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PREFACE

The evaluation of causal mechanisms has always represented a relevant

theoretical and applied research area in many disciplines, from Philosophy

to Epidemiology, Economics and Econometrics, Law, Engineering and of

course Statistics and Probability.

The objective of this work is to provide a brief review of some of the

most relevant approaches to statistical analysis of causality, and to propose

some methodological advances.

The approach that we decided to follow is the decision theoretic. More-

over, the statistical tool that we use is that of Bayesian Networks. The

combination of these two instruments has been widely treated in the liter-

ature (Heckerman & Shachter 1994, Dawid 2002), although there seems

that not many practical applied works have actually used it.

We propose two main streams of research: on the one hand, we work in

a standard causal inference framework, where the typical objective is to es-

timate the causal effect of a treatment over a suitable response, discarding

all the possible identifiable confounding factors, that can screen off such

effect.

In this area, Dawid (2002) proposed a model based on a particular

specification of graphical models that allows the representation and the

estimation of problems where the objective is to use past information in

order to estimate the future impact of a present decision (intervention).

This kind of situation has been termed Effects of Causes problem (Holland

1986, Dawid 2000).

Our contribution is to try to ‘expand the market’ for this idea, build-

ing a methodology that aims at a twofold objective. First we propose an

algorithm that, provided some necessary assumptions, can build a causal

structure for which the standard causal constraints hold, which can help an

experimenter structure a particular problem, starting from a comprehens-

ive database.

Second, we define a procedure that automatically selects the admissible

sets of sufficient covariates, which need be known, in order to correctly

estimate the causal effect.

The typical application of this tool could be in clinical practice, aiming
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at providing an estimation of the causal mechanism that relates the ad-

ministration of a given treatment, a suitable clinical response, and a set of

covariates of interest for the problem.

When a new patient comes into the practice, then the physician would

be equipped with a computer assisted procedure that can suggest which

variables are essential in order to assess the impact of the treatments, spe-

cifically for that individual.

We provide examples to show how two patients with different initial

conditions can be associated to different sets of sufficient covariates that

need be known, in order to find the best individual treatment. This work is

still in progress, and we provide reference of what we reckon are the main

problems to be solved, before an efficient algorithm can be programmed.

On the other hand, we tackle the causal problem from a rather different

point of view: the idea is to utilise the standard representation based on the

decision theoretic approach in order to evaluate situations in which some

of the pieces of available evidence have not a clear origin.

The typical use of a Bayesian Network model is to make inference about

some unobservable variables, using some pieces of related evidence. The

underlying assumption is that the data generating process is known and

static. However, if some of the available evidence is externally manipu-

lated:

• On purpose, in order to mislead the inference on the unobservable

variables;

• Because of non controlled (detected) measurement errors;

• Because of a mutation of the causal mechanisms that govern the ex-

periment under study,

then the deriving inference would be flawed.

The objective of our model is to construct a method that can help the

experimenter handle possibly manipulated evidence, in order to produce

a correct inference. This goal will be pursued by means of some pieces of

control evidence, suitably defined, that allow the probabilistic evaluation of

the data generating process, provided some opportune underlying assump-

tions.

Some examples of research areas that can be interested in such a model

are police investigation, Economics & anti-trust legislation, insurance activ-

ity and Genetics. However, in our views, even standard statistical meth-

odologies can be a field for this procedure, in the analysis of conflicting

evidence, and in outliers detection.
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Finally, we present an application of a Bayesian Network model for

Health Technology Assessment, with particular reference to the economic

evaluation of influenza vaccination. Although from a further different per-

spective, this last work shares some common points with the ones described

above.

In fact, the framework is explicitly that of decision theoretic analysis. In

this case, the decision maker has to choose whether to vaccine a reference

population or not, and this decision is evaluated with respect to both its

clinical and economic implications.

However, in this case causal inference is not the main objective, al-

though from the technical point of view, some common features can be

identified with the models presented above, for example, the presence of

‘switch’ nodes.
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CHAPTER 1

AN INTRODUCTION TO THE THEORY OF CAUSAL MODELLING

– “So. . . you ever wondered which is worst? You know. . . going through

labour or getting kicked in the nuts?

– What?!

– Oh, that’s interesting! Because no one’ll never know, because no one can

experience both! One of life’s great unanswerable questions!”

Chandler Bing in “Friends”. The last episode

1.1 Introduction

Probabilistic causation designates a group of philosophical theories that

aim at characterising the relationship between cause and effect using the

tools of probability theory.

Two ideas appeared to be central behind these theories: first, the as-

sumption that causes raise the chance of occurrence of their effects, all

else being equal. According to David Hume (1748, section VII), causes are

invariably followed by their effects:

We may define a cause to be an object, followed by another, and

where all the objects similar to the first, are followed by objects

similar to the second.

A great deal of the work that has been done in this area has been concerned

with making the ceteris paribus clause more precise.

Second, the definition of a strict link between causation and manip-

ulation. Following this approach, causes are to be regarded as handles

or devices for manipulating effects (von Wright 1973). This theory has

produced several links between philosophers, statisticians and econometri-

cians: for instance, Holland (1986) reports the motto ‘No causation without

manipulation’ as representative of the work of Donald Rubin and himself.

Bearing these two central ideas in mind, the objective of this paper is to

review some of the main features of causal modelling, with specific focus
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towards their statistical implications and applications. In section 2, we de-

scribe the major framework of causal inference that we refer to, whereas

in section 3 we give account of what we reckon are the most relevant ap-

proaches to Causality, and discuss the major points of accordance or dis-

agreement among them. Section 4 presents two of the most important

criteria defined to allow the estimation of causal effects, and finally some

conclusions are drawn in section 5.

1.2 Causal Inference

According to the manipulation approach, we define causal inference as the

process of evaluation of an external intervention on one or more variables

within a stochastic system.

This feature characterises causal analysis and produces a huge differ-

ence with standard statistical modelling: in fact, on the one hand, Statistics

is typically concerned with the identification of a probabilistic structure of

association among some variables. On the other hand, causal inference is

mainly focused on the estimation of the structure of causal relations among

the variables within a given stochastic system.

Consequently, a basic difference is that, while Statistics tend to estimate

some quantities of interest, under the assumption that the data generating

process remains the same, Causality is rather aimed at evaluating dynam-

ically the process that made the observed data arose.

Formal attempts have been made to describe this situation using the

tools of probability; nevertheless, it is now well accepted that standard

statistical methodologies are not reliable for causal inference since they are

typically based on a conditional probability of observing a variable Y , after

observing a variable X, Pr(Y |X = x).

Conversely, causal modelling should be concerned with a different quant-

ity, i.e. the conditional probability of observing Y , after setting the value of

X, Pr(Y ||X = x), using the notation introduced by Lauritzen (2000)1.

Since, in general, these two distributions are different, in order to assess

the latter using the former, it is necessary to make some suitable assump-

tions.

In fact, the objective of most causal analysis is that of estimating the

1Other notations are used in the literature: for instance, Pearl (1993) refers to the
intervention distribution as Pr(Y | set(X = x)) or Pr(Y | do(X = x)), whereas Pearl
(1995) describes it as Pr(Y |X = x̌). However, the notation of Lauritzen (2000) seems
more straightforward to us, as it clearly establish the difference with standard statistical
conditioning. Therefore, we will use it through all this work
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effect of a variable on an other within an observational setting. Rosenbaum

(1995) defines an observational study as:

... an empirical investigation of treatments, policies, or exposures

and the effect they cause, but it differs from an experiment in that

the investigator cannot control the assignment of treatments to

subjects.

Consequently, the study of causal mechanism from observational studies

relies on the additional investigation of the potential confounders, i.e. all

those variables that can ‘screen off’ (Reichenbach 1956) the desired causal

effect of a variable on a suitable response.

Moreover, it is possible to define two different frameworks for causal

inference (Holland 1986, Dawid 2000):

• Effects of causes (EoC);

• Causes of effects (CoE).

The main difference stems in the dynamics associated to the causal analysis.

In the EoC problem, starting from the observation of a set of variables,

the objective is to analyse how an external (present) intervention might

modify a suitable (future) response. As for the CoE problem, the typical

framework involves the identification of a (past) casual process that led to

the (present) observation of a given response variable.

As suggested by Holland (1986) and Dawid (2000), the EoC problem

seems to be more specific to Statistics, dealing with some measurements

used to forecast an unknown quantity. On the other hand, the CoE prob-

lem is related to a set of further assumptions on the actual causal mechan-

ism associated to the system under study, which do not involve statistical

considerations only.

In our opinion, this argument is highly valuable, and should be taken

into account carefully, when dealing with statistical analysis of Causality.

1.3 Statistical approaches to causal modelling

1.3.1 Potential outcomes and counterfactual analysis

In the last three decades, the first major contributions to the statistical

analysis of causation have perhaps been those of Rubin (1974, 1978). In

his framework, the impact of a treatment variable on a suitable response is

measured in terms of potential outcomes.

3



Assuming for the sake of simplicity that the treatment is binary (t, c),
the causal effect is typically evaluated in terms of the difference between

the response Yt(i) that has actually been observed on the i − th individual

for the assigned treatment t, and the response Yc(i) that would have been

observed, should the treatment selected be c.

Since for an individual it is possible to be assigned only to one treat-

ment at a given time, one of the two responses is a counterfactual quantity.

Rubin’s model considers the joint distribution of the potential outcomes

(Yt, Yc), p = Pr(Yt, Yc), and for each individual the counterfactual response

is regarded as a missing value, to be estimated, possibly with respect to a

set of suitable covariates.

Most of the criticism to this approach concerns the fact the joint dis-

tribution of the potential outcomes, involving counterfactuals, is against

De Finetti’s observability principle, which dictates that probability state-

ments are possible only on quantities that are at least in principle observ-

able. By its definition, a counterfactual does not verify this condition, after

the assignment of the treatment. Consequently, the potential outcomes ap-

proach is charged of focusing on a ‘metaphysical’, non scientific quantity

(Shafer 1996, Dawid 2000).

However, other authors such as Greenland (2004) regards counterfac-

tuals as a natural way of defining causal mechanisms, or rather as a key

aspect in causation, and hence produce causal evaluations by means of this

theoretical construction.

The evaluation of causal effect is typically based on the difference:

τ = Yt − Yc. (1.1)

Nevertheless, it can be shown that the Individual Causal Effect

ICE(i) = τ(i) = Yt(i)− Yc(i) = f(p)

being a function of the joint probability distribution of the potential out-

comes is not directly identifiable, unless further restrictions are assumed.

On the contrary, under (1.1), the Average Causal Effect:

ACE = Ep[ICE(i)] = Ep[Yt(i)− Yc(i)].

is completely identifiable, as:

Ep[Yt(i)− Yc(i)] = E[Yt(i)]− E[Yc(i)],

i.e. it is a function of the marginal distributions only, which are estimable

from observed data.
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Obviously, the linearity of (1.1) is crucial: for instance, in case the indi-

vidual effect is evaluated by means of a non linear function, then even the

average effect might turn to be not identifiable. Yet, for fairly general situ-

ations, plausible ranges have been identified (Balke & Pearl 1994, Dawid

2000) that allow the estimation of the effect.

As reported before, the situation changes, at least from the practical

point of view, when some further assumptions are sustainable. For ex-

ample, in case that the reference population is homogenous, each unit i is

essentially identical to the other individuals. Hence, although on different

units, it is possible to observe both Yt(i) and Yc(i), so that both ICE and

ACE are identifiable from empirical data.

This situation highly resembles that of randomised trials, where all the

potential confounding factors are randomised within the individuals, so

that it is possible to assume that they are homogenous, and that the differ-

ences in the outcome are actually attributable to the treatment assigned.

A less restrictive assumption is that of SUTVA (Stable Unit Treatment

Value Assumption), originally introduced by Rubin (1980). In this case, it is

assumed that the potential outcomes for the i− th unit just depend on the

treatment that the i− th unit received.

In other words, there is no interference between units and there are no

different versions of treatments. Consequently, all potential outcomes for

the N units can be represented by an array with N rows and two columns,

each unit being a row with two potential outcomes, Yt(i) and Yc(i).
The stability assumption is almost always made in epidemiological work,

even though it is not always appropriate. For example, consider a study of

the effect of vaccination on a contagious disease. The greater proportion of

the population that gets vaccinated, the less any unit’s chance of contract-

ing the disease, even if not vaccinated. In this case, the units are said to

interfere with each other.

A more sustainable assumption is that of TUA (Treatment Unit Additiv-

ity), Rubin (1978). In this case, it is supposed that the individual effect

of treatment, τ(i) is constant for each unit. Assuming a normal bivariate

model for the potential outcomes (Yt(i), Yc(i)) with means (θt, θc), common

variance φY and correlation ρ, TUA is equivalent to impose that the poten-

tial outcomes are perfectly correlated, ρ = 1.
This hypothesis is quite relevant, as the average causal effect becomes

meaningful to all the units in the reference population. The plausibility of

TUA can be partially tested, partitioning the population in subsets, where

homogeneity is more likely to hold, with respect to the stratification vari-

ables. Consequently, TUA can be seen as a weakening of the assumption of

unit homogeneity (Holland 1986).
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However, according the the approach of Karl Popper (1959, 1983),

Dawid (2000) argues that this methodology cannot be termed ‘scientific’,

as it involves non falsifiable assumptions.

Alternative approaches have been proposed to try to tackle this draw-

back, which will be shown in the next sections.

1.3.2 Bayesian Networks and Graph Models for causal inference

During the 1990s, a new stream of work has witnessed a massive develop-

ment. Newly available computer technologies fostered the utilisation of ad-

vanced probabilistic models, and the ‘neo-Bayesian revival’ (Dawid 2004)

reached its acme with the formal creation of Bayesian Networks (BNs).

Also Causality literature was interested by the new methodology, mostly

since the works of Pearl (1993) and Spirtes et al. (1993, SGS hereafter),

the first to define causal inference problems in terms of a BN model.

Formally, a BN is represented by B = {G,P}, where G is a Directed

Acyclic Graph (DAG), and P includes the conditional probability distribu-

tions for the nodes in G. The simplest kind of conditional distribution is a

Conditional Probability Table (CPT), i.e. a multi-dimensional array, which

is suitable when the nodes involved are discrete-valued.

From the technical point of view, a DAG is a graphical structure G =
(X,E), where X = {X1, . . . , Xn} is the set of relevant nodes, each of which

is associated to one of the random variables in the domain problem, and E

is the set of edges connecting the nodes.

The setX includes both unobservable (such as working hypotheses) and

observable variables, which become pieces of evidence, once actually ob-

served.

The set E specifies the alleged relations among the variables in G. A

node that ‘points’ to another is said to be a parent, whereas the node that

is reached by the arrow is a child. The set of the parents of a node X is

indicated by pa(X), and the set of its children is ch(X). The nodes in the

directed path leaving X, named descendants, are grouped in the set de(X),
while those preceding it in a directed path are named ancestors, an(X).

Without any further assumption, a direct arrow drawn from the node

X1 towards the node X2 does not imply any causal effect, but only means

that the probability distribution of X2 is modified according to the value

assumed by X1.

More specifically, this circumstance expresses the fact that by means

of that graphical representation we are willing to: a) establish an explicit

association between X1 and X2, and b) declare a preference in providing

6



the joint distribution Pr(X1, X2) through the factorization Pr(X1)×Pr(X2 |
X1), over any other alternative specifications.

On the contrary, the absence of a direct link from X1 to X2 encodes the

assumption that the conditional distribution of X1 is not directly dependent

on the possible values that X2 can take on. Nevertheless, observing X1 can

produce an undirect change in the probability distribution of X2.

An important feature of a BN is the specification of the joint probability

distribution of all the random variables involved. In fact, on the one hand

it is always possible to represent a full joint probability distribution of a

(high dimensional) set of variables recursively applying the definition of

conditional probability (chain rule):

Pr(X1, . . . , Xn) = Pr(X1 |X2, . . . , Xn)× Pr(X2 |X3, . . . , Xn)× . . .

×Pr(Xn−1 |Xn)× Pr(Xn).

Yet, on the other hand the vector X can be arranged in n! possible ways

and many of them could involve difficult specifications of the conditional

probabilities required.

On the contrary, the conditional independence relations that charac-

terise a BN induce the most essential factorization of the joint probability

distribution, given the present knowledge of the problem:

Pr(X1, . . . , Xn) =
n
∏

i=1

Pr(Xi |pa(Xi)), (1.2)

where the conditional distributions on the right hand side are evaluated

solely with respect to the variables that are indispensable, i.e. the parents.

Condition (1.2) is know as Markov Property.

X1

X2

Figure 1.1: An example of DAG

The simplest example of DAG is shown in Figure 1.1. The set of nodes

is X = {X1, X2}, whereas the set of edges E is settled by the arrow that

connects the two nodes: E = {X1 → X2}.

7



Considering the BN associated to the DAG of Figure 1.1, the set P has

elements Pr(X1) and Pr(X2 |X1), and the joint distribution of the system is

factorized according to (1.2) as Pr(X1, X2) = Pr(X1)× Pr(X2 |X1).
From a purely probabilistic point of view, it would also be possible to

express the joint distribution as Pr(X1, X2) = Pr(X1) × Pr(X1 |X2), or the

trivial Pr(X1, X2) = Pr(X1, X2), or even as Pr(X1, X2) = Pr(X1) × Pr(X2),
this last expression encoding the assumption of independence between the

two variables. However, the graphical representation of Figure 1.1 suggests

that the experimenter who is building the graph believes in the factoriza-

tion of (1.2) instead.

Both Pearl and SGS agree that the standard DAG representation of a

problem, i.e. a factorization of the joint probability distribution by means

of conditional independence relationships, can be extended to give rise to

a causal interpretation, provided some further hypotheses. This extension

concerns the fact that in case a variable is forced to take on a given value by

an external intervention, than the structure of the original DAG is modified,

as shown in Figure 1.2.

X1

X2 X3 X4

X1

X2 X3 X4

a) Natural model b) Intervention model

Figure 1.2: The DAG representation of the external intervention. In case the evid-

ence arose by means of external manipulations, the direct connections between the

intervened node X3 and its parent is removed. The rest of the graph is unchanged

In particular, after an intervention, the DAG is ‘manipulated’, so that

this intervention cannot influence the variables that come before it within

a directed path (the ancestors of the intervened node).

In other words, the BN structure is such that each variable is associ-

ated to a suitable (conditional) probability distribution. In case of external

intervention, this distribution is modified so that the variable is forced to

assume a given value with probability 1. Each intervened variable can only

modify its descendants.

If we make reference to the DAG of Figure 1.2, under the natural model,

the observation of X3 = x modifies the distribution of X4 both directly and

through updating the distribution of the node X1. Therefore, the most

likely value of X4 is the one that is most consistent with a) the observed

8



value of X3, and b) the value of X1 induced by X3 = x.

However, if X3 did not arise genuinely, the distribution of X4 is only

modified by X3 itself, as the distribution of X1 is not updated by the avail-

able evidence, since X3 and X1 are not directly connected in the interven-

tion model.

While SGS’s idea is to explicitly modify the structure of the graph, as

shown in Figure 1.2, Pearl models the manipulation by means of an addi-

tional node, which is used to delete the connections with the parents of the

intervened node.

Provided that the experimenter knows that a variable has been manip-

ulated, it is possible to modify the graphical structure. In order to take into

account the confounders and to analyse the effect induced on the response,

suitable constraints have been defined, which will be described in section

4.

1.3.3 Causal inference via Structural Equation Models

A slightly different approach is that of Pearl (1995, 2000), in which still

maintaining the DAG structure of the causal problem, the situation is mod-

elled by means of some functional relationships between the variables, of

the form Xi = fi(pa(Xi), εi). The causal mechanisms represented by the

fis are basically deterministic, even if they are perturbed by the random

(mutually independent) εis.

This approach is quite similar to that of the Structural Equation Models

(SEM), well known in the Econometrics literature (Haavelmo 1943), where

a set of equations describes the impact of variables on each other.

Pearl (1995) names this representation causal diagram, and an example

is that depicted in Figure 1.3.

The causal assumptions encoded in the model of Figure 1.3 correspond

to the following equations:

Z0 = f0(ε0), Z2 = f2(T, Z1, ε2), B = fB(Z0, εB), Z3 = f3(B,Z2, ε3),
Z1 = f1(Z0, ε1), Y = fY (T, Z2, Z3, εY ), T = fT (Z0, εT ).

The external intervention is performed directly on the structural equa-

tions. More specifically, the intervention that sets Z0 to the value z is mim-

icked replacing the structural equation with the assignment Z0 = z in all

the equations that involve this variable, so that, for instance, the structural

equation for the treatment becomes T = fT (z, εT ).
In addition, the equations implicitly provide a clear correspondence

with the counterfactual model. In fact, the potential outcomes (Yt, Yc) are
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Z0

Z1 B

T Z2 Z3

Y

Figure 1.3: An example of causal diagram, representing the effect of T on Y and some

confounders. Adapted from Pearl (1995)

directly calculated on the same individual by means of the deterministic

function fY ({pa(Y ) \ T}, εY )|T=t,c.
Pearl (1995) arguments that, as compared to the potential outcomes

model,

...the functional characterisation Xi = fi(pa(Xi), εi) also provides

a convenient language for specifying how the resulting distribu-

tions would change in response to external interventions.

On the other hand, Imbens & Rubin (1995) argue that the standard

causal model based on potential outcomes is preferable as it makes more

explicit the distinction between assignment mechanisms, which is typically

under the control of the experimenter.

Dawid (1995) argues that Pearl’s approach based on manipulated graphs

represents a more natural framework for causal analysis, and that the re-

lation with counterfactuals is possible, but inessential, when facing EoC

problems. The change in Pearl’s view has been explained by the author

himself (Pearl 1995, p. 706) as related to the necessity of treating CoE

problems, for which the functional model approach and counterfactuals

are necessary.

1.3.4 Decision Theoretic approach to Causal Inference

Among other contributions, and exploiting the approaches of Heckerman

& Shachter (1994) and Lauritzen (2000), Dawid (2002) proposed an ad-

10



vanced representation of the causal problem, using a decision theoretic

framework.

One relevant feature of this approach is that it is based on the evaluation

of conditional probability distributions, rather than being focused on a joint

distribution, as happens for the potential outcomes model. This character-

istic is quite important, as it avoids problems of identifiability. Moreover,

from the philosophical point of view, it is not influenced by fatalistic as-

sumptions (Dawid 2000), such as TUA described above.

Within this framework, causal inference is openly modelled in terms

of a suitable Augmented DAG (ADAG). This is a DAG including also an

external intervention variable, FT , which explicitly rules the behaviour of

the treatment variable, T . A simple example of ADAG is depicted in Figure

1.4.

S

FT T Y

Figure 1.4: An ADAG representation. The variable T is subjected to an intervention,

and hence associated to an external intervention node FT

The possible external intervention is modelled as a decision variable,

represented as a square. The variable FT takes on the elements of the set

{T ∪ ∅}, where T is the set of values that the possibly intervened node T

may assume.

Unlike a random node, FT is not associated to a CPT, as its state is

always decided (known) by the experimenter. Therefore, it serves as a

switch and it is used to allow the experimenter to activate a given scenario.

When FT = ∅, then the intervention is void, and hence T is a random

variable governed by its conditional probability distribution Pr(T |pa(T )).

Conversely, when FT = t, t ∈ T , then an intervention occurred. As a

result, T becomes a degenerate variable, whence Pr(T = t | pa(T )) = 1,
for every configurations of the variables in pa(T ). As required, in case of

external intervention, the parents are not updated by T .

The difference with the approach of Pearl (1993) is that the interven-

tion is modelled in a more formal way, according to decision analysis, lead-

ing to a more straightforward definition of the causal problem. As for the

approach of SGS, instead, the main difference is that they related their for-

11



mulation to counterfactual considerations, whereas Dawid’s model, being

based on identifiable conditional distribution does not.

In order to apply this model, the basic hypothesis is that the experi-

menter is able to identify among the set of covariates C, a suitable subset

S such that the distribution of the response Y , given T and S is the same,

regardless on the way that T arose, either by external intervention FT , or

naturally (observational regime).

1.4 Criteria for the estimation of causal effects

The approaches to causal inference based on graphical representation have

different philosophies, as described in the previous section. However, from

the computational point of view, some criteria have been individuated, that

allow the identification of the desired causal effect. In particular, the mod-

els of Pearl (1993) and Dawid (2002) share several common points, as

compared that of Pearl (1995), whose focus is mainly on a different prob-

lem (that of CoE).

Two of the most relevant criteria proposed in the literature are described

in the following, although others do exist (see Robins 1986), which are not

reviewed here.

The main problem when trying to estimate a causal effect from observa-

tional data is that of reducing confounding bias due to spurious correlations

between the treatment and the response.

Pearl (1993) provides two tests based on the topology of the graph,

which allow the identification of the required conditional independence

conditions that enable the experimenter to identify the causal effect.

1.4.1 The back door criterion

Suppose that a problem is suitably represented by a set of variables {C, T, Y },
where the objective of the analysis is to estimate the causal effect of T on

Y from observational data.

A subset S ⊆ C is said to satisfy the back door criterion with respect to

(T, Y ) in a suitable graphical representation G if:

i. no node in S is a descendant of T ;

ii. S blocks every path between T and Y which contains an arrow into

T .
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If these two conditions hold, then the causal effect of T on Y is identi-

fiable (i.e. the confounders are correctly taken into account), and is com-

puted as:

Pr(Y |T = t) =
∑

S=s

Pr(Y |T = t,S = s) Pr(S = s). (1.3)

Formula (1.3) represents a weighted average, where the ‘effect’ of the

confounders is marginalised off, in order to obtain only the relevant impact

of T on Y .

Of course, the underlying assumption is that the covariates in C are

exhaustive for the problem. Obviously, this hypothesis only approximates

the real problem under study. Moreover, all the variables in S need be

observed, in order to estimate the required causal effect.

Pearl (1993) points out that using the graphical representation of the

problem provides a more straightforward solution to the problem of de-

riving the so called ignorability conditions, under which a causal model is

identifiable.

These causal constraints have been formalised in terms of conditional

independence relationships by Dawid (2002):

S ⊥⊥ FT (1.4)

Y ⊥⊥ FT |S ∪ T (1.5)

on the ADAG, or equivalently:

an(S) ∩ T = ∅ (1.6)

Y ⊥⊥ pa0(T ) |S ∪ T (1.7)

on the corresponding unaugmented DAG.

By condition (1.4), Dawid’s model assumes that the probability distri-

bution of the observed confounders S must not depend on how T arose.

In other words, if it is known that an intervention occurred on T , the dis-

tributions of the variables in S must not change with the value set for FT .

Moreover, these distributions must remain the same as the case in which

the evidence is certainly genuine (FT = ∅), but T has not been observed

yet.

Assumption (1.5) instead indicates that the knowledge of T and S is

all that is needed for Y to be independent on FT , in which case the re-

sponse is not modified by the way that the treatment arose. This situation

basically amounts to the fact that the causal mechanism that relates T to

Y is conveniently explained by the variables in the set {T,S}, so that the
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differences in the response Y can be directly attributable to T , once S is

controlled for.

If both the assumptions hold, then the causal effect under experimental

conditions Pr(Y |FT = t,S = s) = Pr(Y ||T = t,S = s) equals the observa-

tional posterior probability Pr(Y |FT = ∅, T = t,S = s). Consequently, the

experimenter can use the latter in order to correctly estimate the former.

A set S which verifies (1.4) and (1.5) is said to be a set of sufficient

covariates for the estimation of the causal effect of T on Y . Notice how-

ever that the term ‘sufficient’ is not to be intended as in standard statistical

analysis.

A basic distinction is that while a sufficient statistic is such that any

larger statistic is sufficient a fortiori, this property does not hold for a set of

sufficient covariates.

In fact, considering for example the ADAG of Figure 1.5, the node S

clearly verifies conditions (1.4) and (1.5) and therefore is a sufficient co-

variate. However, the set L = {C, S}, which includes S, and therefore is

‘larger’, is not a set of sufficient covariates, as clearly L 6⊥⊥ FT , i.e. condition

(1.4) does not hold.

C S

FT T Y

Figure 1.5: The node S is a sufficient covariate, whereas the set L = {S,C}, despite

including S, is not

1.4.2 The front door criterion

The back door criterion is useful to model situations where the ‘treatment’

has a direct impact onto the ‘response’. However, some situations can occur

where the impact of the treatment is induced by an ‘active agent’, using the

terminology of Lauritzen (2000).

Suppose for example that a problem consists of the variables {U, T, Z, Y },
and the objective is to evaluate the causal effect of T on Y . Suppose fur-

ther that a suitable graphical representation is that of Figure 1.6, where U

represents a latent, unobservable variable.

The node Z clearly does not verify the conditions for the back door cri-

terion, as it belongs to the set de(T ). In order to estimate the desired causal
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U

T Z Y

Figure 1.6: A diagram that represents the front door criterion. Source: Pearl (1995)

effect, the idea is then to decompose the joint probability distribution of the

system into a set of factors which involve directly estimable probabilities.

In general, a set of variables Z satisfies the front door criterion with

respect to (T, Y ) if:

i. Z intercepts all the directed paths from T to Y ;

ii. There is no back door path between T and Z;

iii. Every back door path between Z and Y is blocked by T .

From the graphical representation of Figure 1.6, the joint probability

distribution of the system can be written as:

Pr(U, T, Z, Y ) = Pr(U) Pr(T |U) Pr(Z |T ) Pr(Y |Z,U),

and, since in case U was observed, it would verify the back door criterion,

then applying (1.3), the causal effect of T on Y would be given by:

Pr(Y |T = t∗) =
∑

u∈U

Pr(Y |U = u, T = t∗) Pr(U = u),

where U is the domain of U .

The node U cannot be observed by definition, but using the conditional

independence assumptions implied in the graphical representation of Fig-

ure 1.6, one can eliminate it to obtain:

Pr(Y |T = t∗) =
∑

t∗∈T

Pr(Z |T = t∗)
∑

t′∈T

Pr(Y |T = t′, Z) Pr(T = t′). (1.8)

Equation (1.8) is referred to as the front door formula.

15



1.5 Conclusions

In this paper we reviewed some of the major approaches to causal inference

in the statistical literature. In particular, we give credit to the decision

theoretic approach, which is based on the explicit reference to a decision

framework, as implemented by the Augmented DAG.

Besides the philosophical advantage of dispensing of any counterfactual

considerations, which is quite valuable in our view, the ADAG approach

seems to be particularly useful, as it can be used in a quite straightforward

way to solve problems of Effect of Causes, provided a suitable graphical

representation of the system under study.

We also review two of the main graphical methods that are used to find

out the conditions that allow the identifiability of the causal effect. These

methods can be used to derive proper calculations of such effect.

In our view, some research areas remain open to investigation: first,

Dawid’s approach is purely subjectivist, as it involves the expert prior defin-

ition of the correct structural representation of the model.

On the one hand, this is far from being a drawback in our view, leading

to a model formulation that is explicitly open to criticism and that easily

allows the introduction of newly available information.

On the other hand, it seems that this feature has been perceived as a

limitation of the applicability of the decision theoretic approach. For this

reason, we reckon that one open area of research is that devoted to the

identification of some semi-automated procedures that allow some sort of

data driven structural learning, given the need for some prior information

and the verification of causal constraints.

Second, we reckon that the decision theoretic approach can have some

natural extensions in the fields of economic evaluations, such as that of

Health Technology Assessment (HTA). In a typical HTA problem, the object-

ive is that of evaluating the cost-effectiveness of a given health resource, as

compared to an alternative programme. Often, observational studies from

clinical practice are used for the economic evaluation.

The ADAG framework could be applied to model the results in terms of

causal effect (which can represent the measure of effectiveness) of a given

treatment, controlling for biasing covariates.

Moreover, the natural extension to the Influence Diagram framework,

implicit in the ADAG construction, can allow the formal modelling of the

associated costs in terms of (dis)utilities associated to the different treat-

ments (cfr. Baio et al. 2004, and Chapter 4).
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Stochastic Systems’, Chapman and Hall, London, UK.

Pearl, J. (1993), ‘Comment: Graphical models, causality, and intervention’,

Statistical Science 8, 266–269.

Pearl, J. (1995), ‘Causal Diagrams for Empirical Research’, Biometrika

82, 669–710.

Pearl, J. (2001), ‘Causal Inference in the Health Sciences: A Concep-

tual Introduction’, Health Services and Outcomes Research Methodology

2, 189–220.

Popper, K. (1959), The Logic of Scientific Discovery, Hutchinson, London,

UK.

Popper, K. (1983), Realism and the Aim of Science, Hutchinson, London, UK.

Reichenbach, H. (1956), The Direction of Time, University of California

Press, Berkeley, CA.

Robins, J. (1986), ‘A new approach to causal inference in mortality studies

with sustained exposure periods - application to control of the healthy

worker survivor effect’, Mathematical Modelling 7, 1393–1412.

Rosenbaum, P. (1995), Observational Studies, Springer Series in Statistics,

New York, NY.

Rubin, D. (1974), ‘Estimating causal effects of treatments in random-

ized and nonrandomized studies’, Journal of Educational Psychology

68, 688–701.

Rubin, D. (1978), ‘Bayesian inference for causal effects: the role of ran-

domization’, Annals of Statistics 6, 34–68.

18



Rubin, D. (1980), ‘Comment on ‘Randomization analysis of experimental

data: the Fisher randomization test’ by D. Basu’, Journal of the Amer-

ican Statistical Association 75, 591–593.

Shafer, G. (1996), The Art of Causal Conjectures, MIT Press, Cambridge,

MA.

Spirtes, P., Glymour, C. & Scheines, R. (1993), Causality, Prediction and

Search, Springer-Verlag, New York, NY.

von Wright, G. (1973), Explanation and Understanding, Cornell University

Press, Ithaca, NY.

19



20



CHAPTER 2

APPLIED CAUSAL INFERENCE FROM OBSERVATIONAL DATA: LEARNING
CAUSAL STRUCTURE AND SUFFICIENT COVARIATES

2.1 Introduction

Causal inference has always been a major topic in a number of research

areas, from Philosophy to Epidemiology, Economics and Econometrics, En-

gineering, Law, and of course Statistics.

Many attempts have been made in order to find a procedure that al-

lows the researcher to discover causal relationships between two (sets of)

variables.

Agreement on the method was hardly reached by the various schol-

ars, and the debate is still going on. Yet, it is now well accepted that: a)

causal inference is a different, more challenging task from standard stat-

istical analysis, and b) in order to find some causal implication, a set of

suitable assumptions, which may vary from one approach to another, must

hold.

The reason why standard statistical methodologies are not reliable for

causal inference is related to the fact that they are typically based on a

conditional probability of observing a variable Y , after observing a variable

X, Pr(Y |X = x). Conversely, causal modelling should be concerned with

a different quantity, i.e. the conditional probability of observing Y , after

setting the value of X, Pr(Y ||X = x), using the notation introduced by

Lauritzen (2000). Since, in general, these two distributions are different,

in order to assess the latter using the former, it is necessary to make some

suitable assumptions.

Among the various approaches to causal modelling that can be found in

statistical literature (Rubin 1974, 1978; Pearl 1993, 1995, 2000; Spirtes

et al. 1993), we focus on the decision theoretical, described by Heckerman

& Shachter (1994) and further formalised by Dawid (2000, 2002).

Within this framework, causal inference is explicitly modelled in terms

of a suitable Augmented DAG (ADAG). This is a DAG including also an

external intervention variable, FT , which explicitly rules the behaviour of

the treatment variable, T . Such a model is depicted in Figure 2.1.
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FA A B FB

FC C D FD

FE E

Figure 2.1: An example of Augmented DAG. Each node ν = {A,B,C,D,E} is sub-

jected to intervention, and hence associated to an external decision node Fν . Source:

Dawid (2002)

The external intervention is modelled as a decision variable, whose pos-

sible values are {T ∪ ∅}, where T is the set of values that the variable T

may take on, i.e. the support. When FT = ∅, then the intervention is

void, and hence T is observed in a natural regimen. Conversely, when

FT = t, t ∈ T , then Pr(T = t |pa(T )) = 1.

Notice that this procedure is such that intervened variables have no

effect on their ancestors, but they do have an impact on their descendants.

Moreover, it entirely dispenses with any counterfactual assumptions - see

Dawid (2000) for a thorough discussion.

Moreover, the basic hypothesis is that the experimenter is able to identify

among the set of covariates C, a suitable subset S such that the distribu-

tion of the response Y , given T and S is the same, regardless on the way

that T arose, either by external intervention FT , or naturally (observational

regime).

The sufficient covariates S are supposed to be independent on the way

that the treatment is chosen, either by intervention, i.e. FT = t, which

forces T to take on that value too, or naturally, i.e. FT = ∅, in which case

T takes on a value in its support, according to its conditional distribution

Pr(T = t |pa(T )). As a result, in this case, causal inference is possible and

unbiased starting from observational data.

Although difficult to empirically test, these assumptions have been form-

alised in terms of conditional independence relationships (Dawid 2002):

S ⊥⊥ FT (2.1)

Y ⊥⊥ FT |S ∪ T (2.2)
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on the ADAG, or equivalently:

an(S) ∩ T = ∅ (2.3)

Y ⊥⊥ pa(T ) |S ∪ T (2.4)

on the unaugmented DAG.

On the one hand, the ADAG formulation is more appealing, as it allows

the straightforward evaluation of the response distribution, simply using its

specialised semantics. This represents a great advantage of this approach,

both under a philosophical and an operational point of view.

However, on the other hand, this procedure only works once that the

structure of the relationships among the variables is known, e.g. if the ex-

perimenter takes the responsibility to build up the ADAG in a suitable way

for the problem under consideration. Learning this structure from observed

data seems to be cumbersome, as the intervention nodes distributions will

always be degenerate, under observational conditions, where Nature is in

control.

Conversely, since the node FT is not formally considered, the unaug-

mented DAG representation does not allow for direct causal interpretation

(as it only encodes conditional independence statements). Yet, for the same

reason, it permits to perform the structural learning, using standard (con-

strained) algorithms.

A possible strategy that makes the most of the two alternatives could

be that of learning the structure of the unaugmented DAG associated to a

given problem, under the constraint that T → Y . Once this procedure is

performed, it is possible to augment the DAG, in order to work on a causal

structure that is the most supported by the empirical data, among all the

models that verify this condition. The set S for which conditions (2.3)

and (2.4) hold can be defined, and causal effect can be calculated working

directly on the ADAG.

Using this switch between the two graphical representation of the prob-

lem, the aim of this paper is to complement Dawid’s model in order to:

a) define a specialised structural learning strategy that takes into ac-

count the fact that the search is not performed over the space of all

possible models associated to the nodes in the analysis (as would hap-

pen for a normal DAG), but only over the subspace in which particular

assumptions hold;

b) define also a strategy for the evaluation of the result obtained, that

involves the analysis of the most supported graphical structure.

This approach is described in the following.
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2.2 Learning the structure for causal discovery

2.2.1 Basic assumptions

Since we reckon that causality cannot be exploited simply by observational

data, we aim at building a method that can help the experimenter put to-

gether all the available prior knowledge and to relax (though not to avoid)

some of the assumptions needed for causal discovery.

In this spirit, we first focus on a specific situation, well defined by some

initial conditions, and let more complicated definitions of the problem as a

further topic of research.

The very basic assumptions underlying our approach are summarised

by the following arguments.

A1 Suppose that an observational dataset about a treatment variable T ,

a response Y and a set of covariates of interest for the problem, C =
{C1, . . . , Ck} is available. The presence of missing data is possible.

A2 The analysis aims at making causal inference on the effect of T on Y

in order to evaluate the effect on the (n+1)−th case. This assumption

essentially rephrases the causal problem in terms of Dawid’s effects of

causes (EoC) (Dawid 2000). In other words, T is assumed to cause

Y , and the goal is to quantify the causal effect, discarding all the

spurious (confounding) impact of other variables.

A3 The relationships among the variables are represented in terms of

an ADAG. The experimenter is able to encode all the prior know-

ledge into it, but is not willing to work in a completely Expert System

framework (i.e. does want to learn from the data some parts of the

graphical structure).

A4 The main objective of the learning procedure is to discover probabil-

istic relationships, rather than causal ones. In fact, while causation is

encoded only in the relationship T → Y , which is assumed to hold

and cannot be removed or modified, the rest of the graph will be con-

cerned with a set of probabilistic features, that are used to discern the

direct impact of T on Y .

A5 No further constraints will be included in the learning procedure, so

that each covariate is able, but not forced, to: a) have a direct impact

on either the treatment, or the response; b) have a direct impact on an

other covariate; and c) be subjected to a direct influence from either

the treatment or the response.
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While A1, A2 and A3 just describe the general framework of our ap-

proach, A4 and A5 have relevant practical implications.

By A4, we assume that the experimenter is able to assert the absence of

active agents, using the terminology of Lauritzen (2000). In other words,

the causal effect of the treatment on the response may be biased by the

influence of some covariates (see A5). Yet, it is not possible that a variable

C exists, which entirely accounts for that effect, since we assume that a

direct link between T and Y certainly exists.

As a consequence of this assumption, the back door criterion (Pearl

1993) is used to determine the conditions for estimability of the causal ef-

fect, as expressed in terms of (2.3) and (2.4). The use of other criteria, such

as that of front door (Pearl 1993, 1995), is prevented from the presence of

the direct connection between the treatment and the response (recall that,

in order to apply the front door criterion, a variable C must intercept all

direct paths from T to Y , which is impossible if the link T → Y exists).

Although this may prove not to hold for some specific causal inference

problems, we believe that it is crucial to a great number of them, and hence

we focus on this approach.

Finally, assumption A5 suggests that, since no other constraint is con-

sidered, apart from the one described in A4, the structural learning can be

accomplished, modifying standard algorithms.

2.2.2 The learning algorithm

Two relevant approaches to structural learning are those based on greedy

search algorithms and those based on a full Bayesian procedure (see for

example Jordan 2001).

The greedy search algorithm is a local search procedure, which allows

to retrieve the (local) maximum on the space of models. A single structure

is provided as the result of the algorithm, which is assumed to be the most

supported from the observed data.

Conversely, the full Bayesian procedure works in a model averaging

framework: at the end of the learning procedure, one ends up with k mod-

els, accounting for a high percentage of the posterior probability, over the

space of models. Averaging over the most plausible structures, would allow

to produce a robust estimation.

While constraint-based learning is not a new topic in Computer Science

and Statistics, our case presents some possible problems. In particular,

the major issue concerns the fact that models with the same probabilistic

features are essentially different for causal purposes.
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Suppose for instance that a domain problem consists of the set of vari-

ables X = {C1, C2, T, Y }. The objective of the analysis is to estimate the

causal effect of T on Y , under the assumptions A1 - A5, i.e. the link T → Y

is the causal constraint.

Suppose that a learning procedure is performed, and that the graphical

structure of Figure 2.2 is accepted as the most likely to have generated the

observed data.

C1 C2

T Y

Figure 2.2: Hypothetical result of the causal learning procedure

However, from the probabilistic point of view, the graph of Figure 2.2 is

equivalent to that of Figure 2.3.

C1 C2

T Y

Figure 2.3: A DAG in the same equivalence class of that of Figure 2.2

While in the situation of Figure 2.2 both C1 and C2 are needed to es-

timate the causal effect of T on Y (i.e. they are both sufficient covariates),

in the case of Figure 2.3 only C1 is a sufficient covariate, since C2 clearly

does not satisfy the back door criterion, which we use to assess causality.

In this situation, the knowledge of C2 would better off the precision of the

estimation of the causal effect, but would not be required to calculate it.

For this reasons, we reckon that this feature deserves further research,

which we will devote in the next future.

2.3 Finding a set of sufficient covariates

Once that the most supported structure is identified, in order to calculate

causal effects, based on the assumptions A1-A5, one needs to individuate

a subset S ⊆ C such that (2.3) and (2.4) holds. Moreover, for the sake
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of parsimony, it would be a valuable property should this set be the least

demanding for the experimenter.

This problem is equivalent to finding a set of (minimal) separators be-

tween Y and pa(T ).

Tian et al. (1998) suggest several algorithms to accomplish this search,

based on the d-separation criterion (Verma & Pearl 1990). The basic intu-

ition underlying these algorithms is that a general set for which two nodes

A and B are separated in a graphD is easily found as the setΠ = pa(A∪B),
that is:

A ⊥⊥ B |Π.

Moreover, it is possible to refine this set, using the fact that any separ-

ator which cannot be reduced by a single node is then minimal.

In other words, the algorithm works as follows - see Tian et al. (1998)

for some comments on the computational effort required:

1. Define K = Y ∪ pa(T );

2. Construct the set DAn(K), where:

An(K) = Y ∪ pa(T ) ∪
(

∪ν∈pa(T ){an(ν)}
)

is the smallest ancestral set of K, and DAn(K) indicates the part of the

original graph D that includes only the nodes in An(K);

3. Set S = pa(K);

4. Choose one node ν from S;

5. Test if S\{ν} is a separator in DAn(K), e.g. using the algorithm of Geiger

et al. (1990);

6. If S \ {ν} is a separator, then set S = S \ {ν}; choose a different node

from S, denote it by {ν} and go to step 5. If all nodes in S have been

checked, stop;

7. return S.

A problem that may arise concerns the fact that more than one set of

covariates turn out to be sufficient and minimal. We address this question

in the following.
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2.3.1 Choosing among minimal sets of covariates

Suppose for example that the treatment T is the prescription of a given car-

diovascular drug, Y is the occurrence of a myocardial infarction (assumed

to be a relevant response) and the set C includes some individual inform-

ation, such as age A, gender G, and the result of two diagnostic tests, T1
and T2.

Suppose that after a learning procedure is performed, the doctor is

provided with the most plausible causal mechanism, as depicted in Figure

2.4.

A G

T1 T2

FT T Y

Figure 2.4: Hypothetical results for the cardiovascular example: the most supported

causal structure after the learning procedure

In this case, the set S includes the variable T2 and either of the variables

T1 or G. Considering the moralised version of the graph, there are in fact

four paths connecting Y to FT :

1. Y − T − FT ;

2. Y − T2 − FT ;

3. Y −G− A− T1 − FT ;

4. Y − T2 − T1 − FT .

As a consequence, using the algorithm of section 2.3, the minimal sets

of sufficient covariates are S1 = {T2, G} and S3 = {T2, T1}, i.e.:

Y ⊥⊥ FT |T2, G, T or Y ⊥⊥ FT |T1, T2, T .

Let test T1 be a highly expensive one, such as those performed using a

computer assisted device, whereas test T2 is just a (low cost) simple meas-

urement that the doctor can perform during the visit. Assume also that the

measurement of A and G is at no cost.
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Suppose further that, on average, knowing test T1 produces a lower

uncertainty on the outcome conditional distribution, as compared to that

deriving from observing G.

Now, what should the practitioner do?

The answer to this question is that the decision should typically balance

the level of knowledge that is required, and the (ethical and/or economic)

sustainability of the choice.

Hence, an optimal strategy is one that weighs the total cost (oppor-

tunely defined) of the sufficient covariates set and the result in terms of the

variability of the conditional distribution of the response.

Back to the cardiovascular example, should the difference in terms of

reducing the uncertainty deriving by the use of T1 be non significant, then

the doctor could be satisfied with the investigation only of the test T2 and

the new patient’s gender.

Knowing this set of covariates, the net effect of the prescribed drug on

the occurrence of infarction could be determined easily, applying the back

door formula, cfr. Dawid (2002, p. 174), or even more straightforwardly,

using the semantics of the ADAG. The expensive test T1 would not be re-

quired to unbias the analysis of the effect of the drug on the response.

Conversely, if the difference in uncertainty is significant (i.e. knowing

test T1 generates a dramatically more precise estimation of the effect of T

on Y ), then the decision maker could justify the additional costs, based on

that scientific evidence.

An other important feature of the model is that, according to its very

definitions (Dawid 2000, 2002), the evaluation can be performed at the

individual level.

For example, suppose that a GP visits two new patients, p1 and p2, in the

case where, yet being more expensive, the knowledge of the test T1 slightly

reduces the variability of the estimation of the effect of T on Y .

Suppose also that patient p1 has been already tested with T1, while p2
has not yet. In this situation, the GP could choose to provide a more accur-

ate estimation for patient p1, as this improved accuracy is at no cost.

As for patient p2, given that the improvement is not massive, the GP can

just measure G and T2, and decide upon the treatment consequently.

A specified probabilistic sensitivity analysis can also be performed, in

order to derive a break even point; in other words, one could estimate

the minimum increase in the precision of the estimation that is worth the

deriving additional costs. The decisions would then be taken accordingly.

Moreover, a further interesting feature of the search strategy described

above is that it is possible to assign a different weight to each node in S.

Then minimality would not be tested with respect to the cardinality of S,
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but rather on the actual possibility of measuring the selected nodes on the

(n+ 1)− th case, as described by the associated weight.

2.4 Sufficient covariates and propensity scores

The method of propensity scores was introduced by Rosenbaum & Rubin

(1983) as a means of examining causal effects in observational studies.

The essential feature of their approach is that causal inference is based

on counterfactuals and the potential outcomes model (Rubin 1974). As-

suming for the sake of simplicity that the treatment is binary (t, c), the

causal effect is typically evaluated in terms of the difference between the

response Yt(i) that has actually been observed on the i−th individual for the

assigned treatment t, and the response Yc(i) that would have been observed,

should the treatment selected be c.

Moreover, particular attention is devoted to treatment assignment, which

is an issue for non-randomised studies, where units may have been assigned

to a treatment in some deliberate way, which biases näıve comparisons.

A similar reasoning also applies to the ADAG representation of causal

problems. Suppose for example that a covariate C is sufficient to identify

the causal effect of a treatment T over a suitable response Y , i.e. C verifies

(2.1) and (2.2), as depicted in Figure 2.5.

C

FT T Y

Figure 2.5: The covariate C is sufficient to identify the causal effect of the treatment

T over the response Y

The original definition of the propensity score provided by Rosenbaum

& Rubin (1983) can be re-arranged in the ADAG framework as:

S := Pr(T = t |C,FT = ∅). (2.5)

As a consequence of (2.5), Pr(T = t |C, S, FT = ∅) depends exclusively

on S. In fact, S is by definition a function of C, whence T ⊥⊥ C |S, FT = ∅.
Moreover, since T is degenerate when FT 6= ∅, then:

T ⊥⊥ C |S, FT .
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The original ID representation of Figure 2.5 can now be extended by

inserting S on the path from C to T , as in Figure 2.6. From this, it is

possible to easily read off the counterparts of (2.1) and (2.2) with S as

sufficient covariate.

C

S

FT T Y

Figure 2.6: The propensity score in terms of the ADAG representation

The main implication of this analysis is that for certain purposes, it is

possible to simplify the problem by using S instead of C. The graphical

representation helps clarify the role of propensity scores.

However, this result is only possible when it is plausible to assume that

C is a sufficient covariate, again a condition that is clearly detectable from

the graphical structure of the problem.

Moreover, let us consider an Analysis of Covariance model in terms of

C:

E(Y |T,C, [FT ]) = αT + β′C (2.6)

(variables in square brackets are not essential in the conditioning set).

From (2.6) it follows that:

E(Y |T, S, [FT ]) = αT + β′E(C |S, [T ]). (2.7)

For simple analysis, such as testing the irrelevance of treatment, or es-

timating αt − αc, it is possible to use the simpler model (2.7).

However, replacing (2.6) with (2.7) for purposes of prognosis of an

individual might be neglecting potentially valuable prognostic information

in C that is not in S.

All this ignores the real problem, that S is not known a priori, and hence

needs be estimated from observed data. Consequently, using a propensity

score is not obviously a simplification of the analysis, and may not lead to

more precision.

Rephrasing the propensity scores framework in terms of the ADAG rep-

resentation can make this feature clearer.
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2.5 Conclusions

This paper represents a first attempt that we make to find a procedure that

allows an experimenter to combine some prior knowledge, some structural

constraints and observed data, in order to exploit causality. Working incre-

mentally on Dawid’s approach, we built a primal framework to accomplish

this task.

However, the complete feasibility of the model needs further investig-

ation, as we identified at least two major problems. First, since structural

learning exploits probabilistic relationships, there is the possibility that two

or more different models encoding different causal structures, are in fact in

the same probabilistic equivalence class.

Moreover, an other important issue is that of the possibility of finding

more than one set of sufficient covariate, which would allow the estimation

of causal effects.

This second topic seems less troublesome, as we identified a possible

strategy that would allow the analysis of such situations. In addition, the

possibility of taking into account different variables, upon varying the avail-

ability on the (n+1)− th case is highly valuable, and fits the philosophy of

EoC problem.

Finally, an other research area that is worth of attention is in our opin-

ion the link that this modelling has with the propensity scores, as defined

and used in counterfactual analysis. Also in this case, further analysis is

required in order to exploit more thoroughly the common elements among

the two approaches.
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CHAPTER 3

HANDLING MANIPULATED EVIDENCE∗

3.1 Introduction

Bayesian Networks (BNs) have recently been advocated to establish the

overall dependence between hypotheses and observable random variables

in an investigation case (Dawid & Evett 1997, Garbolino & Taroni 2002).

In fact, the ability to highlight the essential relations among the vari-

ables makes a BN particularly useful in order to take trace and evaluate

the probabilistic effects of the evidence on the unobservable hypotheses

under debate. Moreover, a BN is highly modular in nature, so that it easily

allows to increase the model whenever it is required, including relations

with previously not considered variables.

Since the investigation is performed in a more formal way as compared

to the usual practice, a possible subtle drawback in the use of BN-assisted

investigations consists in overconfidence in the results obtained. The most

treacherous possibility occurs if manipulated evidence is introduced, i.e.

if observations not genuinely arisen from the context are produced by

someone to mislead the investigator. Examples of cases where police is

induced to focus towards a person different from the culprit include false

testimonies, blood traces left intentionally by someone, and many others.

The aim of this work is to build a model that can help the investigator

handle some possibly manipulated variables, in order to produce an updat-

ing of the probability that the evidence under suspicion is in fact genuine

or manipulated, as well as the posterior distribution of the relevant hypo-

theses.

The structure of the paper is the following: first in section 2, we show

how BNs can be used to formalize an investigation case, following its de-

velopment. We presume that an expert, the investigator, guides the con-

struction of the genuine models presented.

∗This paper was published as a Working Paper in the Department of Statistics ‘G.
Parenti’ series: Baio, G. & Corradi, F. (2004), Handling Manipulated Evidence. University

of Florence Press, Florence, Italy, Working Paper no. 2004/13.
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In section 3 we describe a methodology, derived from the original BN

structures provided by the expert, that takes into account the possibility

of manipulated evidence. This new representation is built modifying the

original graphical structure, according to the intervention model originally

introduced into the statistical literature by Pearl (1993) and Spirtes et al.

(1993), in the causal inference framework.

Finally, we consider the situation where more than one pieces of evid-

ence whose origin is unknown are possibly manipulated. Comparing all the

models derived from different configurations, we show in section 4 how to

detect a criminal plan aimed at misleading the investigation. In section 5,

we discuss the most relevant implications of this work.

3.2 Modelling genuine evidence

In this section we show how an investigation can be translated into a BN

framework. We propose an example of increasing complexity, according to

the information that successively becomes available to the investigator.

Unlike other works, such as those of Dawid & Evett (1997) and Gar-

bolino & Taroni (2002), our focus is not in defining a collection of formulæ

to be used in the calculation of the posterior probabilities of the relevant

hypotheses and/or the associated weight of evidence.

In fact, despite the practice to highlight the role of some epistemic

and population probabilities is quite common and formally attractive in

Forensic Science, in our opinion this approach proves of limited help, when

the practitioner has to face the solution of his/her own case, which in gen-

eral is slightly different from the examples provided.

On the contrary, following the suggestions of Lindley (2000), we rather

aim at providing some indications to translate a real investigative case into

a BN, and give less importance to the computational aspects, since efficient

algorithms are freely available.

Table 3.1 presents a synopsis of the relevant types of variables for a case

and their possible relations, which we will be using through all the paper.

In this work, we focus on a single hypothesis, such as ‘is the suspect

guilty?’, which takes on the values yes or no.

In general, a hypothesis represents a state of nature, which is not ob-

servable, but influences probabilistically some of the other relevant vari-

ables, and is usually the main object of the inference.

For this reason, in a BN a hypothesis node H is typically represented

as a root of the graph, i.e. pa(H) = ∅. Nevertheless, it is possible that

a hypothesis H1 is specified as a function of a more general conjecture
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Unobservable Type of variables Symbol Characteristics

• Working H pa(Hi) ⊆ ∅ ∪ {H \Hi},
hypotheses for each Hi ∈ H

• Data generating M pa(Mi) = ∅
model for each Mi ∈M

Observable Type of evidence Symbol Characteristics

Clear origin • Specification S pa(Si) * {M ∪H ∪T}
for each Si ∈ S

• Control K pa(Ki) ⊆ {H ∩T} ∪ {H ∩T ∩ S}
for each Ki ∈ K

• Natural N pa(Ni) ⊆ {H} ∪ {H ∩ S}
for each Ni ∈ N

Unclear origin • Possibly manipulated T pa(Ti) ⊆ {H ∩M} ∪ {H ∩M ∩ S},
(treatments) for each Ti ∈ T

Table 3.1: Summary of the relevant variables in a case and their characteristics

H0, and hence H0 ∈ pa(H1). Garbolino & Taroni (2002) describe a set of

archetypical situations in which some hypotheses are related to one another

and evaluated in light of the observation of a single piece of evidence.

3.2.1 One single piece of evidence

Suppose that a crime is committed. A witness testifies to have seen an

individual shooting a policeman during a robbery. Next, a suspect is indi-

viduated. A possible BN representation of this problem is that depicted in

Figure 3.1 (the figures reported herein are absolutely fictional and merely

serve as an explicative tool – all the calculation were performed using and

modifying the Matlab package BNets, by Kevin Murphy).

H

T

Figure 3.1: An example of DAG

The variable H expresses the working hypothesis. The variable T rep-

resents the witness testimony and its possible values are T = t1 in case the

witness declares to recognise the suspect as the individual he has seen, and
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T = t2 in case he does not. At this stage, the testimony is not under sus-

picion, so that T is classified as a natural evidence, whence, according to

Table 3.1, the relevant variables are grouped in the setsH = H andN = T .

The investigator may define the Conditional Probability Table (CPT) for

the variable H, depending on the circumstances that led to the identifica-

tion of the suspect. Alternatively, Pr(H = yes) can be instrumentally set to

0.5, in case that rather than on the posterior distribution of H, the focus is

on the weight of evidence E.

In fact, using the Bayes theorem in terms of odds ratio we have:

Pr(H = yes |E)

Pr(H = no |E)
=
Pr(E |H = yes)

Pr(E |H = no)
×
Pr(H = yes)

Pr(H = no)
,

where the left hand side represents the posterior odds, and the right hand

side is the product of the weight of evidence (likelihood ratio) and the prior

odds.

By the assumption of uniform prior distribution for H, the prior odds

equal 1, so that in this case the weight of evidence is simply given by the

posterior odds, which are directly available as a result from the propagation

algorithm.

As for the testimony, suppose that the investigator can assess the CPT of

Table 3.2. In case that the person under investigation is actually guilty, the

investigator assigns a high probability, say 0.9, to the fact that the witness

testifies to recognise him.

Conversely, when the hypothesis of guilt is not true, the probability that

T = t1 is low, for example 0.3. This assumption makes possible that the

witness recognises the suspect, although he is innocent.

H = yes H = no

T = t1 0.9 0.3

T = t2 0.1 0.7

Table 3.2: The CPT for the testimony T , given the hypothesis H

Given the evidence E1 = {T = t1}, i.e. that the witness claims he recog-

nises the suspect, it is straightforward to update the hypothesis of guilt as

Pr(H = yes |E1) = 0.75, by means of the Bayes theorem.

3.2.2 More pieces of conditionally independent evidence

Usually, the investigator cannot be satisfied with just one evidence, and is

likely to look for other observable variables that can confirm (or disprove)

its suggestions.
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The most natural choice is to look for other variables directly influenced

by H, but conditionally independent on the other variables. A classical

choice could be to check on the suspect alibi.

Suppose, for instance, that the suspect declares that he was home watch-

ing TV with his wife, who is then interrogated.

The variable W in Figure 3.2 represents the woman testimony, and takes

on the values w1 in case she declares that her husband was watching TV

with her by the time that the crime was committed, and w2 in case she does

not provide him with a plausible alibi.

The graphical structure of Figure 3.2, known as diverging connection

(Cowell et al. 1999), encodes the assumption that W ⊥⊥ T | H, i.e. that

the distribution of the alibi is independent on the testimony, given that the

value of the hypothesis H is actually known.

H

W T

Figure 3.2: A working hypothesis H on a suspect’s guilt, a witness testimony T , and

the statements of the suspect’s wife, W

According to the representation of Table 3.1, the variables are then

groped in the sets H = H and N = {T,W}. The CPT provided for the

variable W from the investigator is shown in Table 3.3. Since the woman

does not recall the exact time that her husband got home that night, the

investigator assigns a positive (though small) probability to the event that

yet being actually guilty, the suspect got back to his home after committing

the crime.

H = yes H = no

W = w1 0.02 0.80

W = w2 0.98 0.20

Table 3.3: The CPT for the suspect’s alibi W , given the hypothesis H

The Bayes Theorem can be directly invoked to solve the inferential is-

sue, but even in this simple case, a specialised BN algorithm, such as the

Junction Tree (Cowell et al. 1999) can be used to accomplish the calcula-

tions more straightforwardly.
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The BN proposed in Figure 3.2 is well known in the statistical literature

as Bayesian Näıve Classifier (Friedman et al. 1997), and is now established

as a successful competitor of the commonly used (multi)logit model.

Suppose that the the woman provides his husband with an alibi, i.e.

W = w1: the new available evidence is E2 = {T = t1,W = w1}, so that

Pr(H = yes |E2) = 0.0698.

3.2.3 Adding a control evidence

Since the conflict between the testimony and the alibi, the investigator

needs to find other variables in order to check on them. In other words,

given the testimony, the investigator seeks for a control evidence. Table 3.1

shows formally the definition of such variables.

The investigator notices a surveillance camera set at a cash dispenser

just in front of the crime scene, and finds out that the CCTV video is avail-

able.

In this case, the random variable representing the video is different from

the alibi variable, since it is not plausible to assume conditional independ-

ence with the testimony T . In fact, both the witness and the camera look

at the same scene, although from different perspectives, whence it is neces-

sary to establish a dependence structure between them.

The original BN can be modified accordingly, to take into account this

new variable. A suitable graphical representation is that of Figure 3.3,

where the variable A is the observation of the ATM surveillance video. No-

tice that in this case, the presence of the direct link between T and A is

such that these two nodes are not independent, even in case H was known.

This representation is an extension of the Bayesian Näıve Classifier model,

which allows for correlation among observable variables.

H

W T A

Figure 3.3: A working hypothesis H on a suspect’s guilt, a witness testimony T , the

wife statement W , and the video recorded by a CCTV of an ATM nearby the crime

scene, A

Let the possible values for A be:
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• a1, if the suspect appears in the video less than half an hour before the

crime was committed. In this case, it would be unlikely (although still

possible) that he reached his home before the crime was committed;

• a2, if the suspect is shown in the video more then half an hour before

the crime. This time would easily allow him to reach his home before

the time that the crime was committed.

The investigator assigns the probabilities of Table 3.4 to these events.

H = yes H = no
T = t1 T = t2 T = t1 T = t2

A = a1 0.9 0.7 0.2 0.1

A = a2 0.1 0.3 0.8 0.9

Table 3.4: The CPT for the variable A, given the testimony T and the hypothesis of

guilt H

Suppose that the person under investigation appears in the video just

10 minutes before the estimated time of the crime. The BN updates the

probability of guilt, given the evidence E3 = {T = t1,W = w1, A = a1}
gathered by the investigator as Pr(H = yes | E3) = 0.2523. This new

evidence increases the posterior probability of guilt, although uncertainty

remains on whether the suspect is actually the culprit of the crime. The

two testimonies are in conflict, and the control evidence is not enough to

explain away this situation.

3.2.4 Adding a specification evidence

The investigator is willing to gain more understanding of the problem. In

order to do that, one possibility is to look for some covariates, or specifica-

tion variables, in the terminology of Table 3.1.

Like a control evidence, these are variables that may be directly con-

nected to a node in the set N (and more specifically in the set T, as will

be shown in section 3.3). However, for some reasons, it is easier or more

natural to express this dependence such that a covariate is a parent of the

node T , rather than a child as happens for the control evidence.

The role of a specification variable is typically that of reducing the un-

certainty on a given node, in order to try to explain away possible conflicts

generated by other non consistent evidence.

Suppose for instance that the investigator gets the sight of the witness

tested, in order to check on his ability to recognise the suspect. The variable
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V takes on the values v1 if the witness has no visual defects, and v2 in case

he has. The new graphical representation is depicted in Figure 3.4.

W H

V T A

Figure 3.4: A more complicated situation. The new DAG describes the fact that the in-

vestigator checks also the visual capacity of the witness, as represented by the variable

V

According to the classification of Table 3.1, the variables involved in the

problem are now grouped as H = H, N = {T,W}, K = A and S = V .

The investigator could define a prior distribution for the variable V , for

instance using some population based statistics, i.e. Pr(V = v1) = 0.7 and

Pr(V = v2) = 0.3. However, this is not essential: in fact, the value assumed

by V is always known to the investigator, so that this random node becomes

essentially deterministic (degenerate) and no inference is required about it.

On the contrary, it is necessary that the CPT of the variable T is modified

in order to take into account the new situation, as in Table 3.5.

H = yes H = no
V = v1 V = v2 V = v1 V = v2

T = t1 0.99 0.65 0.25 0.05

T = t2 0.01 0.35 0.75 0.95

Table 3.5: The CPT for the variable T , given its parents V and H

Notice that the CPT for the testimony is now slightly different from that

depicted in Table 3.2, because of the new variable that is made available.

Hence, the information status of the investigator is changed and so are his

conjectures.

Suppose that the result of the visual test is v1: in this case, the evidence

would be E4 = {T = t1,W = w1, A = a1, V = v1} and Pr(H = yes |
E4) = 0.3082. As compared to the previous section, the probability of

guilt is increased by the knowledge of the positive visual test. However,

the investigator is uncomfortable with the results obtained, as two pieces

of evidence tend to incriminate the suspect, whereas another one tends to

acquit him.
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Moreover, the suspect claims to have been framed, and that in fact,

yet having cashed some money at the ATM only a few minutes before the

crime was committed, he reached his home quite quickly that night, and

the witness declared to recognise him only in order to make him considered

guilty. How should the investigator handle this situation?

3.3 Handling manipulated evidence

3.3.1 Modelling external interventions on the observed evidence

The case of external intervention on a variable within a stochastic system

is one of the paradigms of causal inference (Holland 1986). Despite many

scholars are still working with different approaches, a point of agreement

is that causality mechanisms are mimicked by the presence of external in-

terventions, which modify the natural dynamics of the stochastic system

under study.

Two major contributions to the literature are those of Spirtes et al.

(1993) and Pearl (1993), among the first to apply BNs to the study of caus-

ality. In order to do so, a new semantic is defined that takes into account

the fact that one or more variables are subjected to intervention.

The central idea is that any direct link between the intervened node

and its parents has to be removed. If the link H → T is suggestive of a

causal mechanism, there is no point in modifying H after that T is set to a

given value, since the observation of T = t is not attributable to that causal

mechanism, but rather to the intervention.

If we make reference to the forensic case, this feature is quite relevant.

In fact, the intervention model is such that the knowledge that the evidence

is not genuine is critically taken into account, leading to a more appropriate

inference on the unobservable hypothesis.

Conversely, the descendants remain dependent on T , either it arose nat-

urally or by intervention. This circumstance has a special relevance when a

descendant of the possibly manipulated node is also in the set de(H), and

its origin is not under suspicion (see Figure 3.5).

Under the natural model, the observation of T = t modifies the dis-

tribution of A both directly and through updating the distribution of the

unobservable node H. Therefore, the most likely value of A is the one that

is most consistent with a) the observed value of T , and b) the value of H

induced by T = t.

However, if T did not arise genuinely, the distribution of A is only mod-

ified by T itself, as the distribution of H is not updated by the available
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H

W T A

H

W T A

a) Natural model b) Intervention model

Figure 3.5: The DAG representation of the external intervention. In case the evid-

ence arose by means of external manipulations, the direct connections between the

intervened node T and its parent is removed. The rest of the graph is unchanged

evidence, since T and H are not directly connected in the intervention

model.

Consequently, using the natural model when the evidence is not genuine

assigns a higher probability to values of A that in fact are not as likely to

occur. Hence, the value of A that becomes available after observing T

can be in conflict with the previous evidence, suggesting the possibility of

manipulation.

For instance, when the genuine model of Figure 3.5a holds, the value

A = a2 becomes unlikely after observing T = t1: Pr(A = a2 | T = t1) =
0.175. On the contrary, using the intervention model of Figure 3.5b, the

same value becomes much more plausible: Pr(A = a2 |T = t1) = 0.45.

Dawid (2002) proposed a unified representation of the problem, using

a decision theoretic approach based on the Augmented DAG (ADAG). This

is a graphical model in which a possibly manipulated variable T is explicitly

associated to an external intervention variable, FT , which is used to rule its

demeanour. Such a model is depicted in Figure 3.6.

W H

FT T A

Figure 3.6: The ADAG representation of the intervention model

The possible external intervention is modelled as a decision variable,

represented as a square. The variable FT takes on the elements of the set

{T ∪ ∅}, where T is the set of values that the possibly intervened node T

may assume.
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Unlike a random node, FT is not associated to a CPT, as its state is

always decided (known) by the experimenter. Therefore, it serves as a

switch and it is used to allow the experimenter to activate a given scenario.

When FT = ∅, then the intervention is void, and hence T is a random

variable governed by its conditional probability distribution.

Conversely, when FT = t, t ∈ T , then an intervention occurred. As a

result, T becomes a degenerate variable, whence Pr(T = t | pa(T )) = 1,

for every configurations of the variables in pa(T ). As required, in case of

external intervention, the parents are not updated by T .

Back to the simple example of § 3.2.3, if the observed evidence was

genuine, then FT would be set to ∅, and the DAG representation implicit in

the ADAG of Figure 3.6 would be the same as that depicted in Figure 3.5a.

On the contrary, should the investigator believe that the testimony is not

genuine, then FT would be set to the value t1, and so would T . However,

in this case, the knowledge of T should not update the CPT of its parent H.

In other words, in case that FT 6= ∅, the correspondent DAG is modified as

in Figure 3.5b.

The use of the ADAG translates into a more compact representation

of the problem, since both the situations are handled by the intervention

node. The CPT of the variable T is then built as in Table 3.6 and comprises

both the natural and the intervention cases.

FT = ∅ FT = t1 FT = t2
H = yes H = no H = yes H = no H = yes H = no

T = t1 0.9 0.3 1 1 0 0

T = t2 0.1 0.7 0 0 1 1

Table 3.6: The CPT of the possibly manipulated variable T . When the evidence is

genuine, the CPT is that specified by the expert; in case of manipulation, the distribu-

tion of the variable becomes independent on the other parent, H, and degenerate to

the value specified by FT

Dawid’s model has been originally used to deal with standard causal

inference problems, where the objective is to estimate the effect of a ‘treat-

ment’ T over a ‘response’ A, discarding all the factors, defined as ‘potential

confounders’, which can generate spurious relations between them.

In the situation of Figure 3.6, a standard causal model would use the ob-

servations of the treatment T and of the confounder H to infer the desired

causal effect on the unobserved response A.

The graph of Figure 3.6 encodes the constraints suggested by Dawid
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(2002) that allow the identifiability of such causal effect:

FT ⊥⊥ H, (3.1)

A ⊥⊥ FT |T,H. (3.2)

By condition (3.1), Dawid’s model assumes that the probability distri-

bution of the observed confounder H must not depend on how T arose.

In other words, if it is known that an intervention occurred on T , the dis-

tribution of H must not change with the value set for FT . Moreover, this

distribution must remain the same as the case in which the evidence is

certainly genuine (FT = ∅), but T has not been observed yet.

The graphical representation of the relations among FT , H and T is

called a v-structure (Cowell et al. 1999), and implies that yet being mar-

ginally independent, FT and H become conditionally dependent, after the

observation of their common child T . However, because of the particular

CPT assigned to the node T , in the intervention model where FT 6= ∅, al-

though T is implicitly set to the value of FT , the link between H and T is

removed, whence H and FT are both marginally and conditionally inde-

pendent.

Assumption (3.2) instead indicates that the knowledge of T and H is

all that is needed for A to be independent on FT , in which case the re-

sponse is not modified by the way that the treatment arose. This situation

basically amounts to the fact that the causal mechanism that relates T to

A is conveniently explained by the variables in the set {T,H}, so that the

differences in the response A can be directly attributable to T , once H is

made available. For this reason, a variable H that verifies (3.1) and (3.2)

is called a sufficient covariate (Dawid 2002).

As compared to the standard case, the objective of our analysis is re-

versed, being to evaluate how the unobservable variable H is modified

whether T is genuine or not, after observing the available evidence, includ-

ing A.

Assumption (3.1) is straightforward, as it makes sense to assume that

given that the testimony is manipulated, no matter what the witness de-

clares, the investigator’s uncertainty over the hypothesis of guilt will remain

the same.

Assumption (3.2) simply means that the knowledge of the actual value

of H and of the testimony is sufficient to guarantee that the control evid-

ence A has a clear origin with respect to the testimony, being independent

on FT without the need of any further information.

Obviously, the actual value of H is hidden, and its estimation is the ob-

jective of our analysis. However, assuming the validity of conditions (3.1)
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and (3.2), the investigator takes the responsibility to ensure the absence of

other unmeasured factors that can be connected to both A and T , which

could confound the inference on H. This feature entitles the investigator

to use A in order to check on T .

If the evidence is genuine (FT = ∅), the observation of both T and A

updates the distribution of H, whereas in the intervention case only the

control evidence can modify the distribution of the hypothesis of guilt.

For instance, if after the suspect claim of having been framed, we con-

sider the possibility of manipulation of T , it is possible to regroup the nodes

in the following way: H = H, N = W , T = T , K = A. The origin of the

variable T is now unclear to the investigator; therefore, it is included in the

set T, rather than in the set N, as in the § 3.2.3.

In the intervention case, the observed evidence is E5 = {FT = t1,W =
w1, A = a1}. Using a propagation algorithm on the ADAG of Figure 3.6,

we obtain that Pr(H = yes | E5) = 0.1011, whereas, by definition, using

the natural model for which the evidence is {FT = ∅, T = t1,W = w1, A =
a1} the posterior probability of guilt would be 0.2523, the same inference

described in § 3.2.3.

3.3.2 Model assessment: the probabilistic evaluation of the interven-

tion node

In the previous section, we explored the features of the ADAG representa-

tion, which allows the investigator to regard properly the two cases where

it is known that the evidence is genuine or manipulated.

All the same, the investigator would be even more interested in the

possibility of evaluating probabilistically the two competing models:

• m1: the unclear origin evidence T is in fact genuine;

• m2: the unclear origin evidence T is manipulated,

conditionally on all the observed variables.

To this aim, it is necessary to define a further specialised version of the

ADAG representation, as the one depicted in Figure 3.7. We term this graph

Model Assessment DAG (MADAG), and we characterise the model node as

a dashed circle. In this case, we define a new random variable MT , which

takes into account the two possibilities described above.

As depicted in Table 3.1, the model nodes are considered as roots of the

graphical representation. This assumption is useful to characterise them as

unobservable conjectures about the data generating process, whose uncer-

tainty is updated by the evidence.
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W H

MT T A

Figure 3.7: The Model Assessment DAG (MADAG) representation of the problem. The

intervention node is now modelled as a random variable, rather than a decision node,

in order to take into account the fact that a probabilistic evaluation is needed

Just like the intervention node FT in the ADAG, the model node MT

acts on the possibly intervened node so that the update of its parents is

avoided, in case of manipulated evidence (i.e. when model m2 holds). Yet,

since the investigator is in doubt whether the observed pieces of evidence

are genuine or invalidated by some intervention, T must remain a random

variable in either case.

With respect to the standard graphical representation, the use of the

MADAG requires the following operations. First, the investigator must

provide a prior CPT for the model nodes. Again, if the interest is in the

evaluation of the weight of evidence with respect to the competing models,

it is effective to choose Pr(MT = m1) = Pr(MT = m2) = 0.5. Obviously,

in case that the investigator has different prior knowledge about the two

models, it is easy to modify the CPTs accordingly.

Second, while the distribution under the natural model m1 is provided

by the expert, the one for the intervention model is to be defined so that

consistency between the two regimes is maintained. If the origin of a piece

of evidence is under suspicion, the investigator cannot update his uncer-

tainty on which is the model that generated the data, by means of the

observation of that node only. This condition can be re-expressed as:

Pr(T = t |MT = m2)=EP [Pr(T = t |MT = m1)]

=
∑

p∈P

Pr(T = t |P = p,MT = m1) Pr(P = p) (3.3)

for any t ∈ T . The set P = {pa(T ) \ MT} includes all the parents of T

except the model node, and the average EP is taken over all the possible

configurations of the variables in P, indicated by the set P.

The right hand side of equation (3.3) is by definition the marginal prob-

ability distribution of the variable T , under the model m1. Therefore, con-

dition (3.3) ensures that Pr(T |MT = m1) = Pr(T |MT = m2), for each

configuration of the observed parents.
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This result is consistent with the representation of the problem: in case

the origin of the variable T is unclear to the investigator, in absence of

additional evidence, its observation cannot modify his prior belief on which

of the two models generated the data. In fact, the Bayes Theorem expressed

in terms of odds ratio states that:

Pr(MT = m1 |T = t)

Pr(MT = m2 |T = t)
=
Pr(T = t |MT = m1)

Pr(T = t |MT = m2)
×
Pr(MT = m1)

Pr(MT = m2)
,

which by (3.3), implies that:

Pr(MT = m1 |T = t)

Pr(MT = m2 |T = t)
=
Pr(MT = m1)

Pr(MT = m2)
.

The model m2 can be seen as nested within m1 (cfr. O’Hagan 1994): the

latter includes the former, and they differ only in the fact that m2 does not

depend on the variables in the set P, whereas m1 does. Consequently, they

are marginally equivalent, marginalisation being over that set.

The definition of the CPT for the variable T essentially renders the testi-

mony independent on the model node MT , even if this property cannot be

read off by the inspection of the graph. Moreover, despite condition (3.2)

is assumed to hold, since H is unobservable A 6⊥⊥ MT | T , which allows

to update also the uncertainty over the data generating process, when the

control evidence is made available.

In the example of § 3.2.3, P = {H} whence P = {yes, no}, and the dis-

tribution of T under the natural regime m1 is that of Table 3.2. Therefore,

applying (3.3), the coherent CPT of the variable T is that shown in Table

3.7.

MT = m1 MT = m2
H = yes H = no H = yes H = no

T = t1 0.9 0.3 0.6 0.6

T = t2 0.1 0.7 0.4 0.4

Table 3.7: The CPT of the possibly manipulated variable T . When the evidence is

genuine, the CPT is that specified by the expert; in case of manipulation, the distribu-

tion of the variable becomes independent on the other parent, H, and on average the

two distributions are equivalent, by definition

Given the observed evidence E3 = {T = t1,W = w1, A = a1}, the

probabilities for the unobservable variables are updated as Pr(H = yes |
E3) = 0.1579 and Pr(MT = m1 |E3) = 0.3754.
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As compared to the inference obtained using the ADAG, the results de-

rived here are subjected to an additional source of variability, i.e. that re-

lated to the model itself. The probability of guilt is a mixture of the natural

and of the intervention case, with weights given by the posterior probability

of the model node.

In general, it would be appropriate to check on the possibly manipulated

node by means of several pieces of evidence. This situation could be easily

handled by extending the MADAG of Figure 3.7 with other nodes K of clear

origin.

3.3.3 Model assessment for one manipulated evidence with covari-

ates

Let us consider the situation of § 3.2.4, now with the variable T supposed

to have an unclear origin to the investigator. The new graphical represent-

ation is depicted in Figure 3.8.

V H W

MT T A

Figure 3.8: The MADAG describes the fact that the investigator checks also the visual

capacity of the witness, as represented by the variable V

According to the classification of Table 3.1, the variables involved in the

problem are now grouped as H = H, N = W , T = T , K = A, S = V and

M =MT .

MT = m1 MT = m2
H = yes H = no H = yes H = no

V = v1 V = v2 V = v1 V = v2 V = v1 V = v2 V = v1 V = v2
T = t1 0.99 0.65 0.25 0.05 0.62 0.35 0.62 0.35

T = t2 0.01 0.35 0.75 0.95 0.38 0.65 0.38 0.65

Table 3.8: The CPT for the variable T , given its parents V , H and M

The natural distribution for the node T is that depicted in the left half

50



of Table 3.8. Moreover, applying condition (3.3), we obtain that:

Pr(T = t |MT = m2) =
∑

h∈H

∑

v∈V Pr(T = t |H = h, V = v,MT = m1)

Pr(V = v |H = h) Pr(H = h),

as V and H are marginally independent on MT , from the graphical struc-

ture of the problem.

Since V is known to the investigator, Pr(V = v) = 1, regardless on the

value assumed by any other variables. Hence, we have that:

Pr(T = t |MT = m2) =
∑

h∈H

Pr(T = t |H = h, V = v,MT = m1) Pr(H = h).

Back to the numerical example, in case V = v1, then Pr(T = t1 |MT =
m2) = 0.62, whereas in case V = v2, then Pr(T = t1 |MT = m2) = 0.35,

as reported in the right half of Table 3.8 – it is straightforward to calculate

Pr(t = t2 |V,MT = m2) = 1− Pr(t = t1 |V,MT = m2).
In this calculation we treated the variable V as a datum. Although the

investigator is able to provide a probability assessment about T , for all the

possible values that V may take on, the specification evidence is always

treated as known, and for this reason it is not marginalised off by the co-

herence procedure of condition (3.3).

Having observed the evidence E4 = {T = t1,W = w1, A = a1, V = v1},
the probabilities are updated as Pr(H = yes |E4) = 0.1723 and Pr(MT =
m1 | E4) = 0.3438. Again, the results are changed, because of the new

information status.

3.4 More complicated situations

3.4.1 More than one manipulated pieces of evidence

Let us now concentrate on the case where the investigator is not certain

about the origin of more than one pieces of evidence. Given the increas-

ing complexity of the case, and the growing conflict among the pieces of

evidence, the investigator decides to regard the alibi represented by W as

possibly manipulated as well.

In order to assess this testimony, the investigator also questions the sus-

pect about the programme that his wife could refer to. In Figure 3.9, this is

represented by the variable D, assuming the possible values d1 in case he

is able to describe the programme, and d2 in case he is not.

According to the definitions of Table 3.1, in this case we have that H =
H, T = {T,W}, S = V and K = {A,D}. Moreover, since there are
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D H A

W V T

MW M MT

Figure 3.9: The case goes on: the investigator gathers more pieces of evidence, some

of which have uncertain evidence. For each possibly manipulated variable, the invest-

igator defines a model node, and seeks for a suitable control evidence

two variables in T, the set M comprises the two model nodes MT and

MW , which respectively rule the behaviour of the nodes T and W , just as

described in the previous sections.

While the CPT for the variable T as a function of its own model node MT

is that of Table 3.5, the distribution of the variable W , in the natural and

in the intervention case, as derived by the application of condition (3.3) is

shown in Table 3.9. As for the variable D, suppose that the CPT provided

by the investigator is that of Table 3.10.

MW = m1 MW = m2
H = yes H = no H = yes H = no

W = w1 0.02 0.80 0.41 0.41

W = w2 0.98 0.20 0.59 0.59

Table 3.9: The CPT of the possibly manipulated wife’s testimony, under the genuine

and the intervention model

H = yes H = no
W = w1 W = w2 W = w1 W = w2

D = d1 0.15 0.01 0.90 0.10

D = d2 0.85 0.99 0.10 0.90

Table 3.10: The CPT for the variable D, representing whether the suspect is able to

describe the TV programme referred to by his wife or not

Finally, in order to analyse the whole case, it is possible to define a

further model node, M , which takes into account the combinations of the
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two data generating models for the possibly manipulated variables, taking

on the following four values:

• m1: both T and W are genuine;

• m2: W has been manipulated, whereas T is genuine;

• m3: W is genuine and T has been intervened;

• m4: both T and W have been manipulated.

The CPT of the node M is easily identified as that depicted in Table

3.11. Since the nature of M is essentially deterministic, we do not include

it in the set M, and it is only used as an instrumental node to allow easier

calculations.

MT = m1 MT = m2
MW = m1 MW = m2 MW = m1 MW = m2

m1 1 0 0 0

m2 0 1 0 0

m3 0 0 1 0

m4 0 0 0 1

Table 3.11: The CPT for the model node M , upon varying the model nodes for the

two possibly manipulated variables T and W

The structure of Figure 3.9 encodes the assumption that the observation

of only one possibly manipulated evidence is not able to update the prior

knowledge on the data generating model.

However, when both the nodes in T are made available, the BN es-

tablishes an undirect connection between them, via the nodes H, D and

A. Consequently, observing T and W does modify the probabilities of the

model nodes, according to how consistent the two pieces of evidence are.

Besides, the observation of the control evidence allows to produce a sharper

update of the probabilities of the unobservable variables.

Suppose that the investigation leads to the following observed evidence

E6 = {T = t1,W = w1, A = a1, V = v1, D = d2}, i.e.:

• The witness testifies that he recognises the suspect as the man he saw

on the crime scene;

• The suspect wife testifies that she and her husband were watching TV

together;
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• The suspect is shown on the video recorded at the ATM CCTV, just

in front of the crime scene, 10 minutes before that the crime was

committed;

• The visual capacity of the witness is tested positively;

• The suspect fails to describe the TV programme that his wife claimed

they were watching together.

Using the BN of Figure 3.9, the investigator obtains that the posterior

probability of guilt is Pr(H = yes | E6) = 0.9277. As for the model that

generated the observed evidence, the results are the following: Pr(M =
m1 |E6) = 0.0403, Pr(M = m2 |E6) = 0.5509, Pr(M = m3 |E6) = 0.0507

and Pr(M = m4 |E6) = 0.3581.

The most likely model, given E6 is M = m2 indicating that the wife

testimony is not genuine. Should the investigator not take into account the

possibility of observing manipulated pieces of evidence, starting from the

same CPTs as for the genuine model, his inference would be that Pr(H =
yes |E6) = 0.6588. In fact, in this case, the testimony of the wife would be

treated as genuine and, even if the suspect fails to recall the TV programme,

the alibi provided by the woman would decrease the posterior probability

of guilt.

Conversely, if given these findings the investigator accepts the model

M = m2 as the one that generated the observed data, the estimated prob-

ability of guilt would be 0.9872, leading the investigator to incriminate the

suspect with even more strength.

3.4.2 Evaluating two pieces of evidence by comparison

Finally, we consider a very relevant situation that can occur during an in-

vestigation: the case where two different pieces of evidence need be com-

pared, before the investigator can assess their actual relevance. A typ-

ical example is that of a blood trace left on a crime scene. A sample of

the suspect DNA is analysed, but neither the crime scene trace, the ‘crime

sample’, nor the suspect sample are relevant per se. Only if the two samples

match (i.e. the DNA is of the same type), an evidence against the suspect is

provided.

Even in this situation, the investigator may reckon that one of the two

samples has been manipulated, and can easily specialise the BN represent-

ation of the investigations, in order to take into account properly of this

feature.
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Considering again the previous example, suppose further that a gun is

found in the suspect’s house, which is compatible with the bullets found on

the crime scene. However, given the complexity of the case, the investigator

reckons that someone else could possibly have put the gun in the suspect’s

house. For this reason, he gets the suspect tested with the paraffin glove

method. A BN representation of this problem could be that depicted in

Figure 3.10.

D H PG B

W V T A C G

MT MW MC

M

Figure 3.10: The MADAG for the comparison of two pieces of evidence. The nodes B
and G are evaluated jointly, into the node C

The nodes B and G stand respectively for the bullets found on the crime

scene and the gun found at the suspect’s house. If the two are compatible,

the variable C, representing the ‘compatibility match’, takes on the value

c1, whereas when they are not, it takes on the value c2, with a probability

defined by the investigator, may be according to some population data.

The variable PG indicates the result of the paraffin glove test, taking

on the values pg1, in case the test is positive, and pg2 in case the test is

negative.

According to Table 3.1, the variables are grouped as follows: H = H,

M = {MT ,MW ,MC}, T = {T,W,C}, K = {A,D, PG} and S = {V,B,G}.
Yet being more complicated, the situation depicted in Figure 3.10 is not

too different from that described in the previous sections.

In this case, it is possible to identify 8 different data generating models,

from the case where all the variables in T arose genuinely, to that where

all have been manipulated, through the possible combinations (one manip-

ulated and two natural; one natural and two manipulated variables), as

depicted in Table 3.12.
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M T W C

m1 natural natural natural

m2 natural manipulated natural

m3 natural natural manipulated

m4 natural manipulated manipulated

m5 manipulated natural natural

m6 manipulated manipulated natural

m7 manipulated natural manipulated

m8 manipulated manipulated manipulated

Table 3.12: The possible models generating the observed evidence

Given the prior CPTs for the variables involved in the BN of Figure 3.10,

it would be possible to make inference on H and M simply applying the

calculation strategies described in the previous sections.

Suppose, for example, that the investigator is able to define the natural

distribution of the node C, as in the upper half of Tables 3.13. Applying

condition (3.3) it is straightforward to derive the intervention distribution,

as in the lower half of Table 3.13.

MC = m1
H = yes H = no

G = g1 G = g2 G = g1 G = g2
B = b1 B = b2 B = b1 B = b2 B = b1 B = b2 B = b1 B = b2

C = c1 0.9 0.3 0.3 0.9 0.8 0.5 0.5 0.8

C = c2 0.1 0.7 0.7 0.1 0.2 0.5 0.5 0.2

MC = m2
H = yes H = no

G = g1 G = g2 G = g1 G = g2
B = b1 B = b2 B = b1 B = b2 B = b1 B = b2 B = b1 B = b2

C = c1 0.85 0.40 0.40 0.85 0.85 0.40 0.40 0.85

C = c2 0.15 0.60 0.60 0.15 0.15 0.60 0.60 0.15

Table 3.13: The CPT for the variable C, given its parents B, G and H

The distribution of the control variable PG is that depicted in Table

3.14.

If the evidence was E7 = {T = t1,W = w1, A = a1, V = v1, D =
d2, Pg = pg1, G = g1, B = b1}, then the posterior probability of guilt would

be Pr(H = yes | E7)= 0.9693. As for the models, the result is shown

in Figure 3.11. If the possibility of manipulation was not considered, the

posterior probability of guilt would be 0.8306.
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H = yes H = no
C = c1 C = c2 C = c1 C = c2

Pg = pg1 0.95 0.85 0.45 0.05

Pg = pg2 0.05 0.15 0.55 0.95

Table 3.14: The CPT for the variable Pg, representing the result of the paraffin glove

test
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Figure 3.11: The posterior probability distribution for the model node, given the

evidence E7

Given the prior probabilities asserted by the investigator, and the pieces

of evidence gathered, the most likely models are m2 (T and C genuine, and

W manipulated), and m2 (T genuine, and W and C manipulated).

While the wife testimony can be regarded as not genuine, given this

findings, the evidence C is less straightforward to interpret. In fact, for its

very nature, it is not directly observed, but only ‘induced’ by the comparison

of B and G. For this reason, its power on the model node MC is lower, as

compared to the other pieces of evidence in the set T. Nevertheless, since

B and G are compatible, the posterior probability that C = c1 (given all

the other available nodes) is 0.7742. This probably leads the investigator

to regard the node C as genuine.
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3.4.3 Synthesis of the case investigation

Table 3.15 shows an overall summary of the case evaluation, upon vary-

ing the different information status. We consider the situation when the

investigator is not aware of the possibility that one or more evidence is

manipulated, and compare it to the models based on the suitable MADAG

representations.

In general, one can appreciate how the inference is changed when the

possibility of manipulation is taken into account. In case number 5, we

consider the situation of § 3.3.3, but we suppose that also W is subjected

to manipulation. As compared to the results provided for case 4 (and in

§ 3.3.3), the MADAG model proves to provide a more consistent inference

(W will turn out to be the most likely manipulated node). The weights of

evidence are even more impressive.

Posterior probability (weight of evidence) for H = yes

Pieces of evidence gathered Manipulable All genuine Allow for

nodes manipulation

1. t1 T 0.7500 (3.000) 0.6250 (1.667)

2. t1, w1 T 0.0698 (0.075) 0.0400 (0.041)

3. t1, w1, a1 T 0.2523 (0.338) 0.1579 (0.187)

4. t1, w1, a1, v1 T 0.3082 (0.445) 0.1723 (0.208)

5. t1, w1, a1, v1 T,W 0.3082 (0.445) 0.7474 (2.958)

6. t1, w1, a1, v1, d2 T,W 0.6588 (1.931) 0.9277 (12.83)

7. t1, w1, a1, v1, d2, pg1, b1, g1 T,W,C 0.8306 (4.903) 0.9693 (31.57)

Table 3.15: The posterior probability of guilt (in parentheses the associated weight of

evidence) calculated using the natural models (without the possibility of accounting

for not genuine evidence), and the MADAG models, upon varying the manipulable

nodes

Finally, Table 3.16 depicts the weight of evidence for the hypothesis

that each single unclear variable is in fact genuine, given different status of

knowledge.

As appears clear, the evidence of W is likely to be not reliable (the

highest posterior probability that it is genuine is only about 0.20, leading

to a weight of evidence of 0.25 at most). In addition, it is interesting to

study the progress of the posterior probability that MT = m1. As one can

see, unless the node W becomes suspect (starting from case number 5),

the evidence tends to suggest that T has been manipulated, discrediting

the witness.
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Pieces of evidence gathered Manipulable Weight of evidence for

nodes MT =m1 MW =m1 MC =m1
1. t1 T 1.0000 − −

2. t1, w1 T 0.5244 − −

3. t1, w1, a1 T 0.6010 − −

4. t1, w1, a1, v1 T 0.5239 − −

5. t1, w1, a1, v1 T,W 1.1372 0.2527 −

6. t1, w1, a1, v1, d2 T,W 1.4462 0.1001 −

7. t1, w1, a1, v1, d2, pg1, b1, g1 T,W,C 1.5310 0.0699 1.0404

Table 3.16: The weight of evidence for the model nodes, upon varying the informative

status and starting from a uniform prior

However, once the investigator realises that W is possibly not genuine,

then T is less and less in conflict with the other pieces of evidence, and the

weight of evidence in favour of MT = m1 increases up to 1.53 (for better

reading, Table 3.17 presents a synopsis of the variables used in the paper,

with their possible values).

The sensitivity to the choice of the prior value for Pr(H = yes) has been

investigated in Figure 3.12, with respect to case 7 of Table 3.15.

The posterior distribution Pr(H = yes |E) for case 7 of Table 3.15 has

been calculated upon varying the prior value for Pr(H = yes), over the

range [0; 1]. The differences in the posterior probability of guilt is notice-

able.

The highest difference is of 0.43, and is reached when Pr(H = yes) is

set a priori to 0.08, as shown in Figure 3.12.

3.5 Discussion

In this paper we showed a methodology to deal with unclear origin vari-

ables, within an investigation case. This possibility is ensured by the BN

structure that we associated to the problem.

The very first advantage in using a BN is the fact that the overall judge-

ment on the working hypothesis is articulated into each single relation

among the variables.

At first sight, this could be perceived as a drawback, as the investigator

may reckon that he is not able to provide a comprehensive assessment.

However, in our opinion this only makes more straightforward the evalu-

ation of the whole pieces of evidence available. Besides, it can become clear

which variables need be investigated more thoroughly, before a sharpest
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Figure 3.12: Probabilistic sensitivity analysis to the choice of prior distribution for

the hypothesis H = yes, for case 7 of Table 3.15

opinion can be reached.

A second important feature of this method is that it explicitly models the

presence of conflicting evidence. Some works in the statistical literature

have focused on this matter (Jensen et al. 1991, Jensen 1995), defining

a diagnostic statistics, which is able to detect possible conflicts between

different pieces of evidence.

The model proposed in this paper provides an alternative way of quan-

tifying inconsistencies in the evidence, as it directly calculates the posterior

distributions for both the working hypotheses and the data generating mod-

els.

Third, unlike most standard Bayesian analysis of forensic data, the use

of the weight of evidence is not particularly useful in the framework we

presented here. In fact, the most important feature of this measure is its

invariance to the choice of the prior distribution for the hypothesis of in-

terest.

Since in our case, the working hypothesis is evaluated jointly with the

model variable, the weight of evidence changes with the choice of the prior
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Variable Description Values

H Is the suspect guilty? yes or no

T The witness testimony t1 = the witness recognises the suspect as

the man on the crime scene

t2 = the witness does not recognise the sus-

pect as the man on the crime scene

W The wife testimony w1 = the wife declares that she and her hus-

band were watching TV but does not recall

the time precisely

w2 = the wife declares that she was not

with the suspect

A The ATM video a1 = the suspect is shown in the video less

than half an hour before the crime

a2 = the suspect is shown in the video more

than half an hour before the crime

V Witness’s visual test v1 = the witness has no visual problem

v2 = the witness has visual problems

D The TV program d1 = the suspect recalls the TV show

d2 = the suspect fails to recall the TV show

mentioned by his wife

B The bullets type b1 = the bullets found on the crime scene

are of ‘type 1’

b2 = the bullets found on the crime scene

are of ‘type 2’

G The gun type g1 = the gun found in the suspect’s house is

of ‘type 1’

g2 = the gun found in the suspect’s house is

of ‘type 2’

C Compatibility match c1 = the bullets and the gun are compatible

c2 = the bullets and the gun do not match

PG Paraffin glove test pg1 = the suspect tests positive

pg2 = the suspect tests negative

Table 3.17: A synopsis of the variables introduced in the paper, along with their

possible values

distributions for the model node. For this reason, the evaluation of the

posterior distribution of the unobservable variables can be more relevant.

Finally, we reckon that this kind of modelling can also be applied to

other research areas, such as Economics, in order to take into account the
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possibility that some of the pieces of evidence, upon which decisions are

taken, have in fact been manipulated. As for Statistics, this model could be

applied in the detection and analysis of outliers.
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CHAPTER 4

THE ECONOMIC EVALUATION OF INFLUENZA VACCINATION IN THE
ELDERLY POPULATION: A MODEL BASED ON BAYESIAN NETWORKS AND

INFLUENCE DIAGRAMS∗

4.1 Introduction

Influenza infection is a major cause of illness, morbidity and mortality

through out the world; the World Health Organisation estimates that in-

fluenza affects 5-15% of global population each year. The high-risk groups

of influenza complication include mainly elderly and patients with cardi-

ovascular or pulmonary disorder, and metabolic disease (diabetes). Insti-

tutionalised population is also considered at risk, because of the ease of

viral transmission. The influenza vaccination is effective in reducing acute

complications among high-risk patients, particularly in influenza-like ill-

ness (ILI), hospitalisation and mortality from all causes (Vu et al. 2002).

In terms of effectiveness, there is a clear and proved link between im-

munogenicity and protective effect (Potter 2001), with an inverse relation

to higher titre of antibody and the rate of infection. It is widely accepted

from clinical study that haemagglutination inhibition antibody levels could

be used as a surrogate of protective activity.

In order to improve the immune response, a subunit vaccine adjuvated

with MF59 was developed, and several studies demonstrated that this vac-

cine is more immunogenic than the other types of vaccine (subunit vaccine,

slit virus and virosomal vaccine).

The burden of influenza on health care systems becomes highly relev-

ant, since the increasing proportion of population aged over 65. As re-

ported in Nichols (2001) influenza causes up to 300,000 excess hospital-

isations and up to 40,000 excess deaths, among the high-risk population.

Therefore, substantial public health implications arise from the decision

maker perspective, when programming an annual vaccination strategy. In

particular, the public decision maker faces a strategic problem when de-

∗This paper has been presented to the International ISPOR Meeting, Arlington, VA,
May 2004 and to the Italian Statistical Society Meeting, Bari, Italy, June 2004, and has
been submitted for publication to the Journal of Health Economics in October 2004
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ciding: a) whether to implement a vaccination campaign, and b) which

vaccine(s) to prescribe. On the one hand, a vaccination program can res-

ult in an effective strategy, both from the financial and the clinical point

of view, in light of the reduction of hospitalisations and deaths among the

elderly. On the other hand, the cost effectiveness of this choice is highly

dependent on some exogenous parameters, such as influenza attack rate

(which is likely to vary from year to year), and coverage rate (i.e. the pro-

portion of patients that are actually vaccinated). The decision should then

be based on a mixture of pre-constituted opinions and empirical data, in

order to take into account pros and cons, over the entire population.

The aim of this paper is then to build a decision model which allows

the decision makers to evaluate the possible results under different scen-

arios, and to choose the decision associated to the highest expected utility,

expressed in terms of incremental cost effectiveness ratio (ICER). In other

words, first we calculate the total costs associated to different scenarios (do

not vaccinate the reference population; vaccinate the reference population

with a standard vaccine; vaccinate the reference population with the MF59

vaccine). Then, we combine these disutility measures with some effective-

ness indicators, such as reduction in death, hospitalisation and access to

other health resources (GP visits, pharmacological treatments), in order to

obtain an economic evaluation of the different options.

The paper is then structured as followed: section 4.2 presents the stat-

istical approach used in the definition of the model; section 4.3 describes

the dataset, while section 4.4 presents the main results obtained. Finally,

in section 4.5 the main conclusions are discussed.

4.2 Bayesian Networks, Influence Diagrams and decision problems

The decision model studied in this paper is based on the Bayesian Networks

methodology (for example, see Jordan 2001, for a thorough description).

A Bayesian Network (BN) is a graphical model that provides an alternat-

ive representation of the probabilistic relationships among a set of relevant

variables. It proves to be very effective in presence of a complex system of

variables, where the main goal of the statistical analysis is to make infer-

ence on the joint probability distribution.

Formally, a BN is represented by B = {G,Θ}, where G is a particu-

lar graphical model, encoding the probabilistic relationships of a set of

variables, X = {X1, . . . , Xn}, and Θ is a vector, whose elements are the

parameters of interest (Heckerman 1996, Jensen 1998). The vector Θ is

related to a set of local probability distributions, P, which is used to de-
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scribe the conditional independence among the variables in X. For each

of these variables, the local probability measure is exclusively a function of

the parents (i.e. the nodes which the variable directly depends on), indic-

ated by pa(Xi), and is independent on the other nodes. Hence, combining

all the local probability distribution, a BN can actually characterise the joint

probability distribution of the variables in X. Moreover, this feature allows

to factorise the complex joint distribution into a set of simpler components,

as described by the so called Markov property:

Pr(X1, . . . , Xn) =
n
∏

i=1

Pr(Xi |pa(Xi))

In order to represent graphically and estimate a decision problem, a BN

can be augmented with decision and utility nodes, associated to the real-

isation of the random variables. Such a model is named Influence Diagram

(ID) and its first application dates back to the work of Howard & Math-

eson (1981). Among the others, Szolovits (1995) and Owens et al. (1997)

have discussed the advantages of structuring a medical decision-making by

means of an ID. In synthesis, these advantages could be summarised by the

following:

• An ID is formally equivalent to a Decision Tree. This latter is a rep-

resentation of a decision problem where the dimension grows expo-

nentially with the number of decisions. The results associated to any

branch are considered, in terms of the probability of occurrence and

the total expected utility is then calculated. The decision associated

with the highest value is then chosen as the ‘optimal’;

• However, an ID has the advantage of allowing a more compact repres-

entation. This is mainly due to the fact that the decision nodes need

not be exploded in order to analyse the results associated to each

possible choice. In fact, an ID is based on the conditional probability

tables (CPTs). Each variable is associated to a CPT, which describes

the probability distribution of that node, given all the possible config-

urations of the parents;

• The Bayesian nature of BNs and IDs permits to take into account any

prior information that is available; this can be expressed in terms

of the CPTs for the variables in the model and assumes a noticeable

value for a decision maker who is responsible for the final choice.

On the one hand, this feature is a source of criticism, in that the

prior distributions can strongly affect the results. On the other hand,
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by using this tool, the decision maker can combine his (her) expert

prior opinion / information with empirical evidence in a very direct

way; moreover, the model would easily manage any modification of

the structural prior conditions (i.e. the attack rate could dramatically

vary from one year to another, leading to very different assumptions);

• The temporal ordering of a set of decisions is directly taken into ac-

count in an ID. Moreover, it is assumed that choice nodes (random

variables) that precede a decision node represent in fact observed

quantities, by the time that the decision is taken. On the other way

around, decision nodes that precede choice nodes indicate that the

decision directly affect the realisation of those variables. This char-

acteristic properly mimics the actual behaviour of decision making,

which is based on whatever relevant happened before, and is likely

to affect what comes after. Hence, the formulation of the model be-

comes more straightforward to the decision maker;

• The evaluation of different scenarios is also quite direct: it is pos-

sible to instantiate (set) either a chance or a decision node to a given

value and measure how the probability distribution of the variables

that are related to the instantiated node are consequently modified.

Moreover, the expected utilities associated to the decision node(s) can

be calculated under different scenarios, allowing for a direct form of

probabilistic sensitivity analysis (Spiegelhalter et al. 2004);

• A BN is a model for the entire joint probability distribution of a set of

variables; consequently, there is no need for the definition of ‘depend-

ent’ (response) and ‘independent’ (covariates) variables. Each node

is evaluated in terms of the dependence relationships with the others,

overcoming the limitation of some regression models, where a given

form of causality is given as an assumption, without the possibility of

learning over it. Moreover, the presence of missing values is easily

handled by the network structure;

• Finally, a procedure of update of the prior CPT can be performed,

starting from raw data for the variables of the BN. Moreover, the

whole structure of the network (i.e. the asserted set of relationships

among the variables, in terms of cause – effect) can be evaluated from

empirical evidence. This feature is not easy to implement in general,

and it is particularly cumbersome in presence of decision and utility

nodes, because of computational limitations (Jordan 2001). Never-

theless, using the duality between BNs and IDs, one can express a
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model in terms of a BN, allow for empirical data-driven update of

both the structure and the parameters of interest, and, finally, work

back in a decision framework, in order to calculate expected utilities

and discern among alternatives decisions.

4.3 Material and Methods

The model used in this study is based on several different components.

According to the work of Shuffman & West (2002), the real decision prob-

lem has been reconstructed and represented in terms of an Influence Dia-

gram, using a set of random nodes (variables of interest, each associated

to a local probability distribution), decision nodes (the decision of whether

to vaccine the reference population or not), and utility nodes, expressed

in terms of costs associated to each possible choice. Among the random

nodes, we can distinguish three different kinds of variables. First, we have

the exogenous variables (i.e. the coverage rate, which is dependent on the

reference population, and the attack rate, which the decision maker cannot

directly control, as it is flu-season dependent). Second, we can consider

the vaccine-dependent variables (i.e. variables taking into account the re-

duction in the utilisation of health resources generated by the vaccination).

Finally, there are the risk measures (i.e. variables used to estimate the prob-

ability of death, hospitalisation, GP visits and of incurring in influenza re-

lated drug prescription).

In order to evaluate the vaccination problem, we need to define the set

of CPTs and to associate some utility measure to the possible choices.

4.3.1 Conditional Probability Tables (CPTs)

The definition of the local probability distributions for the random nodes is

a basic part of the model. In this case, we had not access to a comprehens-

ive database, which could allow us to observe directly all the quantities of

interest. For this reason, we followed a two-fold strategy: when possible,

we tried to use sample data from an observational study carried out on

the elderly population of Pianiga (Venice, Italy) during three flu seasons

(2000-2001, 2001-2002 and 2002-2003). The average size of the Pianiga

population in the study period was 9,307 residents, and the subjects with

at least 65 years of age were 1,641 (17.6%).

Co-operation of four General Practitioners organised in Family Medi-

cine Group (FMG) in the same area was obtained. The FMG has an active

population of approximately 5,750 patients (with an average of 5,721 in-
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dividuals in the study period); among them, 1,114 subjects are at least 65

years of age (67.9% of Pianiga elderly population). Patient of FMG who

were at least 65 yeas old on specific flu season (on October, 1st for each

flu season) were included in the study, if they were not institutionalised.

Influenza seasons were defined by the dates that the first and last influenza

isolates were obtained, according to surveillance data reported to Italian

Ministry of Health.

The FMG used a microcomputer-based patient record system. This sys-

tem includes data on patients (demographic characteristics), vaccination

status and type of vaccine used, and a prescriptions-writing function that

allows prescriptions to be written using the Anatomical Therapeutic Chem-

ical (ATC) classification1.

The drug prescriptions directly related to influenza syndrome were ana-

lysed, divided by: symptomatic treatment (antipyretic, antitussive, etc);

respiratory drugs (ATC: R) and antibiotic (ATC: J01); antivirals (ATC: J05).

To estimate influenza related hospitalisation, we analysed data collec-

ted from the specific flu season periods from the hospital records of the

Veneto Region. Cases of influenza related hospitalisation were identified

from all hospital discharge records, using the International Classification of

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM).

When we needed information about variables that are not directly meas-

urable in the Pianiga database, or in order to provide more statistically ro-

bust estimations, we performed a meta-analysis of literature data, to obtain

the distributions of interest. The estimations of exogenous variables were

based on Italian data, while the effectiveness of vaccination (either for the

standard vaccine or the MF59) was derived by a set of multi national stud-

ies. Table 4.1 summarises the data and the sources used in this study.

For all the variables presented in Table 4.1, we built the CPTs using a

probability distribution that gives a high mass to the point estimation cal-

culated from the meta-analysis. This was done by performing a standard

learning, based on a non informative prior Beta(1, 1) distribution. To pre-

serve the computational facilities associated to a Bayesian Network, the

1The Anatomical Therapeutic Chemical classification of pharmaceutical products
has been developed and maintained by the European pharmaceutical Marketing Research
Association (EphMRA), starting from 1971. A Classification Committee has been con-
stituted to take care for new entries, changes and improvements. The 1st level of the
anatomic therapeutic classification indicates the anatomical main group (C – Cardiovas-
cular System). The 2nd level identifies the main therapeutic groups (C1 – Cardiac Ther-
apy). Finally, the 3rd level separate out the pharmacological/therapeutic subgroups (C1B
– Anti-Arrhythmics). The 3rd ATC level is a widely accepted standard (typically, Antitrust
Authorities around the world apply it) to classify products for purposes of identifying the
manufacturing market in pharmaceuticals.
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Data sources Point estimation
Exogenous variables
Coverage rate Gasparini et al. (2002),

Friuli (1999), Crocetti
et al. (2001), Gasparini
et al. (2001), Montomoli
et al. (2002)

0.5253

Attack rate Gasparini et al. (2002),
Gasparini et al. (2001),
Montomoli et al. (2002)

0.1658

Vaccine-dependent variables Standard
vaccine

MF59

Reduction in GP visit generated by
vaccination

Shuffman & West (2002) 0.4490 0.5056

Reduction of influenza related treat-
ments generated by vaccination

Shuffman & West (2002) 0.5300 0.6264

Reduction of hospitalisation for Influ-
enza & Pneumonia generated by vac-
cination

Shuffman & West (2002) 0.3679 0.4331

Reduction of hospitalisation for
Chronic Heart Failure generated by
vaccination

Shuffman & West (2002) 0.2413 0.3195

Reduction of hospitalisation for Res-
piratory Disease generated by vaccin-
ation

Shuffman & West (2002) 0.2913 0.3644

Reduction of mortality generated by
vaccination

Shuffman & West (2002) 0.4978 0.5493

Table 4.1: Summary of the data used to build the probability distributions of the

random nodes

results were summarised on a grid of 10 values in the interval [0; 1]. This

strategy also allows a sensitivity analysis, since different scenarios can be

considered, for the exogenous and the vaccine-related variables, simply by

instantiating them to a given value.

As for the risk measures, the CPTs were directly derived from the prob-

ability distributions of the relative parents. In particular, each risk measure

is assigned a Bernoulli distribution, i.e. each takes value 1 in case the

event described (GP visit, death, hospitalisation, drug prescription) occurs,

or value 0 otherwise. The probability distributions are weighed by the oc-

currence rates that have been observed in the Pianiga database. This was

done in order to insure a more robust representation of the reality under

study.

Figure 4.1 depicts the network structure of the decision problem. The

variables ‘which vaccine?’ and ‘vaccinated?’ in Figure 4.1 are sort of in-

strumental nodes. In other words, they are used to tune the effects of the
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Figure 4.1: The ID representation of the influenza vaccination problem

decision and allow us to model the impact of the decision on the vaccine-

dependent variables. Hence, their CPTs are degenerate, in that they only

serve as activator/deactivator of a particular scenario.

A similar approach is that of Dawid (2002), developed for the analysis

of causal structures using the decision theoretic approach.

4.3.2 Utility measures

The diamond nodes shown in Figure 4.1 represent the utility measures

attached to the decision (described by the rectangular node). While asso-

ciating a proper numerical utility measure to the risk of death (the node

labelled as ‘mortality’ in Figure 4.1) can be cumbersome, it proves to be re-

latively easy to define a (dis)utility measure for all the other risk measures.

In fact, the decision maker should weigh the choice of whether vaccine the

elderly population based a) on the global reduction of the risks; and b) on

the total costs associated.

Hence, we calculated the relevant direct costs shown in Table 4.2, weigh-

ing the unit cost of each health care resource by the occurrence probability

that we observed in the Pianiga database, in order to provide an estimation

of costs that is strictly related to the clinical practice reality that we are

monitoring.

We used the software Hugin to perform the evaluation of the posterior
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Costs Sources Estimation (e)

GP visit Official Italian Health Fee

Listing

12.42

Symptomatic treatments Official Italian Drug Listing 18.76

Antibiotic treatments Official Italian Drug Listing 31.48

Antiviral treatments Official Italian Drug Listing 54.74

Hospitalisation for Influenza &

Pneumonia

Elaboration on DRG fees 4,057.93

Hospitalisation for Chronic

Heart Failure

Elaboration on DRG fees 8,305.82

Hospitalisation for Respiratory

Disease

Elaboration on DRG fees 5,375.85

Unit cost of standard vaccine +

dispensation

Official data on Public Bids 12.87

Unit cost of MF59 vaccine +

dispensation

Official data on Public Bids 14.12

Table 4.2: Summary of the cost data used to define (dis)utility measures

probability distribution for all the variables of the model described in Figure

4.1.

4.3.3 Cost effectiveness analysis

The cost effectiveness analysis was then carried out combining the results

obtained from the evidence propagation in the ID. This terminology means

that the whole system is evaluated after one on more nodes are set to a

given value.

We compared three different health programs: a) the decision maker

chooses not to vaccine the population; b) the decision maker chooses to

vaccine the population with a standard vaccine; c) the decision maker

chooses to vaccine the population with the MF59 vaccine. Notice that

the model described in Figure 4.1 could also allow a combined strategy,

where the decision maker chooses to vaccine the population making avail-

able (possibly in different proportions) both the standard and the MF59

vaccine. The costs and the results in terms of effectiveness could then be

directly evaluated from the ID resolution.

The cost effectiveness analysis is based on the Incremental Cost Effect-

iveness Ratio, ICER (Gold et al. 1996). For each pairwise comparison, it

is defined as the ratio of the difference in total costs, ∆c, to the difference

in any specific effectiveness measure, ∆e. This value represents the differ-

73



ence between the probabilities of occurrence of a given risk under the two

alternative programs compared (i.e. ‘do not vaccine’ vs ‘give standard vac-

cine’, or ‘give standard vaccine’ vs ‘give MF59 vaccine’, or ‘do not vaccine’

vs ‘give MF59 vaccine’).

In other words, comparing the health programme a to the programme b

(a and b being either of the three described above), will lead to the follow-

ing formula:

ICER =
∆c

∆e

=
ca − cb

ea − eb

where ca and cb are the average costs and ea and eb are the average effect-

iveness measures chosen, respectively for programme a and b.

The main effectiveness measure is mortality, although one can evaluate

the cost effectiveness of a program with respect to the consumption of any

other health care resource considered in the model.

4.4 Results

The algorithm of evidence propagation (Jensen & Dittmer 1994) provides

a solution to the ID, i.e. a way to determine the choice associated to the

highest expected utility. In fact, all the probability distributions are ex-

ploited starting from the prior structure assigned to the CPTs. The total

expected utility is then calculated and associated to each possible choice.

A first result from the ID of Figure 4.1 is that, given the premises described

above, the expected (dis)utility, i.e. the total annual cost, equals e53.04

per patient, should the decision maker decide not to promote a vaccination

campaign, and equals e51.18 per patient, in case the decision maker de-

cides to go for a vaccination campaign. This latter result is an average of

the two specific situations where the vaccine can be either the standard or

the MF59.

Consequently, the vaccination proves to be a cost saving program.

Nevertheless, it is important to evaluate this result in the light of the

benefits that are gained from the population, in terms of risks reduction.

Table 4.3 summarises some interest findings.

As one can notice, the alternative based on MF59 vaccine always pro-

duces the highest risk reduction, in that the probabilities of occurrence of

the events are always lower than in the other programs. The standard vac-

cination also proves to be effective in reducing the risk of experimenting

the events, as compared to the null option (do not vaccine the population).
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Posterior probabilities for risk measures MF59

vaccine

Standard

vaccine

Do not

vaccine

GP visit 0.0604 0.0629 0.0828

Influenza related treatments 0.1102 0.1188 0.1658

Hospitalisation for Influenza & Pneumonia 0.0150 0.0160 0.0200

Hospitalisation for Chronic Heart Failure 0.0550 0.0580 0.0660

Hospitalisation for Respiratory Diseases 0.0006 0.0006 0.0008

Mortality 0.0023 0.0024 0.0033

Average Annual Cost e50.44 e51.92 e53.04

Table 4.3: Summary of the posterior probabilities for the risk measures, under altern-

ative programs

The total direct costs per year and per patient are of e50.44 in case the

decision maker chooses to vaccine population with the MF59 vaccine, and

of e51.92 in case the program chosen is the vaccination with the standard

vaccine.

Table 4.4 presents the ICER for each risk measure and for the three

pairwise comparisons.

ICER = ∆c

∆e

‘MF59’ vs ‘MF59’ vs ‘Standard’ vs
‘Standard’ ‘Do not vaccine’ ‘Do not vaccine’

GP visit –592.00 –116.52 –56.78

Influenza related treatments –172.09 –46.94 –24.04

Hospitalisation for Influenza

& Pneumonia

–1,480.00 –522.00 –282.50

Hospitalisation for Chronic

Heart Failure

–493.33 –237.27 –141.25

Hospitalisation for Respirat-

ory Diseases

– –13,050.00 –5,650.00

Mortality –16,444.44 –2,718.75 –1,298.85

Table 4.4: Summary of the posterior probabilities for the risk measures, under altern-

ative programs

Given that the values ∆c are always negative for the pairwise compar-

isons defined above (cfr. Table 4.3), and that vaccination is effective in

reducing the likelihood of the outcome measures, than the ICER is always

a negative value, and can be interpreted as saving per event averted.

As appears clear, the vaccination proves to be a highly cost effective

strategy, as compared to the null option. Both MF59 and standard vac-

cine produce a better health status for the population and savings for the

health provider. This is mainly due to the fact that the high-cost events
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(hospitalisations) are reduced (see Table 4.3), leading to relevant savings

for the public payer. The extra cost generated by the vaccine acquisition

and dispensation is more than balanced from this advantages.

From the clinical point of view, as widely accepted, the vaccination

proves to provide great benefits, especially in terms of reducing mortal-

ity rates, which in fact are considered as the most important effectiveness

measure.

In particular, the best advantages from the decision maker perspective

seem to occur when comparing the ‘MF59’ alternative to the ‘standard vac-

cine’ one. In fact, in this case the low difference in the ‘entry’ cost (vaccine

price and cost of dispensation) leads to a higher ICER. In terms of mortal-

ity, the implementation of the vaccination campaign based on MF59 would

save e16,444 per each death averted, as compared to the vaccination cam-

paign based on standard vaccine.

4.4.1 Probabilistic Sensitivity Analysis

As reported above, the ID approach allows a very direct way of performing

a sensitivity analysis for the results. It only needs to instantiate a variable

to one of its values to evaluate how the probabilities and costs are modi-

fied. Moreover, one can perform directly a multivariate sensitivity analysis,

as the number of variables that are instantiated at the same time can be

greater than one.

As an example, since we work with the decision maker perspective, we

reckoned that a relevant scenario would concern variations in the influenza

attack rate. Hence, we evaluated what would be if the attack rate increased

(pandemic season).

The results are shown in Figure 4.2. As appears plausible, in case the

attack rate is significantly low (i.e. lower than 0.05), than vaccination does

not represent a good value for money. Nevertheless, increasing the attack

rate produces higher and higher advantages in the vaccination scenario,

either with the standard or the MF59 vaccine.

Finally, we performed a Break Even Point Analysis with respect to unit

cost of the reference programme (Figure 4.3), evaluating the total cost

for the population of elderly people in Italy – about 10 million people, as

reported by the Italian Statistical Institute (ISTAT 2003).

In other words, assuming that a change in MF59 unit cost would not

affect changes in the other programmes utilisation, we compared the total

costs of the three options.

Given the estimated value of e5.7, as described above, vaccination with

MF59 is a cost-saving option. Besides, even if this unit cost would be in-
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Figure 4.2: Sensitivity analysis upon varying the attack rate value

creased up to e8.5, the public decision maker would face saving, as com-

pared to the standard vaccination option. The unit cost could be increased

up to e10.5, in order to equal the total cost of treating influenza, as com-

pared to the null option.

4.5 Discussion

This paper focuses on the analysis of the decision aspects of the influenza

vaccination. The scenario that was evaluated was based on the real ex-

perience in Italy, but the approach followed is highly transferable to any

different reality.

The model combines established findings from the medical literature

and sampling data from an observational study into an Influence Diagram

structure. The main objective of the model is to provide an estimation of

the whole probabilistic relationships among the variables considered, as

well as the evaluation of costs associated to the different health programs

available to the decision maker.

The main limitations of the study concern the fact that, from the statist-

ical point of view, it would be highly relevant to have access to a complete
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Figure 4.3: Sensitivity analysis upon varying MF59 unit cost

database, in order to estimate both the parameters and the network struc-

ture by empirical evidence. This was not possible due to the lack of a

database that could cover adequately all the dimension of the analysis. Yet,

we combined the prior information provided by clinical studies and expert

opinions used to build the network structure to a set of empirical data, in

order to obtain a result that mimic as closely as possible the reality. More-

over, from the technical point of view, more efforts are required, in order to

program an efficient algorithm that can allow the data-driven probability

updating in an ID. Yet, using the BN approach, we obtain a more straight-

forward representation, which can facilitate the translation of the statistical

features into a ‘clinical’ (‘administrative’) language.

From our analysis, we provide evidence that the influenza vaccination

is a cost effective strategy, as compared to the null option. Moreover, the

MF59 vaccine proves to be both more effective and cheaper in the long

run, as compared to both the standard vaccination and the null program.

Should the attack rate increase (notice that very mild flu seasons were

experienced lately in Italy), the vaccination turned to be even more cost

effective, with greater benefits coming from the adjuvated vaccine.
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The pharmacoeconomics evaluation based on BN and ID has a huge

potentiality, in our opinion, for the reasons we described above. We reckon

that statistical, economic and clinical research is to be focused on that topic

in the next future.
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– “Causality. There is no escape from it. We are forever slaves to it. Our

only hope, our only peace is to understand it, to understand the why.

Why is what separates us from them. You from me. Why is the only real

social power. Without it you are powerless.”

The Merovingian in “The Matrix reloaded”
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