from NULL means that Mixture analysis was per-
formed. It should be the variance array output from mixture

directory.out The directory to store the output

You need to perform at least two methodologies to compare in terms of
differential expression. SAM and NonParEB cannot be used to perform
volcano.

Output
A matrix of volcano plots (depending on the number of methods per-
formed), where the cut off identifies the threshold for differential ex-
pression and the highlighted genes are those called differentially ex-
pressed.
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comp.diff

This function draws the typical SAM plot to compare the different method-
ologies (SAM, EB, NonParEB, FullBay, Mixture) in terms of differential
expression.

Input

ID Array of ID

M Matrix of normalised logratio (n genes, n array)

narray Number of array

ngenes Number of genes (number of rows of M, raw.logratio, log.intensity
and data matrix)

SAM Must be different from NULL to draw the plot. It should be the
variance array output from sam.analysis

EB If different from NULL means that EB analysis was performed. It
should be the variance array output from EB

NonParEB If different from NULL means that NonParEB analysis was
performed. It should be the variance array output from NonParEB

FullBay If different from NULL means that FullBay analysis was per-
formed. It should be the variance array output from fullBay

Mixture If different from NULL means that Mixture analysis was per-
formed. It should be the variance array output from mixture

directory.out The directory to store the output

You need to perform the SAM analysis to do this plot. It uses SAM as
common reference for the other approaches.

Output
The SAM plot: observed relative difference (tg) are plotted versus ex-
pected relative difference under H0 hypothesis (mean of tg calculated
on permutation data). The solid line is the 45◦ line (observed equal
to expected). The genes found differentially expressed by one of the
methodologies used are highlighted with different colors and size.
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3 USING A CALIBRATION EXPERIMENT TO

ASSESS GENE SPECIFIC INFORMATION: FULLY

BAYESIAN AND EMPIRICAL BAYESIAN

MODELS FOR MICROARRAY DATA∗

3.1 Abstract

Microarray studies permit to quantify expression levels on a global
scale by measuring transcript abundance of thousands of genes simul-
taneously. A difficulty when analysing expression measures is how to
model variability for the whole set of genes. It is usually unrealistic to
assume a common variance for each gene. Several approaches to model
gene-specific variances are proposed. We take advantage of calibration
experiments (Tseng et al., 2001), in which the probes hybridised on the
two channels come from the same population (self-self experiment).
From such an experiment, it is possible to estimate the gene-specific
variance, to be incorporated in comparative experiments on the same
tissue, cellular line or species.
We propose two different approaches to introduce prior information
on gene-specific variability from a calibration experiment. The first is
an empirical Bayes model derived from Tseng et al. while the second
one is an original full Bayesian hierarchical model. We apply the meth-
ods in the analysis of human lipopolysaccharide stimulated leukocyte
experiments comparing the results and investigating the differences.
The approaches are implemented in WinBUGS (Spiegelhalter et al., 2003).

∗An extract from this chapter with the same title was submitted to Bionformatics,
in collaboration with Simona Toti, Annibale Biggeri and Betti Giusti.
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3.2 Introduction

In the framework of microarray analysis there are two main streams:
one is the identification of differentially expressed genes among sev-
eral varieties (class comparison), while the other is the discovery of
clusters within a collection of samples (class discovery) (Simon et al.,
2003). Class comparison is related to assessment of exposure or treat-
ment effects (i.e. comparison of gene expression for a population of
smokers and non smokers) and the comparison can be performed di-
rectly (i.e. loop design) or indirectly (i.e. reference design). Class dis-
covery is based on distances between gene expression profiles of pairs
of samples (Dobbin et al., 2002) and can be absolute or relative. To the
aim of class comparison the classical statistical approach is based on
modified Student t test procedures where, for each gene, at the nu-
merator there is the difference between gene expression levels in two
conditions to be tested and at the denominator there is the square root
of the variance, divided by the number of replicates (Wit and McClure,
p. 183 and following). In this context a crucial point is how to ob-
tain a suitable estimate of the variance. Actually, when the number of
replicates is very small the sampling distribution of the variance is very
asymmetric, with higher probability for small values and a strong in-
stability of the pivotal t value. For this reason in the literature many au-
thors proposed several procedures to stabilise the variability measure
(Speed et al. (2003), p. 51 and following). One possibility is to consider
a unique variance estimate for the whole set of genes, or a function of
the variance for all the genes. This approach could be used for single
array inference (e.g. the Bayesian approach of Newton, 2001); other-
wise it causes a loss of power, because it tends to be very conservative
and to increase the number of false negative results. A better way to
proceed can be found in a parametric or not parametric framework.
In a parametric context, many authors consider gene-specific variance
estimates for the denominator of the t test, but add a stabilising con-
stant for the whole set of genes. Baldi and Long (2001) use a full Bayesian
hierarchical model for the log-expression. They discuss point estimates
for the parameters and hyperparameters values. Regularized expres-
sions for the variance of each gene are derived combining the empir-
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ical variance with a prior variance σ2
g0. Several choices for the prior

are proposed and among them the variance of the neighboring genes
contained in a window of predefined size w (i.e. ranking the genes on
the base of their expression measure, the 50 genes immediately above
or below the gene under consideration). An additional hyperparame-
ter ν0 (prior degrees of freedom) is necessary to determine the weight
assigned to the prior variance. It is tuned so that its sum is equal to a
given constant (ν0 + n = K).
Lönnstedt and Speed (2002) propose a method that can be classified as
Empirical Bayesian: differently from a full Bayesian approach, they do
not define prior distributions on hyperparameters, but substitute them
by a frequentist estimate based on the marginal distribution. In par-
ticular, the authors present a Bg statistic (a Bayes posterior logodds)
instead of the classical t statistic used to classify the differentially ex-
pressed genes. Following the same philosophy, the variance has a gene
specific component s2

g and a constant term a0. Values of Bg are explic-
itly calculated assuming conjugate prior on the gene expression mean
and variance.
Other authors have worked on specific parametric models for the er-
rors, starting from the idea that the standard deviation for expression
measure increases proportionally to the level of expression (Newton
et al., 2001), but does not tend to 0 for not expressed genes. From this
assumption Rocke and Durbin (2001) develop an error model including
a gene specific additive component and a gene specific multiplicative
one and propose several ways to estimate the models, based on nega-
tive controls, or replicates.
In a non parametric framework Tusher et al. (2001) work on t tests
and assign a score tg to each gene on the basis of its change in gene
expression and relative to standard deviation calculated on repeated
measures. Permutations are used to identify significantly altered genes
and to estimate the false discovery rate. They introduce a ”fudge fac-
tor” s0 to the denominator of t test to avoid low expression genes dom-
inate the results. It is chosen to minimise the coefficient of variation.
This method is framed in a frequentist approach, does not assuming
any distribution on the parameters.
Very similar to the previous, but in a non parametric context, Efron et
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al. (2001) propose a simple empirical Bayes model in which the fudge
factor to be added at the denominator is the 90th percentile of the stan-
dard deviation for all the genes.
Delmar et al. (2004) develop a finite mixture model for the marginal
gene specific distribution (which can be classified as Non Parametric
Maximum Likelihood). In particular, estimating gene specific variance
can be seen as a classification problem, where the number of com-
ponents and the gene belonging are estimated. Since the number of
groups is much lower than the number of genes, the estimates of group
variance are very stable.
Heuristically, Comander et al. (2004) pooled genes to calculate more
reliable variance estimates by average of minimum intensity values.
There is no parametric statistical modelling of variance as function of
intensity, but instead a loess smoothed estimate of variance is derived.
Uncertainty in this procedure is not considered and a Z test is used.
All the previous approaches work with a classical comparative exper-
iment (with replications), where samples from two populations are
compared. A different approach is introduced by Tseng et al. (Tseng
et al., 2001) who propose calibration experiments in which the probes
hybridised on the two channels come from the same population (self-
self experiment). Such experiments make possible to incorporate the
gene specific variability information in comparative experiments on
the same tissue, cellular line or species, with a prior ignorance on the re-
maining parameters and represent an alternative way to face the prob-
lem of variance estimate.
We followed the Tseng’s approach and performed a calibration experi-
ment before doing the comparative one. We built a full Bayesian model
and a simpler Empirical Bayesian model. We analysed data on lipo-
polysaccharide (LPS) stimulated and un-stimulated human leukocyte,
obtaining prior knowledge on variability from self-self experiment.
The structure of the paper is the following: in section 3.3 we describe
the calibration and comparative experiments (3.3.1) and the data pre-
processing phase (3.3.2); in section 3.4 we present the normalisation
procedure used, and then focus the attention on the full Bayesian model
and on the Empirical Bayesian one; model graphs and details on im-
plementation follow ; in section 3.5 we describe the results in terms of
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differentially expressed genes; in section 3.6 a sensitivity analysis is re-
ported and in section 3.7 we discuss the differences between the two
models.

3.3 Materials

3.3.1 LPS microarray experiment

Calibration experiment

Mononuclear cells were obtained from peripheral blood (PMBC) of 10
healthy subjects by density gradient centrifugation on Ficoll-Hypaque.
Cells from each subjects were incubated in RPMI 1640 at 37◦ in a hu-
midified atmosphere with 5% CO2 for 3 hours in standard conditions
(absence of lipopolysaccharide). Total RNA was extracted and equal
amount of total RNA, from different subjects was pooled. Total RNAs
were split into 6 aliquots and then retro-transcribed with amino-allyl-
dUTP, hydrolyzed, purified and labelled with NHS-Cyanine dyes (3
aliquots with Cy3, probe A and 3 aliquots with Cy5, probe B). Then,
three arrays were produced having the two probes purified, mixed
and hybridised on the arrays. After incubation, the three array were
scanned by the 4000B scanner (Axon). Image analysis was performed
by GenePix 4.1 software.

Comparative experiment

Mononuclear cells were obtained from peripheral blood (PMBC) of the
same 10 healthy subjects used in calibration experiment by density gra-
dient centrifugation on Ficoll-Hypaque. Cells from each subjects were
divided into two aliquots; the first was incubated in RPMI 1640 at 37◦

in a humidified atmosphere with 5% CO2 for 3 hours in presence of
lipopolysaccharide (LPS, 10µ g/ml, stimulated cells). The second was
incubated in the same conditions but in absence of LPS (un-stimulated
cells). Total RNA was extracted and equal amount of total RNA sepa-
rately, from stimulated or un-stimulated cells, was pooled. Total RNAs
were retro-transcribed with amino-allyl-dUTP, hydrolyzed, purified and
labelled with NHS-Cyanine dyes following th dye-swap design (Cy3
and Cy5, coupled, to un-stimulated and stimulated specimens). The
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two probes were purified, mixed and hybridised on the arrays. After
incubation, arrays were scanned by the 4000B scanner (Axon). Image
analysis was performed by GenePix 4.1 software. For the comparative
experiment, 2 arrays finally were printed according to the dye-swap
design.

Therefore, the complete experiment consists in 5 arrays made up 22x21
spots grid, for a total of 14784 spots. The 14784 spots included 13971
oligonucleotides representing each one different gene, 29 negative con-
trols (mixtures of oligonucleotide of other organisms), 2 positive con-
trols (a mixture of all the human oligonucleotides) and 872 blanks (only
printing solution). 1502 (10.2%) out of 14784 spots were absent because
of a failure during the printing procedure.

3.3.2 Microarray data preprocessing

Quality control

The process of microarray fabrication is subjected to many sources of
variability and could contain a large amount of noise. In particular, it is
possible that the noise dominates the signal for some spots. We apply
the quality control present in GenePix Pro 4.1, with the aim of evaluat-
ing the presence of artifacts (bubbles, hair, fibers).
After GenePix Pro 4.1 quality control and the visual inspection, the
analysable spots resulted 80%, 87% and 90% as concerned the 3 self
self experiments, and 83%, 87%, for the 2 arrays of the comparative ex-
periment.

Spots selection for the analysis of gene specific variances

To the purpose of the present paper, we restrict our attention to a subset
of genes for which extraneous sources of variability can be excluded.
To select these spots all the 5 arrays were screened following the cri-
teria suggested by Simon et al. (2003). In particular, we excluded a
spot if the number of pixels used to calculate the intensity is less than
25 for the foreground intensity in either channel, if the signal is lower
than 200 for both the channels or if the ratio between the average fore-
ground intensity and the median background intensity is smaller than
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1.5 in either channel. Spots with a large signal for one channel and
low, undetectable signal for the other are not eliminated, but modified
to become analysable, forcing the low intensity signal (defined as less
than 200) to 200.
In this paper we consider 2887 genes represented in all the 5 arrays (3
calibration arrays and 2 comparative arrays).

3.4 Methods

In this section we present the two methods we used to analyse the data.
The first model, is a full Bayesian hierarchical model while the second,
originally proposed by Tseng et al (2001), is an instance of the Empirical
Bayes approach.

3.4.1 Normalisation

We performed two different type of normalisation (Yang et al., 2002):
for each slide a local A-dependent normalisation (loess), considering
all the genes present on the array, is used for Empirical Bayes model.
For Bayesian hierarchical model, the normalisation step was part of the
modelling phase.

3.4.2 Models

Bayesian hierarchical model

The model is split into two parts.

Calibration model
The first submodel is used to estimate gene-specific variances from
the calibration experiment. To this purpose we specified the following
model (Lewin et al., 2003) for the unnormalised log-intensity

xigc ∼ N (µigc,xσg) (3.1)

where i denotes array (i = 1, 2, 3), g denotes gene g = 1, ..., 2887 and c
denotes channel c = 1, 2, where as usual c = 1 denotes Cy3 dye and
c = 2 denotes Cy5 dye. For notation simplicity we refer to xσg as the
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variance.
The normalisation procedure was achieved by an ANOVA model (Kerr
et al., 2002)

µigc = αig + δc + γg (3.2)

where αig denotes the gene-specific array-gene interactions, δc the dye-
effects and γg the normalised gene effects. γg ∼ N(µγ, σγ) are ex-
changeable, with µγ non informative Gaussian and 1/σγ non infor-
mative Gamma hyperpriors. All the other Normalisation parameters
were fixed effects modelled with non informative Gaussian hyperpri-
ors. The gene-specific variances were assumed to follow a Lognormal
distribution xσg ∼ logN(µσ, σσ) with µσ ∼ N(0, 10000) and 1/σσ ∼
Ga(0.001, 0.001) noninformative hyperpriors.

Comparative model
The second submodel is specified for the comparative experiment and
incorporates relevant information from the calibration experiment. The
kernel likelihood is the same as for the calibration model. For the ith ar-
ray (i = 1, 2) the unnormalised log-intensity

xigc ∼ N (µigc,xσg) (3.3)

was modelled as Gaussian for gene g and channel c = 1, 2. The gene
specific variances were modelled as Lognormal variables

xσg ∼ logN(µσ, σσ) with informative parameters values obtained from
the self self experiment. In particular, we assume µσ equal to the mean
of the appropriate posterior distribution on the self self data:

E [µσ | xself] =

∫
µσf(xself | µσ) π(µσ) dµσ∫
f(xself | µσ) π(µσ) dµσ

=

∫
µσ

∫
f(xself | µσ, σσ) π(µσ, σσ) dσσdµσ

const(xself)

(3.4)

where xself are the self self expression data and const(xself) is a normalis-
ing constant depending only on data. Analogously, for σσ we plug in
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the posterior mean of the corresponding posterior distribution f(σσ |
xself).
A linear model was assumed for µigc:

µigc = αig + τg + δc + γg (3.5)

Here the model terms τg can be interpreted as a normalised log-ratio
and quantify the treatment (LPS) effects. Their distribution was as-
sumed Gaussian with gene specific mean µτg

and variance στg
. Sum-

marizing, the prior distributions for τg, µτg
and στg

were assumed as
follow:

τg ∼ N(µτg
, στg

) (3.6)

µτg
∼ N(µτ , στ ) , 1/στg

∼ Ga(ντ , βτ ) (3.7)

with informative hyperparameters µτ , στ , ντ , βτ .

Informative prior on log-ratio
Actually values for µτ , στ , ντ , βτ were obtained from the calibration ex-
periment as follow. On the calibration arrays we calculated a residual
effect rigc = xigc−µigc and reconstructed a ”normalised log-ratio” under
the null hypothesis for each slide as the difference between the residual
effect of c = 1 channel and the residual effect of c = 2 channel:

tig = rig1 − rig2 (3.8)

where rigc was the residual for the cth channel on the ith array (i =
1, 2, 3).
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Figure 3.1: Kernel density plot of normalised log-ratios t·g for self self experiment.

Then for each gene we calculated the plug-in values for the µτg
prior

as:

µ̂τ =
1

G

∑

g

t·g (3.9)

σ̂τ =
1

G-1

∑

g

(t·g − µ̂τ )
2 (3.10)

where t·g = 1
3

∑
i tig (see figure 3.1).

Similarly, we obtained the plug-in values for the prior Gamma parame-
ters ντ and βτ from the mean and variance of {σ̂τg

} =
(

1
2

∑
i (tig − t·g)

2):

ν̂τ = Ave(σ̂τg
) · β̂τ (3.11)

β̂τ =
Ave(σ̂τg

)

V ar(σ̂τg
)

(3.12)

where Ave(.) and Var(.) denote the average and variance operator.
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Tseng’s Empirical Bayes model

To adapt the model proposed by Tseng et al. (2001), first we normalised
the data externally by loess (Yang et al., 2002) through the MAANOVA
library implemented in R (www.r-project.org) (Wu et al. (2003)).
The normalised log-ratio mig for gth gene and ith array were modelled
as:

mig ∼ N(τg,mσg) (3.13)

where τg was the mean and mσg was the variance of log-ratio over the
replicates of the comparative experiment for the gene g. To make easy
compare it to the full Bayesian model the likelihood can be written as
follow:

mig = normalised(xig1 − xig2) (3.14)

mig ∼ N(µig,mσg) (3.15)

where µig = τg. The distribution of τg was assumed Gaussian with gene
specific parameters and all the hyperparameters had a classic Bayesian
non informative distribution (compare to equation 3.6 and 3.7). The
information pooled from the calibration experiment was used to obtain
an informative prior distribution for mσg:

mσg ∼ wg

χ2

k

k

(3.16)

where k was the number of degree of freedom of a chi squared devi-
ate; wg was a weighted average of gene-specific and overall empirical
variance calculated on the calibration arrays (i = 1, ..., I self):

ŝg =
1

Iself − 1

Iself∑

i=1

(mself

gi − mself

g· )
2 (3.17)

ŝ· =
1

G

G∑

g=1

ŝg (3.18)

wg =
[(I

self − 1) · ŝg + ŝ·]

Iself
(3.19)
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In other words, in the Tseng model the information on the gene-specific
variability from the self self experiment is utilised to derive an informa-
tive inverse Gamma prior.
However, the two variance modelling are deeply different. The Em-
pirical Bayes approach uses the information from the self self experi-
ment to plug in values of parameters of the gene-specific variance prior

mσg ∼ wgk

Γ( 1

2
, 1
2
)
; the full Bayes approach uses the posteriors given calibra-

tion data to obtain values for the hyperparameters of the hyperpriors
governing the gene-specific variance priors στg

∼ 1
Γ(ντ ,βτ )

.
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Figure 3.2: Kernel density plot of mean posterior estimates of variability σ̂τg from
self-self experiment for full Bayesian model.

Tseng’s prior with internal normalisation

To better address model comparison we modified the Empirical Bayes
model proposed by Tseng including the normalisation step into the
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model:

xigc ∼ N (µigc,xσg) (3.20)

µigc = αig + τg + δc + γg (3.21)

xσg ∼ logN(µσ, σσ) (3.22)

where the parameters of the lognormal distribution on xσg were infor-
mative coming from the calibration experiment (see paragraph 3.4.2),
and the normalisation parameters were modelled following standard
ANOVA (see equation 3.5). The hyperpriors for τg were modelled fol-

lowing Tseng’s proposal
(
στg

∼ wgk

Γ( 1

2
, 1
2
)

)
(see figure 3.2).

Bayesian hierarchical model with loess normalisation

We also modified the Bayesian hierarchical model to carry out a loess
normalisation instead of the linear one. We performed a loess normal-
isation through MAANOVA library and then we calculated the nor-
malised values for the two channels as follow:

nxig1 = xig1 −
1

2
lig , nxig2 = xig2 +

1

2
lig (3.23)

where 1 is the red channel, 2 is the green one and l is the coefficient
used to scale the log-ratio in the classical global loess normalisation.
The normalised channel intensity (on log scale) are

nxigc ∼ N (µigc,xσg) (3.24)

and we perform a further normalisation in calibration experiment

µigc = αig + γg (3.25)

as well as in comparative experiment

µigc = αig + γg + τg (3.26)

for eliminating the array effects that are not considered in the loess
normalisation performed separately for each slide. The model specifi-
cation thereafter follow the structure defined in equations 3.3-3.12.
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3.4.3 The graph of the model

A system of conditional distributions can be often represented through
the correspondent directed acyclic graph (DAG, directed for the link
between each pair of nodes, acyclic for the impossibility of turning
on the same node after leaving it, following the direction of the ar-
rows)(Gilks et al., 1996). In a DAG the circles denote unobserved quan-
tities, while single squares indicate observed quantities and double
squares indicate a mathematical quantity; the arrows between the nodes
are solid to mean a stochastic dependence, while dashed arrow de-
note functional relationships; solid lines show stochastic undirected
dependence. Repetitive structures (arrays, for example), are shown as
stacked rectangles. Figure 3.3 shows the graph for the Bayesian hierar-
chical model presented in section 3.4.2 while figure 3.4 shows the DAG
for Tseng’s model presented in section 3.4.2.

ντ βτ στ µτ

στg
µτg i=1,2 σγ

σσ τg αig γg µγ

µσ xσg µigc δc

g=1,...,2887 xigc c=1,2

Figure 3.3: Graph of Hierarchical Bayesian model for treated samples (for untreated
ones the τg effects are absent).
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στg

mσg τg

g=1,...,2887 mig i=1,2

Figure 3.4: Graph of Tseng’s et al. model for normalised log ratios mig.

3.4.4 Implementation

To estimate the parameters of interest we use the marginal posterior
distributions approximated by MCMC methods implemented in Win-
Bugs 1.4; the Bayesian hierarchical model with ANOVA normalisa-
tion as well as with loess normalisation, and Tseng’s model with inter-
nal normalisation are estimated by Metropolis-within-Gibbs routine,
a generalization of Gibbs that can be used for non log concave sam-
pling (Tanner, 1996); the Tseng’s Empirical Bayes model can also be
fitted by Gibbs sampling in WinBugs. We have checked the conver-
gence both visually by Gelman-Rubin statistics (Gelman et al., 1992)
and using different starting points. We have performed 10000 burn in
iterations followed by 4000 sampling iterations for all the models. Fit-
ting the Bayesian hierarchical model on calibration experiment takes 1
hour to do 100 iterations on a workstation HPXW6000 with 2GbRAM
and Intel Xeon CPU2.8GHz processor, for the large number of poste-
rior distributions it has to store to be subsequently incorporated in the
comparative experiment analysis. Performing the comparative experi-
ment takes 380 sec. for 1000 iterations. Fitting Tseng’s model takes 300
seconds to perform 1000 iterations.

3.5 Results

We explored the posterior distribution of the treatment effects τg t iden-
tify the differentially expressed genes taking 95% two sides probability
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level. Genes found differentially expressed with at least one of the two
methods are shown in table 3.1. Using the Bayesian hierarchical model
we found 26 differentially expressed genes. 2 (IFI30 and PRKAG2) out
of 26 genes were underexpressed in LPS stimulated leukocytes. Using
Tseng et al. one we found 46 differentially expressed genes. 20 out of
46 genes emerged downregulated in LPS stimulated leukocytes. 22 out
of 26 genes identified by the first model were highlighted also by the
Tseng et al. one (figure 3.5 and table 3.1).
The LPS induced transcripts identified by both models mainly consist
of gene encoding protein associated with cytokines and chemokines
including interleukin (IL)-1 beta, IL-1 receptor antagonist (RA), macro-
phage inflammatory protein (MIP)-1 alpha, MIP-1 beta, MIP-2 beta,
MIP-3 alpha; cytoskeletal protein such as vimentin and cofillin 2 (Mor-
Vaknini et al., 2003); and plasminogen activator inhibitor type 2 (PAI-2)
(Pepe et al., 1997).
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Figure 3.5: 95% posterior credibility intervals for differentially expressed genes: Full
Bayesian model vs Empirical Bayesian one (see color insert following page 99).
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Bayesian Hierarchical Model Empirical Bayesian Model
ID Symbol Post Mean Post CrI Post Mean Post CrI

2064 VIM 0.32 (0.04,0.63) 0.28 (0.05,0.50)
2563 TAC1 0.20 (0.04,0.36)
2890 PRKCG 0.41 (0.14,0.70) 0.29 (0.03,0.57)

12183 KIAA0935 -0.20 (-0.37,-0.04)
14623 IFI30 -0.36 (-0.66,-0.09) -0.46 (-0.75,-0.19)
23672 LRP6 -0.29 (-0.53,-0.04)
42500 ARL5 0.26 (0.05,0.45)
43265 MLSN1 0.39 (0.10,0.70) 0.22 (0.05,0.40)
68879 BPM4 -0.20 (-0.36,-0.04)
73817 SCYA3 2.30 (2.01,2.61) 2.28 (1.95,2.59)
75356 TCF4 0.22 (0.02,0.44)
75498 SCYA20 0.92 (0.64,1.19) 0.75 (0.43,1.10)
75703 SCYA4 1.56 (1.27,1.86) 1.57 (1.27,1.88)
75716 SERPINB2 1.19 (0.91,1.47) 1.22 (1.03,1.42)
76095 IER3 0.87 (0.56,1.17) 0.68 (0.31,1.07)
78452 SLC20A1 -0.17 (-0.35,0)
81134 IL1RN 0.96 (0.64,1.26) 0.82 (0.62,1.02)
89690 GRO3 0.98 (0.68,1.27) 0.97 (0.74,1.19)
92381 - -0.17 (-0.35,-0.01)
99508 - -0.20 (-0.39,-0.02)

100015 HAB1 -0.33 (-0.55,-0.1)
103839 KIAA0987 -0.19 (-0.39,-0.01)
103931 DKF2P434B 0.28 (0.01,0.55) 0.27 (0.04,0.50)
118463 TTS-2.2 -0.23 (-0.39,-0.08)
126256 IL1B 2.57 (2.28,2.86) 2.55 (2.36,2.74)
129727 KIAA0464 -0.20 (-0.39,-0.01)
138263 - 0.31 (0.01,0.59)
166204 PHF1 0.19 (0.03,0.36)
169301 - 0.40 (0.11,0.65) 0.29 (0.04,0.53)
171185 P38IP 0.31 (0.04,0.60) 0.30 (0.07,0.53)
178078 GRM4 -0.28 (-0.48,-0.07)
179657 PLAUR 0.37 (0.09,0.67)
180141 CFL2 0.43 (0.16,0.69)
184434 AXIN1 0.41 (0.1,0.67)
184711 - -0.30 (-0.47,-0.13)
184776 RPL23A -0.30 (-0.59,-0.04)
195453 RPS27 0.32 (0.02,0.63) 0.30 (0.07,0.52)
198951 JUNB 0.27 (0.05,0.50)
240122 CDC14B 0.35 (0.06,0.63) 0.22 (0.04,0.40)
251928 NPIP -0.20 (-0.37,-0.03)
259842 PRKAG2 -0.37 (-0.67,-0.07) -0.47 (-0.7,-0.25)
266902 NTF5 0.32 (0.03,0.60) 0.31 (0.04,0.56)
270062 - -0.29 (-0.45,-0.14)
272205 FLJ10034 -0.23 (-0.39,-0.07)
272801 FLJ20464 0.36 (0.09,0.62) 0.25 (0.07,0.44)
272802 FLJ20499 0.21 (0.03,0.38)
274431 - 0.33 (0.04,0.59) 0.29 (0.08,0.49)
274535 SCYA3LI 1.82 (1.55,2.11) 1.80 (1.38,2.21)
278976 - -0.22 (-0.4,-0.05)
279886 RANBP9 -0.21 (-0.39,-0.03)

Table 3.1: Differentially expressed genes: posterior mean and posterior credibility
interval at 95%.
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3.6 Sensitivity Analysis and Model Comparison

The results presented in the previous section are difficult to interpret
comparatively because the two models use different normalisation pro-
cedures. To gain insight on the behavior of the different approaches we
need to evaluate differentially expressed genes taking fixed the nor-
malisation procedure (subsection 3.4.2).
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Figure 3.6: 95% posterior credibility intervals for differentially expressed genes (see
color insert following page 99).

Figure 3.6 plots differentially expressed genes and their 95% posterior
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credibility intervals for: (up, left) the full Bayesian model and that with
Tseng prior specification with internal linear ANOVA normalisation;
(up, right) the Tseng model and the full Bayesian one with loess nor-
malisation; (bottom, left) the full Bayesian model with both normalisa-
tion procedures; (bottom, right) the Tseng model with both normalisa-
tion procedures; . The largest differences were observed in the down
regulated genes. The full Bayesian models found 2 negative genes and
3 negative genes. On the other side, by Tseng model 20 genes emerge
as down regulated, but using the internal linear ANOVA normalisa-
tion it found only 2 negative genes. Generally speaking, as theoreti-
cally expected, the full Bayesian model seems more conservative and
robust with regard to the choice of normalisation procedure. The Tseng
model seems less conservative and more sensitive to the normalisation
procedure adopted.

3.7 Discussion

The observed differences in number of differentially expressed genes
between the Bayesian hierarchial model and the Tseng Empirical Bayes
one are related to different factors, namely normalisation method and
specification of prior information. In the Bayesian Hierarchical method,
the Normalisation step is performed inside the model through a multi
slide linear Normalisation (ANOVA). In the Empirical Bayesian ap-
proach, data are normalised outside the model, through a loess Nor-
malisation performed separately for each array. When incorporating
the normalisation into the model, the likelihood is based on single
channel expression measures over replicates, while with an external
normalisation, the likelihood is based on an empirical relative measure
of expression.
This is a very important point in modelling gene specific variances.
in fact,“many ratios with high variances result from spots that have a
medium or high intensity in one channel and a very low intensity in the
other” (Comander et al. (2004), p. 4) and building a model with single
channel intensity can be much more sensitive than modelling the em-
pirical log-ratio. Coherently, using the Tseng prior with the Normalisa-
tion step into the model (3.4.2) all the genes emerged down regulated
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in the previous analysis were no more differentially expressed.
Using the Bayesian Hierarchical modelling with loess normalisation
(3.4.2) 27 genes were found differentially expressed; 18 out of 27 over-
lap those obtained by the Empirical Bayes model and only 2 out of
them were down regulated.
The Full Bayesian model originates likely more conservative estimates
of relative expression with respect to the Empirical Bayes one. The
sensitivity analysis performed in the previous section shows that the
Bayesian model is more robust to the different normalisation proce-
dures adopted.
The Empirical Bayesian model and the full Bayesian one insert prior
information on variability from the calibration experiment in different
way. In the first the prior distribution for the variance of the normalised
gene log-ratio (mσg) is a function of a weighted average between the
observed gene specific variances (sg) and their average among the set
of genes (s·) on the calibration arrays (3.16). It is not assumed a hyper-
prior distribution on the prior parameters, but instead an estimate is
plugged in, following the Empirical Bayesian approach. The proposed
estimate in Tseng model lies on the theory of the generalized estimator
of James-Stein (Efron et al., 1972) and has optimality proprieties in a
frequentist point of view.
The full Bayesian hierarchical model inserts information from self self
experiment at the normalised log-ratio level for each gene, as well as at
the single channel intensity level (figure 3.3).
The gene specific log-ratio (τg) probability density has informative dis-
tribution on its parameters µτg

, στg
(equation 3.7). The single channel

intensity likelihood has a gene specific prior distribution for the vari-
ance with parameters µσ, σσ estimated from the self self experiment
(equation 3.4). An alternative would be to consider the whole pos-
terior distribution of µσ and σσ from the calibration experiment. The
hierarchical structure of the model is a robust answer to the problem
of putting in prior knowledge. The introduction of a supplementary
layer in the model permits to filter the available previous information
in a sensible way.
As showed in figure 3.2, in our data Bayesian posterior estimates of
gene-specific variances tend to be larger than the empirical Bayes esti-
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mates. The reader can also appreciate that the distribution of log-ratios
(figure 3.1) from calibration experiment has a heavier tail for negative
values and a positive mode. Coherently, our Bayesian analysis for the
comparative experiment is more conservative and gives more penalty
to negative log-ratios.
Both models reveal a shrinkage effect: as an illustration the figure 3.7
compare the empirical log ratio to the posterior estimates.

Full Bayesian

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

mg1 + mg2 2

E(τg)

Tseng Empirical Bayes

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

mg1 + mg2 2

E(τg)

Figure 3.7: Shrinkage effect: both the Bayesian hierarchical model (up) and the Tseng’s
Empirical Bayes one (bottom) show a narrower range for the posterior mean of τg with

respect to the empirical log ratios
mg1+mg2

2 ; for the negative genes the shrinkage effect
is stronger for the Bayesian model than for the Empirical Bayes one.

In conclusion, we showed how information from calibration experi-
ments can be utilised to improve inference on differentially expressed
genes in comparative experiments. We can point out that calibration
experiment is a good answer to the problem of gene-specific variabil-
ity estimate and let include prior information both working in a full
Bayesian framework and in an Empirical Bayesian one. It naturally ex-
tends to a sequence of experiments (e.g. time course experiments): it
permits to update prior information and to take under control sources
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of variations that can be introduced between different experiments.
Moreover, a calibration experiment can be used as baseline for future
experiments on the same tissue, cellular line or species.
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4 CALIBRATION EXPERIMENT FOR THE

ANALYSIS OF MICROARRAY DATA: AN

APPLICATION ON UN-AND-LPS STIMULATED

HUMAN LEUKOCYTE MODEL.∗

4.1 Abstract

One of the difficulties when analysing expression measures obtained
by cDNA/oligonucleotide arrays is how to model the variance func-
tion for the whole set of genes. Several studies had showed the poor
accuracy of models assuming a global variability measure. Many ap-
proaches to modelling gene-specific variance have been proposed. We
take advantage of calibration experiment to analyse microarray data
of LPS- and un-stimulated human leukocytes. In such experiments
aliquots of the same RNA sample were labelled with Cy3 and Cy5
fluorescent dyes and co-hybridised to the microarray. From these cal-
ibration experiments, conjointly with replicates, it is possible to esti-
mate the gene-specific variance to be incorporated in comparative ex-
periments on the same specimens. We used a Bayesian hierarchical
model to identify differentially expressed genes, taking into account
the variability at gene level through calibration experiments. Our data
on LPS-inducible gene expression profile both identified novel genes
(e.g. IFI30, MLSN1, CFL2, AXIN1) suggesting new targets of study in
order to better understand the pathophysiology of sepsis and inflam-
matory disease and confirmed the involvement of many cytokines and
chemokines (IL-1b, IL-1RA, MIP-1a, -1b, -2b, -3a).

∗An extract from this chapter with the same title was submitted to Journal of Throm-
bosis and Haemostasis in collaboration with Betti Giusti, Simona Toti, Annibale Biggeri.
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4.2 Introduction

DNA microarray analysis has become a wide used technology for the
study of gene expression profile on a genomic scale (Schena et al., 1995),
(Schena et al., 1996). Experiments using DNA microarray allow the
monitoring of expression levels for thousands of genes simultaneously.
The basic strategy for microarray study is to retrotranscribe to cDNAs
and differentially label with two fluorescent molecules (Cy3 and Cy5)
RNA from two sources, a control and an experimental sample. The
labelled cDNAs are co-hybridised on the microarray slide and the mi-
croarray is scanned. By using dedicated softwares, the intensities of the
emission peaks of both Cy3- and Cy5-labelled targets in each gene spot
are quantified. Finally, the log2 of the ratio of the normalised intensi-
ties is calculated for each gene-expression value to indicate its relative
expression in the test versus the control state (Quackenbush, 2001).
In addition to pre analytical factors (i.e. cell harvesting conditions, bi-
ological variation, mRNA quality), poor reproducibility in microarray
data analysis has been attributed to variety of factors including printed
spot quality, hybridisation and differential incorporation of fluorescent
nucleotides (Brenner et al., 2000), (Hedge et al., 2000), (Goryachev et al.,
2001), (Wildsmith et al., 2001), (Schroeder et al., 2002). Researchers typ-
ically adjust or normalise the data to correct for two common exper-
imental biases: 1) fluorescent background, or fluorescence that is not
due to fluorescent cDNA hybridisation; and 2) fluorochrome-specific
differences.
Typically, background bias is removed by subtracting fluorescence out-
side the spot from fluorescence inside the spot, assuming that back-
ground is homogeneous across the local area. To adjust for bias due to
fluorochrome-specific differences, the simplest normalisation method
is to set the mean total intensities of Cy3 and Cy5 signals of one mi-
croarray to be equivalent, assuming that the expression patterns of
most genes do not change between cellular states (Quackenbush, 2001).
Reverse labelling of the samples is also used to ensure that results are
not biased as a result of gene-specific preferential incorporation of the
dyes (Kerr 2001). A challenging technical consideration in microarray
data analysis is the identification and singling out of statistical mod-
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els to distinguish non biological from biological variability in the data.
In microarray literature the first popular method of analysis was intro-
duced by Newton in 2001. It analyses each single slide and identifies
three cut off limits to define differentially expressed genes; however,
this approach does not permit to analyse more than one slide at the
same time. Several methods were proposed to analyse different ar-
rays at the same time. In particular, some authors (Tusher et al. (2001),
Lönnstedt and Speed (2002), Efron et al. (2001)) propose multi slides
approaches, to evaluate the significance of gene effects taking into ac-
count gene specific variability through replicates. A further source of
information on gene specific variability can be obtained from calibra-
tion experiment. In such experiments the probes hybridised on the
two channels come from the same population (self-self experiment).
Tseng et al. (2001) proposed the statistical model to use information
from replicates and calibration experiment in an Empirical Bayes per-
spective. In the present paper we use a Fully Bayesian model (Blan-
giardo et al., 2004) and compare the result to whom obtained by Tseng
model. Data are obtained from un-stimulated and lipopolysaccharide
LPS-stimulated human leukocytes. Although few comprehensive study
of gene expression in LPS stimulate peripheral blood mononuclear cells
has been reported, many LPS inducible genes have been investigated
and information is available in the literature. Due to the great number
of information available on this experimental model, we could better
and easily validate results obtained by microarray data analysis.

4.3 Materials and Methods

Cell Preparations Peripheral blood mononuclear cells (PBMC), obtained
from the EDTA anti-coagulated peripheral blood of 20 healthy volun-
teers, were prepared by density gradient centrifugation (Ficoll-Hypaque,
Nycomed Pharma AS, Oslo, Norway), extensively washed and counted
(Neri Serneri et al., 1992). For the experiments of self-self hybridisa-
tion, after PBMC isolation, total RNA was extracted from the pellets by
RNeasy Maxi Kit (QIAGEN GmbH, Germany) according to the manu-
facturer protocol. During isolation a DNase treatment was performed
with the Qiagen RNase-free DNase set (Qiagen). Mononuclear cells
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(107 cells/mL) were incubated in RPMI 1640 (Gibco, Grand Island, NY)
containing 100 mg/mL gentamcin at 37◦C in a humidified atmosphere
with 5% CO2. Mononuclear cells unstimulated or stimulated with LPS
(10 mg/mL final concentration, Sigma Aldrich Corporation, St. Louis,
MO, USA) were incubated at 37◦C for 3 hours and then washed twice
with phosphate-buffered saline (PBS). Total RNA was then extracted
from the pellets.

4.3.1 Microarray experiments

We used poly-L-lysine (Sigma) coated arrays of 14000 genes (70 mer
oligonucleotides - Human Array-Ready Oligo set, Operon Technolo-
gies). Oligonucleotides were spotted with a 32 pins arrayer (GeneMa-
chines OmniGrid) in 50-52% humidity at 21◦C and cross-linked by UV
irradiation at 65 mJ/cm2 (Stratalinker model 1800 UV Illuminator, Strata-
gene). Microarray were made up 22x21 spots grid, for a total of 14784
spots. The 14784 spots included 13971 oligonucleotides representing
each one different gene, 29 negative controls (mixtures of oligonucleotide
from other organisms), 2 positive controls (a mixture of all the human
oligonucleotides) and 872 blanks (only printing solution). After sub-
straction of absent spots due to failure during the printing procedure,
13282 (89.8%) out of 14784 spots were available. For self-self experi-
ments, equal amounts of total RNA from mononuclear cells of differ-
ent control subjects were pooled and subdivided in aliquots of 20 mg.
For stimulated/unstimulated experiments equal amounts of total RNA
from stimulated or un-stimulated cells were pooled and subdivided
in aliquots of 20 mg. Total RNA was reverse transcribed with oligo
(dT)12-18 (Gibco Brl), amino-allyl-dUTP (Sigma), and Superscript II
Rnase H enzyme, then hydrolyzed, purified by using Microcon-30 col-
umn (Millipore) and labelled with NHS-Cyanine dyes (Cy3 and Cy5,
Amersham Biosciences). For each experiment, the two probes (one la-
belled with Cy3 and one with Cy5) were purified by using QIAquick
PCR purification Kit (Qiagen), mixed and hybridised on the array. Sixty
microliters of hybridisation mixture was heated at 95◦C for 2 min and
applied under a 22x50 mm Lifterslip (Erie Scientific). Slides were sealed
in CMT chambers (Corning). The setting and the subsequent hybridis-
ation of microarray were performed according to
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http://cmgm.stanford.edu/pbrown and
http://www.microrrays.org/protocols.htlm.
After an overnight incubation (15-18 h) at 65◦C, arrays were washed
and scanned by using a 4000B Scanner (Axon), at 10 mm spatial resolu-
tion and a 33% of laser power. Each hybridisation (3 self-self hybridi-
sation and 2 unstimulated/LPS stimulated hybridisation) produces a
pair of 16-bit images, which were processed using the GenePix Pro 4.1
software (Axon Instruments, Union City, CA). Spot intensity, referred
to throughout the paper, is the median foreground (F) pixel intensity
after the median background (B) pixel intensity subtraction for the Cy3
fluorescence (median FCy3-532 - median BCy3-532) and Cy5 fluores-
cence (median FCy5-635- median BCy5-635).

4.3.2 Quality control

Poorly spotted genes, expressing weak or distorted signals, were auto-
matically discarded by GenePix Pro 4.1 software and manually by vi-
sual inspection. Besides applying the quality control present in GenePix
Pro 4.1, with the aim of evaluating the spot quality and to eliminate the
spots that present a low quality, we used several visual and analytical
controls (Simon et al., 2003). We excluded a spot if the number of pixels
used to calculate the intensity was less than 25 for the foreground in-
tensity in either channel, if the signal was lower than 200 for both the
channels or if the ratio between the average foreground intensity and
the median background intensity was smaller than 1.5 in either chan-
nel. Viceversa, spots with a large signal for one channel and low signal
for the other are not eliminated, but modified to become analysable.
In fact, on one hand is not recommended to penalized the informa-
tion on the spot that gives an important contribution for the channel
with a large signal; on the other hand comparing the log ratio from
different arrays this spot could produce distort conclusions about the
expression, based on a difference between the log ratio that depends
almost wholly from the low signal channel. To avoid these two prob-
lems, for a spot with a ”large signal” (defined over 500) and a ”low
signal” (defined lower than 200), we forced the low intensity signal to
200. After the identification of each feature within the microarray by
using the specific GAL file and the application of the quality criteria
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of GenePix Pro 4.1 software and the visual inspection, the analysable
spots resulted 80%, 87% and 90% as concerned the 3 calibration ex-
periments, and 83%, 87%, for the 2 experiments of comparison of LPS
stimulated and un-stimulated PBMC. After the other steps of quality
control, the analysable features ranged between 35% and 65%. The
2887 genes analysed in the experiment were that not missing in all the
5 arrays.

4.3.3 Normalisation

Normalisation procedure is a very important step to eliminate the mul-
tiple sources of variations introduced during the microarray fabrication
and hybridisation processes. We do not describe the different aspects
of this procedure, but refer to the complete review on microarray nor-
malisation methods of Yang et al. (2002). We performed two different
types of normalisation: for each slide a local A-dependent normalisa-
tion (loess), considering all the genes present on the array, is used for
Newton and Tseng model. For our Bayesian hierarchical model, the
normalisation was part of the modelling.

4.4 Models

To identify the differentially expressed genes we applied three differ-
ent methods. The first (Newton et al., 2001) works only on comparative
arrays and analyses them separately. We introduce it in the work as a
standard analysis of comparative experiments. We considered a gene
as differentially expressed if it emerges in both the comparative arrays
(p=0.01 and p=0.1). The software is freely available in R (SMA library,
www.R-project.org).
The second approach was introduced by Tseng et al. (2001) and treats
for the first time the calibration experiment. It is an empirical Bayesian
approach. Gene specific variance of comparative experiment is esti-
mated by replicates of comparative arrays weighted by observed vari-
ances from calibration experiment. We assume a gene is differentially
expressed if the posterior credibility interval (p=0.05) does not include
0. The software is freely available on request at
http://www.pitt.edu/ctseng.
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The method we use was introduced in Blangiardo et al. (2004). It is a
full Bayesian method, so all the parameters (included the gene specific
variance) have a prior distribution with parameters estimated from cal-
ibration experiment. To define a gene as differentially expressed we
consider the posterior credibility interval (p=0.05). The WinBugs code
is freely available on request (blangiar@ds.unifi.it).

4.4.1 Real-Time Polymerase Chain Reaction (RT-PCR)

For RT-PCR, 2 µ g of the same total RNAs used for comparative experi-
ments was reverse-transcribed using Moloney Murine Leukemia Virus
(M-MLV) transcriptase (Gibco BRL) and random hexamer primers (Amer-
sham). In order to quantify the transcribed PLAUR and GRM4 gene,
we performed TaqMan RT-PCR (PE Applied Biosystems) on an ABI
Prism 7700 instrument. VIC-labelled human GAPDH (assay-on-demand
#4326317E) and FAM-labelled human PLAUR (assay-on-demand
#Hs00182181 m1) and GRM4 (assay-on-demand #Hs00168265 m1) Taq-
Man predeveloped assays (Applied Biosystems) were used. Expression
of PLAUR and GRM4 genes was normalised to GAPDH and displayed
as fold-change relative to the unstimulated sample used as the calibra-
tor.

4.5 Results

4.5.1 Microarray

Genes found differentially expressed with at least one of the three meth-
ods are shown in Table 4.1: Newton model identified 7 differentially ex-
pressed genes, Full Bayesian hierarchical model found 26 differentially
expressed genes, while Tseng one found 44 differentially expressed
genes. All the 7 genes emerged from Newton analysis were identified
also by the other two models (Table 4.1). 22 out of 26 genes identified
by Full Bayesian model were characterized also by Tseng model (ta-
ble 4.1). As concerned our model, expression levels of 2 (IFI30 and
PRKAG2) of 26 genes were decreased in LPS stimulated leukocytes
in comparison with those in un-stimulated PBMC (table 4.1). Con-
versely, 24 transcripts were over-expressed in LPS stimulated PBMC
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(Table 4.1). As concerns Tseng model, expression levels of 19 of 44
genes were decreased and 25 of 44 were increased in LPS stimulated
leukocytes (Table 4.1). The LPS induced transcripts identified by both
the two models mainly consist of genes encoding proteins associated
with cytokines and chemokines including interleukin (IL)-1 beta, IL-
1 receptor antagonist (RA), macrophage inflammatory protein (MIP)-1
alpha, MIP-1 beta, MIP-2 beta, MIP-3 alpha; cytoskeleton protein such
as vimentin and cofillin 2; and plasminogen activator inhibitor type 2
(PAI-2) (table 4.1).

4.5.2 Validated expression of selected genes by RT-PCR

In order to validate the expression of genes identified by only one model,
we arbitrarily selected 2 differentially expressed transcripts (PLAUR
for our model and GRM4 for Tseng’s model) and evaluated them in
the same total RNAs used for comparative microarray experiments
by RT-PCR. RT-PCR analysis confirmed that PLAUR mRNA was up-
regulated by LPS stimulus [fold-change 4.3 (4.5-4.1)], whereas the down-
regulated GRM4 mRNA according to Tseng’s model, but not to the
other models resulted equally expressed [fold-change 1.3 (1.2-1.4)] in
LPS- and un-stimulated PBMC.
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Newton Bayesian Hierarchical Model Empirical Bayesian model
ID Symbol M Post Mean CrI Post Mean CrI

2064 VIM - 0.32 0.04,0.06 0.43 0.12,0.76
2563 TAC1 - - - 0.28 0.06,0.50
2890 PRKCG - 0.42 0.15,0.70 0.48 0.09,0.87

12183 MAN2B2 - - - -0.30 -0.54,-0.07
14623 IFI30 - -0.40 -0.65,-0.08 -0.70 -1.10,-0.23
23672 LRP6 - - - -0.40 -0.72,-0.05
24030 SLC31A2 - - - - -
42500 ARL5 - - - 0.36 0.06-0.65
43265 MLSN1 - 0.39 0.10,0.71 0.48 0.23,0.74
47584 KCNS3 - - - -0.20 -0.48,0.00
68879 BPM4 - - - -0.30 -0.54,-0.05
73817 SCYA3/MIP-1A 3.96 2.30 2.00,2.61 3.96 3.50,4.45
75948 SCYA20/MIP-3A 1.43 0.92 0.64,1.19 1.45 0.95,1.93
75703 SCYA4/MIP-1B 2.50 1.56 1.27,1.86 2,50 2.04,2.96
75716 SERPINB2/PAI-2 2.43 1.19 0.91,1.47 2.43 2.12,2.73
76095 IER3 - 0.87 0.56,1.17 1.08 0.55,1.65
76722 CEBPD - - - -0.30 -0.58,-0.00
78452 SLC20A1 - - - -0.30 -0.5,-0.01
81134 IL1RN 1.49 0.96 0.64,1.26 1.50 1.21,1.79
89690 GRO3/MIP-2B - 0.98 0.68,1.27 1.40 1.09,1,74

100015 HAB1 - - - -0.50 -0.83,-0.16
103931 DKF2P434B - 0.28 0.01,0.55 0.41 0.06,0.72
105958 PLXND1 - - - -0.20 -0.47,-0.01
118463 PNPLA2 - - - -0.30 -0.5,-0.03
126256 IL1b 3.85 2.57 2.28,2.86 3.85 3.57,4.14
138263 - - 0.30 0.01,0.59 - -
166204 PHF1 - - - 0.25 0.02,0.50
169301 - - 0.40 0.11,0.65 0.52 0.20,0.86
171185 P38IP/FAM48A - 0.31 0.04,0.6 0.44 0.09,0.76
171731 SLC14A1 - - - - -
175038 ARMC8 - - - - -
178078 GRM4 - - - -0.40 -0.75,-0.10
179657 PLAUR - 0.37 0.09,0.68 - -
180141 CFL2 - 0.43 0.16,0.69 - -
184434 AXIN1 - 0.40 0.10,0.67 - -
184711 DKFZp434B2016 - - - -0.40 -0.67,-0.14
184776 RPL23A - - - -0.40 -0.85,-0.05
195453 RPS27 - 0.32 0.02,0.63 0.45 0.11,0.77
198951 JUNB - - - 0.37 0.02,0.71
240122 CDC14B - 0.34 0.06-0.63 0.47 0.23-0.71
251928 NPIP - - - -0.30 -0.54,-0.05
259842 PRKAG2 - -0.40 -0.67,-0.08 -0.70 -1.00,-0.31
266902 NTF5 - 0.32 0.03,0.60 0.44 0.05,0.84
270062 DKFZp586D924 - - - -0.40 -0.63,-0.16
272205 FLJ0034 - - - -0.30 -0.57,-0.10
272801 FLJ20464 - 0.36 0.09,0.62 0.47 0.22,0.72
272802 ANKMY1 - - - 0.29 0.03,0.55
274431 LTBP3 - 0.33 0.04,0.59 0.43 0.13,0.71
274535 SCYA3LI 2.63 1.82 1.54,2.11 2.68 2.00,3.31
278976 BIN2 - - - -0.30 -0.54,-0.05
279886 RANBP9 - - - -0.30 -0.60,-0.05

Table 4.1: Differentially expressed genes: Posterior Credibility Intervals at 95%.
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4.6 Discussion

Several studies have provided information about expression and mech-
anisms of action of LPS-inducible gene products, therefore it represents
a good experimental design to evaluate the ability of a statistical anal-
ysis model to identified differentially expressed genes. In many ex-
periments, the genes present on the array (target) cover a very large
percentage of the genome studied. (i.e. yeast, microarray with a spe-
cific pattern of genes). However, the data analysis of high density mi-
croarray for screening purpose needs more attention. In fact, in this
perspective, mRNAs from specific cells or tissues are hybridised to ar-
ray with a high number of genes of which only a defined percentage is
expressed.
In our study, in fact, the genes to be analysed after quality control
ranged between 35% and 65%: this may be due to 1) no expression of
specific genes present on our array in PBMC; 2) low sensitivity of the
scanner instrument acquiring the fluorescence emissions of genes with
low expression in PBMC. Results from single-slide Newton analysis
are based on a global relative standard deviation (coefficient of varia-
tion) for the whole set of genes. Using replicates originates an increase
of accuracy identifying differentially expressed genes. In addition, us-
ing a calibration experiment allows adding further information at gene
level. In Tseng perspective, for each gene information from calibration
as well as from comparative is needed. For this reason, we excluded
from the analysis the genes missing in one of the datasets. Under a full
Bayesian point of view, the information is inserted on the hyperparam-
eters and can be estimated also for the genes not present in calibration
experiment. From our data emerge that Newton model is the most con-
servative and call differentially expressed only the genes with the more
strong differences: confirm of this is that all the 7 genes were identified
also by Tseng and full Bayesian model. As concerns the two models
using calibration experiments, 22 genes were common to the two mod-
els: 22/26 (84.6%) in our model and 22/44 (50%) in Tseng model of the
characterized genes, respectively. In particular, among the genes iden-
tified only by Tseng model there were 17/22 (77.2%) genes significantly
down-regulated. This can find an explanation mainly in the different
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normalisation procedure (Further details on modelling comparisons
are found in Blangiardo et al., 2004). In the present work, the validation
experiments by real time PCR confirmed the significant differential ex-
pression of PLAUR gene (identified only by full Bayesian model), but
did not confirm the significant differential expression of GRM4 gene
(identified only by Tseng model). Then, validation analysis on PLAUR
and GRM4 genes shows an agreement with full Bayesian results. In
this study we could evaluate the gene expression of 2887 genes that
were not missing in the 5 analysed arrays. Among the differentially
expressed genes, many cytokine and chemokine genes were identified
to be highly inducible by LPS stimulus as expected. The well-known
proinflammatory cytokine IL1b was expressed at higher levels in LPS-
stimulated PBMC than resting cells confirming the central role in the
initiation of systemic response. Many chemokines resulted up regu-
lated simultaneously in LPS stimulated cells: MIP-1 a, MIP-1 b, MIP-2 b
and CCL3L1 for the CC subfamily, and MIP-3 a for the CXC subfamily.
As concerns MIP-1 a, MIP-1 b, MIP-2 b and MIP-3 a our data are in ac-
cord to other data from the literature obtained by serial analysis of gene
expression (SAGE) in LPS stimulated human monocytes. The gene ex-
pression profile of further genes identified by full Bayesian model is in
agreement with data available in the literature. In fact, according to our
previous data (Pepe et al., 1997), the expression of PAI-2 mRNA was in-
creased by the stimulation with LPS. PAI-2, a member of the serine pro-
tease inhibitor (SERPIN) superfamily is a rapidly inducible inflamma-
tory mediator with characteristics of an early response gene (Schwartz
1992). Also vimentin gene showed an increased expression in LPS-
stimulated leukocyte. This result is in keeping with the work of Mor-
Vaknin and colleagues (2003) establishing that vimentin is secreted by
macrophages into the extracellular space in response to proinflamma-
tory signaling pathways. Among differentially expressed genes identi-
fied by full Bayesian model there were genes for which no previous evi-
dence was available about their response to LPS stimulus such as IFI30,
MLSN1, NTF5 and CFL2 or with unknown function such as FLJ20464
and P38IP. These findings stimulate further studies to evaluate the role
of these genes in the activation of PBMC by LPS stimulation.
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CONCLUSIONS

The first two chapter present the main different approaches to model
variability in microarray data. If the first chapter offers a wider spec-
trum of possible modelling, the second focus the attention on a sub-
group of more similar methods, compared in terms of results on vari-
ability estimates and differential expression. From a methodological
point of view we considered:

• the modifications of t test, the simplest methods to stable the de-
nominator of the t statistic, introduced under a Parametric or not
Parametric point of view, from a frequentist or Bayesian perspec-
tive;

• Mixed ANOVA models, which permits to decompose the vari-
ance in several components;

• two components error model, which parameterise separately low
intensities from medium-high ones;

• mixture model approach, which limits the number of parameters
and gains strength from the closer genes in terms of variance.

In the second paper we limit the analysis to the modified t tests, ap-
plied to the study of two public datasets (TCDD comparative experi-
ment and E-Coli calibration dataset).
They show a different power of identification of differentially expressed
genes: SAM analysis seems the least conservative methods (264 called
genes) and includes all the genes found differentially expressed by the
other approaches. On the other hand, the Empirical Bayes approach
is the most conservative one, found only 61 differentially expressed
genes. In general, all the five methods seem to give a good capability
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to recognise false positive.
In the third paper we have sorted out how normalisation and vari-
ability modelling can originate different results in gene expression. In
particular, the normalisation into the model and a Full Bayesian ap-
proach produces more conservative estimates, with respect to external
normalisation or an Empirical Bayesian approach, but the estimates are
more robust if the normalisation is changed; it is up on the researcher
to choose the approach to use, depending also on the confidence he
has on the data to be analyse. Anyway, we retain that normalisation
procedures used by different methods should be carefully evaluated
before comparing the approaches to distinguish which part of the dif-
ferences in expression is due to the effective power of the methodology
and which is for normalisation technique.
Nevertheless, we can point out that calibration experiment is a good
answer to the problem of variability estimate and let include prior in-
formation both working in a fully Bayesian framework and in an Em-
pirical Bayesian one. For this reason, it works well when considering
a sequence of experiments (e.g. time course experiments): it permits
to update prior information and to take under control sources of vari-
ations that can be introduced between different experiments. So, a cal-
ibration experiment can be seen as a investment for the future experi-
ments on the same tissue, cellular line or species.
The last paper find a biological base of the results obtained by the Full
Bayesian model. Our data on LPS-inducible gene expression profile
both identified novel genes (e.g. IFI30, MLSN1, CFL2, AXIN1) sug-
gesting new targets of study in order to better understand the patho-
physiology of sepsis and inflammatory disease and confirmed the in-
volvement of many cytokines and chemokines (IL-1b, IL-1RA, MIP-1a,
-1b, -2b, -3a).
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COLORED FIGURES

Figure 4.1: The central dogma of molecular biology.
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Figure 4.2: Kernel density for estimated variability (TCDD dataset): the EB curve
is the closest to 0, but it has the longest right tail; on the other extreme the mixture
curve has the narrowest distribution, but is centered around 0.25; Non Parametric
Empirical Bayes and SAM show a similarity, but are centered on different values,
while Full Bayesian approach has a larger distribution and a longer tail.
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Figure 4.3: Kernel density for estimated variability (E-Coli dataset): the EB curve is
the closest to 0, but it has the longest right tail; on the other extreme the mixture curve
has the narrowest and distribution, but is centered around 0.25; the full Bayesian
model presents a lower variability and a narrower distribution than SAM and non
Parametric Empirical Bayesian one.
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Figure 4.4: Differentially expressed genes by SAM plot (TCDD dataset): the ob-
served relative difference (tg) are plotted versus expected relative difference under H0

hypothesis (mean of tg calculated on permutated data). The solid line is the 45
◦ line

(observed equal to expected). Genes highlighted with different color and size are the
differentially expressed by the 5 approaches. Moving to the extreme values, the agree-
ment within the methodologies increases.
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Figure 4.5: Differentially expressed genes by SAM plot (E-Coli dataset): the observed
relative difference (tg) are plotted versus expected relative difference under H0 hy-
pothesis (mean of tg calculated on permutated data). The solid line is the 45

◦ line
(observed equal to expected). Genes highlighted with different color and size are the
differentially expressed by the 5 approaches. All the points are spread on the bisector
and only 4 are identified as significant by SAM analysis.
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Figure 4.6: Posterior credibility intervals for differentially expressed genes. We com-
pared the Bayesian hierarchical approach and the Empirical Bayesian one in terms of
posterior credibility interval: the first method finds 26 differentially expressed genes
(dotted line), while the other one finds 46 differentially expressed genes (dashed line).
The comparison between the two approach shows a shrinkage effect for the Fully
Bayesian model: all the CI are shifted to zero.

104



|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

Full Bayesian vs Tseng Empirical Bayes

Posterior Credibility Intervals

D
iff

er
en

tia
lly

 E
xp

re
ss

ed
 G

en
es

−1 0 1 2 3 4 5

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

Bayes InternalNorm

Tseng InternalNorm

Figure 4.7: Posterior confidence intervals for differentially expressed genes: Full
Bayesian model vs Tseng model with internal normalisation. The number of differen-
tially expressed genes is 26 for both the models. The genes emerged down regulated
by Tseng model with loess normalisation disappear.
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Figure 4.8: Posterior confidence intervals for differentially expressed genes: Full
Bayesian model with loess external normalisation vs Tseng model with loess exter-
nal normalisation.
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Figure 4.9: Posterior confidence intervals for differentially expressed genes: Full
Bayesian model with loess external normalisation vs Full Bayesian model with in-
ternal normalisation.
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Figure 4.10: Posterior confidence intervals for differentially expressed genes: Tseng
model with loess external normalisation vs Tseng model with internal normalisation.
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