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Chapter 1

Introduction and Motivations

”Try not to become a man of success but rather
to become a man of value”
(A. Finstein)

1.1 General Motivations: financial modelling with jumps

The Wiener process (or the Brownian motion) is the most widely used stochastic process in Math-
ematical Finance, when we study the time evolution of price, or log-price, of a financial asset. Its
fundamental properties are

e Independent and stationary increments;
e Gaussian distribution of increments;

e Continuity (as a function of time) of the sample paths.

Figure 1.1: Example of a sample path of a Wiener process

However, the analysis of the evolution of a stock price for any asset shows the presence of several
discontinuities (jumps) which characterize the price trajectories during a fixed period of time. More
precisely, we compare asset returns, that is, the time variation of prices, which are widely dispersed
in their amplitude and large peaks (generated by jumps in prices) are frequent, while the increments
of the Wiener process, being of Normal type, always have the same amplitude. Moreover, another
property of the Wiener paths, the scale invariance, seems not to be verified by the evolution of
real stock prices. The scale invariance is the property for which the statistical properties of the
Brownian motion are the same at all time resolutions. This is not certainly the case when we
consider empirical financial time series. As Cont and Tankov observe prices moves essentially
by jumps (Cont-Tankov, 2004, p.3). Jump is the key word. It represents the most important
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motivation that we lead to consider models with discontinuous sample paths. A diffusion model
cannot generate sudden discontinuous moves in prices: tail events are the accumulation of many
small moves (Cont-Tankov, 2004, p.7). These dissertations drive us in the choice of the most
appropriate stochastic volatility model for our purposes, which has the following general form

dXt = Cltdt + O'tth + th,

where X = (X¢)c[0,] is the stochastic process which rule the evolution of the asset price, a;dt +
o¢dW, is the diffusion part and dJ; is a jump process which introduces the sudden discontinuities.
Two type of jumps can be considered: rare and large jumps and infinite small jumps in every finite
time interval. In the first case we speak of finite activity models. Here, the jump part is typically
a Compound Poisson process with finitely many jumps in each finite time interval introduced for
the first time by Merton (Merton, 1976). In the second case we speak of infinite activity models.
Here the jumps itself give the evolution of the process, i.e., the dynamics of jumps is rich enough
to generate nontrivial small time behavior (Carr, Geman, Madan, Yor, 2002).

There are other (even if less important) motivations for departing from Gaussian models in
Finance which derive by the observation the empirical characteristics of asset returns; in partic-
ular, we think of the statistical properties of returns such as heavy tails and absence of (linear)
autocorrelations. Moreover, these properties seem to change with the time scale. For example,
when microstructure effects come into play (for small intraday time scale), autocorrelations can
be significantly different from zero and heavy-tailed feature is less pronounced as the time horizon
is increased. See Cont (2001) and Pagan (1996) for more details. When we adopt a Lévy process
as a model to drive the price dynamics, the problem of heavy tails can be overcome because the
distributions of any Lévy process have positive kurtosis: therefore, the probability of occurrence
of large market movements won’t be negligible, unlikely the Gaussian case. Besides, the absence
of autocorrelation in increments is a property of all Lévy processes.

1.2 Dependence and Lévy processes

In this work, we are interested in studying the dependence between two semimartingales represent-
ing the underling stochastic processes which describe the dynamics of stock prices. In particular,
we will assume a pair of Lévy processes (Xt(l))te[o,T] and (Xt(Q))te[O,T]7 which can be decomposed
into the sum of three independent parts: the first one of continuous type (C), the second one of
finite activity jump type (FA), the third one of infinite activity jump type (IA), i.e.,

xM=cM 4 FAY 414,
XP =0® + FAP + 1A%,

Clearly, the joint evolution of (X(l))t)te[o,T] and (Xt(Q))te[O,T] depends on how several parts are
correlated. In the case of random processes the quantity which establishes the covariation is the
quadratic covariation process (chapter 2, section 3) that is estimated in different ways depending
on the assumptions relative to the stochastic model. When we model market movements by Lévy
processes, the quadratic covariation is the sum of the dependence of the continuous parts and the
dependence of jumps. In the last case the crucial role is played by the simultaneous jumps whose
study represents an important future development. Indeed, in this work we concentrate on the
covariation between the continuous components C'!) and C(®) and in particular we estimate the
quadratic covariation between them, [C' ONe: (2)]T. The most important case is when C(Y) and C?)
are of Gaussian diffusion type, that is,

A0 = al?dt + o @Waw®, ¢=1,2,

where a(? are the mean processes, 0@ are the volatility processes and W@ are two correlated
Wiener processes. Here, [C(1), C?)]p = fOT pat(l)at(z) where p is the correlation coeflicient between
W™ and W which, without loss of generality, is assumed independent of the variable t.
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1.3 Financial market, pricing of claims and model uncer-
tainty

We give a brief description of the concepts of Mathematical Finance which serve to understand the
importance of the estimate of the integrated volatility and integrated covariance. We essentially
follow Klebaner (1999) and Bjork (1998). Let us consider a financial market consisting of several
type of financial derivatives and assets such as stocks and bonds. A financial derivative is a contract
that allows purchase or sale of an asset in the future on terms that are specified in the contract.
Call option and put option are the most important examples of contingent claims. A call option on
stock is a contract gives its holder the right to buy this stock in the future at (predefined) price K.
Suppose the period of time is finite [0, T]: T represent the time at which the holder can exercise
the option. Denote by (S¢):e[o, 7 the price dynamics of the asset. Since (S¢)¢cjo,7] is a stochastic
process for mathematical reasons we suppose that a filtered probability space (2, F, (F¢)¢ecjo, 1], P)
is given. Clearly, if ST < K the holder will not exercise the option, as he can buy stock cheaper
than K, thus this option has value 0. On the contrary, if S > K then the holder can buy the
stock (more realistically shares of stocks) at price K and sell it for St making a profit of St — K.
Call options that can be exercised at a fixed time date in the future are known as FEuropean call
options and its value at time T will be

CT = max(07ST — K) = (ST — K)+ = (ST — K)l{(ST—K)ZO}w

If the value of the claim is specified in the contract, it is not so for the stock, whose value at time
T is uncertain and determined by the stochastic evolution of its price. So, the problem of choosing
an efficient price for the claim it is crucial to manage financial risk: the theory of pricing of claims
(which will be defined below) deal with type of problems.

Definition 1.3.1. Consider a financial market where time is divided into periods of length h and
where trading only takes place at the discrete points T/n, n = 1,2, ..... Suppose we have an m-
dimensional price process (St)iefo,r] = (S1ts s Smt)eejo,r), where Sj j =1,2,...,m are the price
processes of different stocks. Define a portfolio strategy (or simply a portfolio) any Fi-adapted
m-dimensional process (I1;)icjo, 1) = (q1ts s Gmt)tejo,r)- The value of the portfolio at time t will be
given by V; = Z;n:l qjtSjt. The process (Vi)iejo,r) is called the value process.

A portfolio is self-financing if all the changes in the portfolio are due to gain realized on
investment, i.e., no funds are borrowed or withdrawn from the portfolio at any time ¢ (Klebaner,
1999). Moreover, it is called admissible if it is self-financing and the corresponding value process
is nonnegative. A contingent claim X is a nonnegative r.v. defined on (2, Fr), and represents an
agreement which pays X at time T. For example, for a call option with price K, X = (St — K)*.
It is called attainable if there exists an admissible portfolio such that V; # 0 and Vi = X. Now,
let a; be the price at time ¢ of an investment without risk. Then we can define the discounted
price process by Z; = g—i If there exists a probability measure ) such that the process Z; is a
Q@-martingale, such a probability is called the martingale equivalent measure. A known result (see
for example Klebaner, 1999, p.258) says that if the market is arbitrage free (that is, does not exist
a strategy that allows to make profit out of nothing without taking any risk) then there exists a
probability measure @ equivalent to P such that the discounted stock process Z; is a martingale
under ). The most important result about pricing of claims is the following.

Theorem 1.3.2. In case of arbitrage free market the price Cy of a claim X at time t < T is given
by Vi, the value of any admissible portfolio replicating X, and

X
Cy = EQ(—|F,).
Qi
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In the case of call options we then have C; = EQ(WU—}). This result suggests to us
how to price any attainable claim. When all the claims are attainable, market models are called
complete. A well known result, which can be found in Harrison and Kreps (1979), says that the
market model is complete if and only if the martingale probability measure is unique.

The time evolution of stocks price can be described by a stochastic differential equation of
diffusion type. Let (2, F, (F¢)tejo,1), P) be a filtered probability space. Thus, in a diffusion model
the price dynamics is assumed to satisfy

dSt = a(St)dt + O'(St)th,

where W = (W})seo,17 is @ Wiener process defined with respect to P. Moreover the process a; is
deterministic and continuous

t
ap=e" fo rads

As observed above, pricing of claims requires the martingale probability measure ) under which
the process Z; = 2—: is a martingale. The change of measure is done by using Ito’s formula: pricing

equation become

dSt = St?"tdt + O'(St)th,

where now W is a @Q-Wiener process. The most important diffusion model is certainly the Black-
Schoels model where a(S;) = aSt, 0(S;) = 0S; and moreover the interest rate is assumed to be
constant so that a; = e~"*. The general stock price process is

dSt = O,Stdt + O'Stth,

of more explicitly

ds

—t = adt + odW,

St
where dR; = d%t are the returns on stock process. The change of measure from P to @ yields the
following pricing equation

dSt = TStdt + O'Stth,

2
L )t—aWy

whose solution is Sy = Spe(™~ . The price of a claim X at time T will be

Ct = e_T(T_t)EQ(X‘]:t).

2
If X is a call option Cy = S, ®(8) — Ke "T=Y®(§ — o/T — t) where § = log(st/K;HTf%)(T_t),
where ®(x) is the distribution function of the N(0,1) law, see Klebaner (1999).
Less intuitive is the pricing rule in the case where the model contains jumps as for example the
following simple jump-diffusion model

N,
_ at+oWi+) 1Y)
St = S()e Ayt k,

where V; is a Poisson process with intensity A, Y} are independent and identically distributed r.vs.
denoting jump sizes. Here, we are only interested in emphasizing how important is the correct
identification of the model for the strategy of pricing and hedging. For instance, in the univariate
case, Cont (Cont, 2005) shows how the choice of two different models for a specified stock in such
a way that both calibrates the same record of call options yields two prices of the same financial
derivatives whose different is greater than 60 percent. When the model is bi-dimensional the
situation can be worse and the identification of jumps become crucial.
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1.4 The Realized Volatility and the Threshold Estimator

A crucial concept relative to the Financial Market movements is certainly the market volatility
which gives a measure of risk and variability of prices. Traditionally, in the theory of financial
economics the variation of asset prices is measured by looking at sums of outer products of returns
calculated over small time periods. The mathematics of this is based on the quadratic variation
process (see for example Protter, 1990). Asset pricing theory links the dynamics of increments of
quadratic variation to the increments of risk premium. A wide econometric literature is available
on this subject: Andersen, Bollerslev, Diebold and Labys (2001), Barndorff-Nielsen and Shephard
(2003, 2004a, 2004b, 2004c), Comte and Renault (1998), Mancini (2004, 2005). Given a sample of
n returns r; = Xj5 — X1y, = 8;X, j =1,2,....,n observed at intervals h over the fixed period
[0,T] with T = nh the realized variance or realized volatility is given by

n

RQVr(X) = Z(Xah = X(j-1)h i

Jj=1

We will show (chapter 2) that the process (RQV;(X))se[o,r] converges in probability to the quadratic

variation process of X, ([X]¢)¢e[o,r7- Typically, the quadratic variation contains either a diffusion

part or a jump part: our purpose is to separate the contribution of each one. In particular, we are

interested in a bivariate jump model (X W x (2)), i.e., we study the realized quadratic covariation
n

1 1 2 2

RQCr (XM, x@) =3 (x{) - x{ (x ) - x)

Jj=1 J:1

where we have two price (or log-price) processes X and Y. Obviously, the quadratic covariation
process ([XM, X@)],),c0.77 is the limit in probability of the process (RQC, (XM, X®)),c0.7).
Since our bivariate model contains jumps, we use an estimator that can identify the instants of
jump on the basis of a discrete record of high frequency observations. In particular, we use a result
due to Mancini (2005) who concentrates on the behaviour of squared increments of the process
(A; X(@)2 = (Xt(;]) - Xt(le)? The celebrate Lévy modulus of continuity tells us that the

exact modulus of continuity of the paths of a Wiener process is 1/2hlog%, i.e., if [t — s| < h then
|Wy — W,| < \/2hlog+, P —a.s.. In other words, the absolute value of the increments of the paths

of W tends to zero as 2hl0g%. This yields for small h, w by w, sup,;—y %\/Z_WEI < M(w),
V o9t

P — a.s., that is, the increments of the stochastic integral (continuous part of the model) have the
same behaviour of the increments of the Wiener process. Then, when the activity of jumps is finite
we can say that if, for small h, the square increments (Aj)((q))2 >y >4/ 2hlog% we can think that
it could not be generated by the continuous part of X (? and thus jumps have to be occurred. The
function of time interval r;, is a mapping such that lim;,_.o 7, = 0 and limy,_.q % = 0. Formally
(Mancini, 2005), Lia,x@y2<ry = La,Nnw@w=0), P —a.s.,Vj=1,2,...n, ¢ =1,2. Hence, we are
able to introduce a new estimator, the threshold estimator, defined by

Y?(X(l) X®)p ZA XU )1{(A Xy A X )1{(A X@)2<p, )

j=1

Even if the sum of cross products Y 7 | A;X MWA;X® converges in probability to the global
quadratic covariation [X (1), X = [X(l),X(Q)](TC) + [X(l),X(2)](TJ), this new estimator exploits
the truncation principle to exclude the cross products between increments that are too much
(properly) large, in such a way that the second term of the quadratic covariation, [X (1), X (2)]%]), is
eliminated. This fact is crucial for the portfolio hedging strategies. In fact, financial traders are used

to estimate the diffusion part of the covariation by the sum of the cross products of increments,
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RQC7(XM, X®), which is an unbiased estimator of such a covariation if a jump component
is included in the model, because it converges to the sum of the contributes, [X(l),X(Q)]gf) +
[X(l),X(z)](TJ).

1.5 Outline

Chapter 2 provides a more detailed overview of the theory of Stochastic processes and Stochastic
Integrals. Moreover, it contains a brief introduction on the Lévy processes and their main proper-
ties. Chapter 3 focuses on the preliminary results in the case where the stock price dynamics is of
the diffusion type. Chapter 4 has been written with Prof. Cecilia Mancini and it shows the main
results of this work: in particular, we discuss the asymptotic behaviour of the threshold estimator
both in the case of finite activity and in the case of infinite activity. In Chapter 5 we develop a
simulation study to evaluate the performance of our estimator in small samples.



Chapter 2

Elements of general theory of
stochastic processes

”[” son Beatrice che ti faccio andare;

vegno del loco ove tornar disio;

amor mi mosse che mi fa parlare.”

(D. Alighieri, Divina Commedia, Inferno, Canto II)

2.1 Stochastic processes and Martingales

Let (Q, F, (Fi)t>0, P) be a filtered probability space, where Q is a set, F is a o-field of subsets
of Q, P is a probability measure on (€2, F) and (F¢)¢>o0 is a filtration, i.e., an increasing family of
sub-o-fields, Fs; C Fy, for each s <t. Define Fyy = ﬂ€>o Fige. If Fiqp = F; for each t > 0, we say
that the family (F});>o is right-continuous. Moreover, we consider filtrations which are complete,
that is, if N = {A € F: P(A) = 0} we assume that N/ C F; for each ¢.

Definition 2.1.1. Let (2, F, (Fi)i>0, P) be a filtered probability space. A stochastic process
is a mapping X from Q x Ry to (R,Br) such that for each t > 0 Xy(-) : w — Xy(w) is Fi-
measurable; in other words X = (X¢(w))t>0 is a family of r.v.s indezed by t. Moreover, the
mappings X.(w) : t — X¢(w) are called sample paths or paths of X.

To simplify the notation we write X = (X;);>o.

Definition 2.1.2. A stochastic process X = (Xy)i>0 is said to be continuous if all sample paths
are continuous, P — a.s., that is, if there exists a set Q* € F with P(Q2*) = 0 such that for each
w & QF the function t — Xi(w) is continuous. In the same way, we may define right-continuous
with left limit (cadlag) processes and left-continuous with right-limit (caglad) processes.

Definition 2.1.3. Let X = (X;);>0 and Y = (Y})i>0 be two stochastic processes.

1. We say that X is a modification of Y if
PX:=Y;)=Plwe: Xi(w) =Y (w)} =1, t>0;
2. we say that the processes X and Y are indistinguishable if
P(X;=Y;,t>0) =1,

provided that (X =Yy, t > 0) =(,5o(Xy =Y;) € F.
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Generally, (2) is strictly stronger than (1). However, in the case where X and Y have continuous
sample paths the two conditions are equivalent.

Definition 2.1.4. We say that the stochastic process X = (X;)¢>0 is measurable if it is mea-
surable w.r.t. Br, ® F, it is adapted to the filtration (F;)i>o if for each t > 0 the r.v. X is
Fi-measurable and it is progressively measurable if for each t > 0 the mapping X restricted to
[0,t] "Ry is Bjgy ® F-measurable, where By 4 is the Borel o-field of subsets of [0,1t].

It is clear that each progressively measurable process is adapted. Moreover, we have the fol-
lowing

Proposition 2.1.5. Fach adapted and right-continuous process is progressively measurable.

Proof. We give the outline of the proof. Let X = (X;);>0 be a right-continuous process
adapted to the filtration (F;);>¢ and define a sequence of right-continuous processes {X (") n e

N} = {(X{™)450,n € N} by

k k+1

XS”‘):X%S, SE[Qint727n

tf,

and
XM =X, s=t,

for some fixed ¢ > 0. We can prove that XS(") — X5 as n — oo for every s < t. Then, we only
have to show that X (™ is progressively measurable for each n. In fact, if A € B we have

{(s,w) ERy xN:s<t, Xs(w) € A} =

2k kel
U (et 5t Xaga, (@) € H U ({t} x X, € A) € By @ Fi,
k=1

so X is progressively measurable being a limit of progressively measurable mappings.

Definition 2.1.6. A stochastic process X = (X;)i>0 1s said to be predictable if it is measurable
with respect to the predictable o-field, P, which is the o-field generated by all caglad processes
defined on Ry x Q

P=o(H:H:Ry xQ—R, His caglad).

Proposition 2.1.7. Fach adapted and caglad process is predictable.

We omit the proof since it is similar to that of proposition 2.1.1.

Definition 2.1.8. A nonnegative random variable 7 : Q@ — Ry is a stopping time if {w € Q) :
T(w) <t} € F; for each t > 0. The stopping time o-field, denoted by F., is defined to be

Fr={AeF:An(r<t) € F, Vi >0}

Definition 2.1.9. An adapted stochastic process X = (X;)i>0 is called martingale w.r.t. the
filtration (Fi)i>o if

1. Xy is an integrable r.v. for everyt >0, i.e., sup;sq E|X¢| < oo;
2. E(Xy|Fs) =Xs, P—a.s., for each s <'t.

We often denote martingales by X = (X, F¢)¢>0 to clarify the filtration w.r.t. which X, is a
martingale.
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Proposition 2.1.10. Let X be a martingale. Then, there exists a unique modification Y of X
which is cadlag.

Definition 2.1.11. Let X be a martingale such that sup,;~o E|X|*> < oo. Define by [X]; the
unique adapted continuous increasing process such that (Xt2 — [X]¢, Fey t > 0) is a martingale.

Lemma 2.1.12. Let X be a martingale such that sup,~, E|Xy|* < co. Then, s <t < u < v we
have E[(X; — X,)(X, — Xu)] =0, P — a.s., and moreover E[(X; — X,)?|Fs| = E[[X]; — [X]s|Fs].

Proof. We can write
E[(Xt - XS)(Xv - XU)] = E{E[(Xt - XS)(XU - Xu)‘]:u]} =

E{(X; — Xo) E[(Xy — Xu)|Ful} = E[(X; — Xs)(Xu — Xu)] = 0.

Moreover,
E[(Xe — XS)2|~7:S] = E(Xf‘fS) — 2B(X¢ X, |Fs) + E(X§|~7'—S) =

E(X}|F.) = 2X.E(X\|F.) + B(XZ|F,) = BE(XP|F,) - 2X] + B(X?|F,) =
B(X}|F) = 2B(XZ|F) + B(XZ|F,) = B(X} - XZ|F),
P —a.s.. Now, since X} — [X]; is a martingale, we can write P — a.s.
0= B{[(X}? ~ [X])(XZ - [X],)]|F} = BX} - X2|F) - B(X]: — [X]s|F) =
E[(X, = X)*|F] = B((X]: - [X]:|F),
as required.
.

Theorem 2.1.13. (Doob’s sampling theorem) Let X be a right-continuous martingale and let T
and ¢ be two stopping times such that 7 < ¢, P —a.s.. Then E(X,|F.) =X, P —a.s..

We conclude this section with the definition of the Wiener process which is the most important
stochastic process.

Definition 2.1.14. An adapted stochastic process W = (Wy)i>o with values in R is a Wiener
process if

1. for any s < t, Wy — Wy is independent of Fs (Independent increments);
2. for any s < t, the distribution of Wy — Wy is N(0,t — s);
3. Wy=0, P—a.s..

Proposition 2.1.15. Let W be a Wiener process. Then, there exists a unique modification Y of
W which is continuous.

Proposition 2.1.16. Let W be a Wiener process. Then, W2 —t is a martingale.

Proof. We have to prove that E[(W2 —t) — (W2 — s)|F,] =0, P — a.s., for every s < t. In fact,
E(W2 — W2|Fs) = E[(W; — W,)?|Fs], and by independence of increments E[(W; — W;)?|F,] =
E(W, — W,)? =t — s; thus

E[(W —t) = (W? = 8)|F] = E[(W, = W)?|F,] — Bt —s|F] = (t—s) = (t—5) =0, P—as.
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A simple consequence of this proposition is that by definition [W]; = ¢, P — a.s..

Proposition 2.1.17. Let W be a Wiener process and let m, = {toyn,tl,n,....,tjmn} be a se-
quence of partitions of the compact interval [0,t] such that 0 = to, < t1,, < ... < tj n =1 and
Max,;=0.1,... ju—1|tji+1,n — tjn| = 0 as n — co. Then

Jn—1

Z 2 L7
(Wtj+1,n - Wtj,n) t.

j=1

Moreover, the sample paths of W, W.(w) : t — Wi(w), are of unbounded variation in each compact
interval of Ry

Proof. We have to prove that E( J:"_l(Wth — Wy, )> —1)* = 0, n — oo. We can write

j=1
Jn—1 Jn—1
E[Z (Wt]‘+1,n - Wtj,n)2 - t}g = E{ Z [(Wtj+l,n - Wtj,n)2 - (thrl,n - tj,n)}}Q‘
j=1 j=1

By properties of the Wiener process, the set (Wy,,, . — Wy, .)? — (tj41,n — tin))j=0,1,... ju—1 1S
a family of zero-mean Gaussian independent r.v.s, hence the expectation of cross products in the
previous sum is zero

E{[(Wtj+1,n - th,n)z - (tj-‘rl,’ﬂ - tj,n)][(XtiJrl,n - Xti,n)Q - (ti+177’b - tiﬂl)]} =0,

§ii=0,1,..,jn — 1, j #14, then

jn_l jn_l
E[ Z (Wtj+1,n - Wtj,n)2 - t]2 = Z E{[(Wtj+1,n - Wtj,n)Q - (tj-&-l,n - tj77l)]2} =

j=1 j=1

Jn—1 2
W0 = Wiy0)

Z (tj-l-l,n - tj7n)2E[ (tJ,Jrl, tA]' - 1]2-
j=1 j+ln — J’n)

Wy, Wy, )? Wy, .

The rv. Wattn Wil _ (—ptln 52 hag a Chi-square distribution with parameter 1.

(ti+1,n—t5,n) (tit1,n—tsn)
. (Wt'+1 n_Wt _.n)z 2 . . . .
Therefore, the expectation E[—H+br——int — 1]2 js a quantity independent of j, say C, thus

(tj+1,n—tj,n)

Jn—1 Jn—1
E[ Z (Wtj+1,n - Wtj,n)Q - t]Q =C Z (thrl,n - tj,n)2'
j=1 j=1
So
jn_l jn_l
E[Z (Wtj+1,n - Wtj,n)2 - t]z =C Z (tj+177l - tj,n)Q <
j=1 j=1
jn_l

C_ max  |tjyin —Linl D [irim —tial =Ct _ max [tji1, =t =0,
Jj=0,1,....5n—1 = J=0,1,....n—1

as required. Now, we show that W is of unbounded variation on each [a,b], P—a.s., i.e., there exists
a measurable set Qp, ) with P(Q, ) = 0 such that for each w ¢ [, ) the sample paths W.(w) is of
unbounded variation. By the first part of the proof we can write that if 7, = {ton,t1,n, s tjpon }

. 2
is a sequence of partitions of [a, b], then Z;’;II(W,:HM - Wy,)? £ b — a. Moreover

Jn—1 Jn—1

Z (Wtj-%—l,n - Wtj,n)Q S j=0 Ilna>§ 1 |Wt.7+l,w, - Wtj,n| Z |Wtj+1,n - Wtjm,|'
j=1 T j=1
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Since the Wiener process has continuous sample paths, max;—o,1,... j,~1|W¢,,,.,, — Wi, .| — 0 as
n — oo. If, by absurd, there exists a measurable set Q* € F with P(Q,) > 0 such that for w € Q*,

;l;l Wi, i1 — Wi, | < C(w) < 0o we would be as n — oo
jn_l
S Wy, =Wy, )? =0, we,
j=1

which is a contradiction with the first statement of the proposition. Consider now all the com-
pact intervals [a,b] with a,b € Q. Let T = Ua,beQ:agb Qq,p- Obviously, T € F and P(Y) <
> abe0:a<h P(Qap) = 0. Hence, if w ¢ T the sample paths W.(w) is of unbounded variation on
each [c,d] C Ry.

[ ]
Finally, we recall a fundamental result on the sample paths of the Wiener process due to P. Lévy.

Theorem 2.1.18. (Lévy modulus of continuity) Let W be a Wiener process. Then for every
T > 0 we have
. |Wt - W9| _
lim sup — =1

h—=0 tc[0,T]:|t—s|<h thog% ’

P —a.s.

2.2 Stochastic Integrals

2.2.1 Stochastic integral with respect to a continuous square integrable
martingale

We give a precise definition of stochastic integral w.r.t. a continuous square integrable martingale
(i.e. the Wiener process). Let M? be the class of all square integrable martingales defined on
the filtered probability space (0, F, (Fi)i>0, P). We assume that the filtration (F;);>¢ satisfies
the usual conditions. We write Z = (Z;, F¢)1>0 an element of M% and suppose Zy =0, P — a.s..
Moreover, if we define ||Z||{Vl3 = +/EZ? for all Z € M2, we can endow it by the norm ||Z||M2~ =
Yoa 27N Z ||£42) The key point is to define precisely the class of integrand processes, because
the integrator process has paths of unbounded variation and hence the pathwise Lebesgue-Stieltjes
definition is not correct. We choice to define the stochastic integral for integrands which are
progressively measurable processes, following Karatzas-Shreve (1991).
We call H the class of all progressively measurable processes satisfying the condition |, OT Z2d|Z), <

0o, for all T'> 0, and we define a metric on it by

1Z)7 =3 27"z, Zen (2.1)

where || Z||¥ =/ [, Z3d[Z];.

Remark 2.2.1. Recall that [Z]; is the unique adapted continuous increasing process such that
(Z2 —[Z)s, Fi, t > 0) is a martingale. Hence, an integral w.r.t. it is well defined in the Lebesgue-
Stieltjes sense. We call [Z]; quadratic variation process. In the following we will speak of it
with more details.

We proceed with the definition of the stochastic integral and the presentation of its main
properties for a particular class of integrands, the simple processes, from which by approximation
we can reach to the definition for progressively measurable ones.
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Definition 2.2.2. A stochastic process Y = (Y3)i>0 is said to be simple if it has the form

oo

Yi(w) := o)l (t) + > & @)y, 000 (1), 20, weQ,
=0

where {t,,n € N} is a sequence of real of real numbers such that to = 0, t, < tp41 for all n
and t, — 00 as n — oo, {&,,n € N} is a sequence of r.v.s such that &, is Fy, -measurable and

SUP, e |§n(w)] < 00, Yw € Q. We denote the class of all simple processes by S and we equip it by

the same norm of H, || - ||™*.

Let Z = (Zy,Fi)i>0 be a continuous square integrable martingale, i.e. Z € ME, and Y € S.
The stochastic integral of Y with respect to Z is defined by

t o0 n—1

(Y.2) = / YedZs =Y &(Ze,ont = Zign) = Y &(Zuy s — Za) + n(Zi — Z4,), £ >0

0 - ;
J=0 J=0

provided t,, < t < t,11 for some finite n. It’s not hard to derive the main properties of (Y.Z);.

1. (Y.Z); is a continuous martingale w.r.t. the filtration (Fi)¢>o, i.e., Vs <1t

E[(Y.2))|F) = (Y.Z)s, P—a.s.

Proof. We have to prove that E[(Y.Z); — (Y.Z)s|Fs] =0, P — a.s. Suppose the maximum
generality, that is, suppose that s and ¢ are in different subintervals 0 =tg < t; < -+ <t <

§<tpyr <0 <ty <t <tpyp <---. Write
n—1
Y.z), = Z §i(Zs, 0 — Zsy) + &2t — Z4,) =
=0
k-1 n—1
Zgj(ztj+1 - th) + gk(ZthA - Ztk) + Z gj(thJA - th) + gn(Zt - Ztn)?
j=0 j=k+1
and

k—1
(YZ)S = Zgj(th+1 - th) + gk(ZS - Ztk)
=0
Hence

n—1
E((Y.2)i—=(Y.Z)s|Fs) = B(&(Zts —Z)|IF)+ Y E(&(Ze,0,— 20| Fo)+E(En(Zi—24,)| )
j=k+1

Consider the first term. Since &, is Fs-measurable (because F;, C Fs) we have
E(gk(Ztk-H - Zs)|]:8) = é-kE(Ztk+1 - ZS)":FS) = fk(ZS - ZS) =0, P—as.

The second term is zero by using the law of iterated expectations and the fact that F;, O Fy,
forj=k+1,.....,n—1

n—1 n—1

Z E(gj(ZtJud - th)‘}-s) = Z E{E[gj(thJrl - th)|'7:tj]|'7:8} =
j=k+1 j=k+1

n—1

Z E{EjE[(th+1 - th)|‘7:tj]f.5} =0,

j=k+1
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P — a.s.. The third term is also zero

E(&n(Z:—Z:,)|Fs) = E{E&(Z:—Z4,)| 2] = E{H,E|[(Z:+—Z:,)|Ft,] =0, P—a.s.
This concludes the proof.
We can also observe that (Y.Z)g =0, P —a.s., and E(Y.Z); =0, for all ¢.

L]

2. B{[(Y.2), — (Y.2).2|F} = E([' Y2d[Z),|F.), P —a.s.
Proof. Thanks to lemma 2.1.1, we can easily prove the statement 2. In fact, as in the proof
of the property 1

E{[(Yz)t_(YZ)SP'}—S} = E{[fk(Ztk-H _ZS)+ Z gj(thJrl _th)+§n(Zt_Ztn)]2|}—S} =
j=k+1

B} (Zuy = Z2F) + Y B} (Zeyn — 20|\ F) + Bl60(Ze — Z0,)° | F)-
Jj=k+1

However, by previous results
E[E}%(Zthrl - ZS)2|]:5] = E{E[flz(ztk+1 - Zs)z‘}-tk]'fs} =

E{&GE[([ 2]t~ 2]s)*| Ful | Fs} = B{BIG (2]t~ 21| FeJIFs} = BIEG (2t —[Z]6)|FS],

P — a.s., while

n—1 n—1 n—1

Z E[f (ZtJ+1 j)2|‘7:5] = Z §?E([Z]tj+l_[z]tj|f5) = Z E(f?([z]tj+l _[Z}tj)‘]_-s)
j=k+1 j=k+1 Jj=k+1

P — a.s., and analogously E[¢2(Z, — Zy,)?|Fs] = E[€2([Z): — [Z)+,)| Fs), P — a.s., so that
E{[(Y.Z); — (Y.2)s*| Fs} =
n—1
B (2o, — 121+ Y & (Zlgun — [21) + E0(12) = [2]0, )| 7] =
j=k+1

t
E[/ Y2d[Z],|F), P —a.s.

Property 2 implies that the stochastic integral process (Y.Z) = ((Y.Z):)i>0 is a square
integrable (and continuous) martingale, i.e., (Y.Z) € M?2.

.
3. B(Y.2)} = E [, Y2d[Z]
Proof. By property 2, taking s = 0 and using the law of iterated expectations
E{E(Y.2)?| 7o)} = ME/YQ Lol Fol} = E/Yz
.

4. (Y.2)), = [y Y2d[Z
Proof. By property 2, we see that f Y,2d[Z], is the quantity such that ((V.Z); — (Y.Z),)?
is a martingale, so that setting s =0, [(Y.Z)]; = f(f Y2d[Z]
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5. The stochastic integral satisfies an isometry property, that is, [|(Y.Z)||Me = ||[Y||*.
Proof. The statement is an immediate consequence of properties 3.

To extend the definition of stochastic integral from simple processes to progressively measurable
processes we need a useful approximation result. The key lemma which follows can be found in
Karatzas-Shreve (1991).

Lemma 2.2.3. Let Z = (Zy, Fi)t>0 be a martingale and let A = (Ay, Fi)i>0 be a continuous and
increasing process adapted to (Fi)i>o0. If Y = (Yi, Fi)i>o0 is a progressively measurable process such
that EfOT Y2dA; < oo for all T > 0, then there exists a sequence of simple processes, {Y(”),n €
N} = {(Yt(n))tzo,n € N} C S such that

T

sup B |Yt(") ~Y;2dA; — 0, asn— occ.
T>0 Jo

This lemma establishes a fundamental property of simple processes given by the following

Proposition 2.2.4. The class S of simple processes is dense in ‘H under the metric generated by

the norm || - |**.

This means that for all Y € H there exists a sequence {Y (™, n € N} C S such that |[Y™ —Y||" — 0
as n — oo. Therefore, by using isometry property, it’s easy to prove that the sequence of stochastic
integral {(Y(").Z),n € N} is a Cauchy sequence. We have by linearity of the integral

(Y. 2) — (Y 2)|[Me = ||((v ™) — Y ) Z2)|ME = [y ™) — y ™" — 0, as n,m — co.

So, there exists a process ((Y.Z);)¢>0 € M$§ which is the limit of the sequence {(Y(".Z),n € N} =
{(Y™.2))i>0,n € N} C MS, since it is proved that M$ is a complete metric space (more
precisely it is an Hilbert space). In other words [|(Y(™.Z) — (Y.Z)|M? — 0, as n — oo.

Remark 2.2.5. The existence of a sequence of simple processes which converges to any stochastic
processes Y can be better understood taking into account the following fact. Let ¥, be a sequence
of functions defined on Ry by

In(z) = , n=12 ., xeR,.

Such functions are simple. Moreover, it’s easy to see that 0 < x — J,(x) < 27" and hence
Un(x) — 2, Vo € Ry. So, if Y is a progressively measurable process we can construct the sequence
U (Y) which converges to 'Y itself as desired.

Remark 2.2.6. Since the metric defined on M2 is the mean square metric we can also write that

(Y™.7), L2, (Y.Z)s, ¥t > 0, taking into account that the process (Y.Z); is a square integrable r.v.
for a fixed t.

This limit stochastic integral process (Y.Z) obviously satisfies the properties 1-5 relative to
simple integrands. In particular, since (Y.Z) € M?2, it is a square integrable martingale. Moreover,
to see that property 2 is satisfied it suffices to observe the following fact. Let {(Y(.Z),,n € N}
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and {(Y(™.Z),,n € N} be two sequence converging in Ly to (Y.Z); and (Y.Z), respectively, for
s < t. Now, if B € Fj
E{1p[(Y.2), — (Y.2),)*} =

lim E{15((Y".2), — (Y).2),]°} = lim E(E{15((Y™.2), — (Y").2),]’}|F,) =

lim E(1p B{[(Y"™.2), — (Y".2),]*|F:}) = lim E(LB{[(Y".2), — (Y. 2),|F}) =
tim E(1E| | (VP = tim B(ElLs / (V221D = im B(1 / (wmydiz,)

= E(1p /t Y2d[Z],).

This proves that (Y.Z) satisfies property 2 and consequently properties 3, 4 and 5. We conclude
with the formal definition of the stochastic integral process.

Definition 2.2.7. Let Y € H. The stochastic integral of Y w.r.t. Z € M? is the unique,
square-integrable martingale (Y.Z) = ((Y.Z)¢, Fi)i>0 which satisfies ||(Y(™.Z) — (Y.2)||IMé — o,
as n — oo, for every sequence {Y ™ n € N} C H such that ||[Y ™ — Y || — 0. We write

t
(Y.2), :/ Y,dZ,, t>0.
0

The most important example of stochastic integral w.r.t. a square integrable martingale is
certainly the one where the integrator is the Wiener process W = (W, Fi)¢>0. Since, as it’s easy
to show, [W]; =t, P — a.s., we can write

t
E(Y.W)f:E/ Y2dv,
0

and
[(Y.W)]t:/o Y2dv.

Moreover, when the integrand is a deterministic function, say ¢t — g(t) = g, the stochastic integral
(9.W) is a Gaussian process.

Definition 2.2.8. A stochastic process (X;)i>o0 is said to be Gaussian if ¥d € N and iy, ...,1q €
Ry, X=(X4,...., X4,) is a d-dimensional Gaussian random variable.

Proposition 2.2.9. Let g be a deterministic function such that sup;s fot g2ds < oo, then the
process (g.W) = ((9.-W)¢)e>0 is Gaussian.

Proof. Firstly, suppose that g is a deterministic simple function, i.e., g = Aolgoy(t) +
Z;io ALy, 4,041 (t) for Ao, Aq, ... € R; by definition

n—1
(gW)t = Z )\j(Wtj+1 - Wtj) + An(Wt - th)7 t > 0.
=0

Therefore, Vd € N and Vi, ...,iq € Ry we can write

nk—l

(gW)Zk = Z )\j(Wtj+1 - Wt]‘) + Ank( i th,k)a k=1,2,...d.
=0

The r.v. (9.W);, is Gaussian because is a linear combination of Gaussian r.v.s, Wy, , — Wy, ~
N(0,tj41 —t;) and Wy, — Wy, ~ N(0,i) — t,,). Moreover, it has zero mean and variance given
by

nE—1
El(gW)i,)? = Y NMEW,,,, - Wy)? + A EW;, = W, )* =

=0
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nk—l

D Nt — b)) + A2, (i — tny),
j=0

since the Wiener process has independent increments. Now, remark that (¢.WW); also has inde-
pendent increments, i.e., (¢.W);, — (¢.W);,_, for k = 1,...,d, are mutually independent. This
implies that the d-dimensional r.v. ((¢.W)i,, (¢ W )iy, — (¢.W)iyy ooy (g W)y, — (9.W);,_,) is mul-
tivariate Gaussian because its independent elements have marginal Gaussian laws. Then, since
((g-W)iyy-eery (g.W);,) can be obtained by a linear transformation of

((g'W)il’ (g'W)i2 - (g'W)im ) (g'W)id - (g'W)id—l)’

we see that it is a d-dimensional Gaussian r.v.. In fact, we may write

-1

(9. W), 1 0 0 . .. 0 (9. W),
. -1 1 0 . 0 (g.VV)i2 — (g.W)il
= X '
(g-W)id 0 0 . . -1 1 (QW)M - (g'W)id71

For general integrands g satisfying the condition of square integrability, we take a sequence of simple
functions {g("),n € N} converging to g4, for all ¢; by the properties of the stochastic integral we
have

((g(n)'W)iw sery (g(n)W)zd) i’ ((g'W)iN i) (gW)ld)

as n — o0o. Since normality of laws preserves under £2-convergence, the statement is proved.

The definition of stochastic integral given in this paragraph is valid even when R is replaced by
the compact interval [0,7], for T > 0, that is for progressively measurable processes of the form
Y = (Yi)ie,m- In fact, it suffices considering the space H[o ) which is the class of processes
Y € H such that Y;(w) =0, P — a.s., for every t > T.

2.2.2 Stochastic integral with respect to a semimartingale

The preceding definition of stochastic integral is not general because it is restricted to continuous
processes, that is, both the integrator and the stochastic integral process have continuous trajec-
tories, which is often a stronger restriction in applications, where it’s crucial to consider processes
whose paths may have discontinuities. In particular, we are interested in integrator processes with
possibly cadalg paths. More precisely, we speak of semimartingales.

Exactly as in the preceding subsection we first give the definition of stochastic integral w.r.t.
a restricted class of processes.

Definition 2.2.10. A stochastic process H = (Hy)i>o is said to be simple predictable if it has
the form

Hi(w) :=(o(w 1{0} + ZCJ 1]7,,7',4.1 (t), t>0, weqQ,

where {1,,n € N} is a finite sequence of stoppmg times such that o =0, P—a.s., 7o <7 < -+ <
Tn < Tpy1 < 00, P —a.s., (j is Fr;-measurable and sup; I¢j| < 00, P —a.s.. We denote the class
of all simple predictable processes by Sp.

Remark that if the sequence of stopping times is such that 0 =170 <7y <--- <7, <741 =T,
P—a.s., for some T' > 0, we could restrict our discussion on the compact [0, T'], without significantly
changes in what follows.
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We endow S, by the uniform convergence metric generated by the norm || H || syp =
SUP(¢,w)eR 4 xQ |Ht(w)‘7 VH € SP'

Let £ be the space of all finite-valued r.v.s topologized by the convergence in probability, i.e.
1Z]|¢ = ‘Z‘lzl VZ € €. Then, given a stochastic process (X, Fi)i>0, we can define a mapping
(HX):S8,—E&D

<HX> = CoXo + Z gj(XTj+1 - XTj)'

Jj=0

Definition 2.2.11. We say that the random process (X, Fi)i>0 15 a semimartingale if it is
cadlag, adapted and if the mapping (H.X) is continuous VH € S,; that is, if for every sequence of
simple predictable processes {H™ n € N} converging to H, the sequence of r.v.s {(H™ .X),n € N}
converges in probability to (H.X); formally

X is a semimartingale if ||H™ — H||gp — 0= [(H™.X) — (H.X)|| = 0 as n — oco.

For example, let’s show that each square integrable martingale is a semimartingale. Let
(Xt, Fi)t>0 be a square integrable martingale. We take a sequence of simple processes, H (),
such that ||H™ — H| s, — 0. What we have to prove is that ||(H™).X) — (H.X)||¢ — 0. By
linearity of the mapping (-, -) the problem is to verify the convergence to zero of ||((H ™ —H).X)||¢,
which is established if E|((H™ — H).X)|*> — 0. Suppose without loss of generality that Xy = 0,
P —a.s.. Then

n

E|<(H(n) - Z C(n) Xrjn = XT;')}Z = EZ(CJ(TL) o Cj)Q(XTjH o XTJ)Z’

J=0 J=0

while the expectation of cross products vanishes because the summands are increments of martin-
gales. Now, we use the Doob’s sampling theorem to obtain

n

Ez(gn) CJ)( T,H*X ) <||H”)*H||supEZ rip1 — Tj2:

Jj=0

WWAMWZE7m+ﬁ—wWX XnlFn)l) =

Ti+1

HH(”) H”supZE Ti+1 +X72'j - QE[XTJ'E(XTJ+1|]:TJ')])

”H(n) - HHsupZE Tjt1 +X3] - 2X72']) = ”H(n) - HHsupZE Ti41 X%)
Thus

E|<(H(n) _H)X>|2 < HH(n) - H”supZE Ti41 _X72'j) = ”H(n) HHsupEX2 — 0,

Tn+1

so that, ((H™ — H).X) converges to (H.X) in £? and hence in probability.

The definition of stochastic integral requires a new type of metric which endows the space Sy,
the space of all adapted and cadlag processes, D and the space of all adapted and caglad processes,
g.

Definition 2.2.12. We say that a sequence of processes {Y(”),n € N} converges uniformly on
compacts in probability, (ucp), if

YO =Y = sup [V =¥y =0, asn— oo, V20,
s<t
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Moreover, a compatible metric with the ucp convergence is given by
pucp(Y,Z) =Y 27 "E(LA(Y = 2);),

for any couple of processes in D or in G.
The following theorem (Protter, 1990) is crucial for the extension of the definition of stochastic
integral to caglad integrands.

Theorem 2.2.13. S, is dense in G in ucp topology, that is, VY & G there exists a sequence
{H™ n e N} C S, such that |[H™ — Y| 50, vt > 0.

Definition 2.2.14. Let H € S, and let X be an adapted, cadlag process. The stochastic integral
of H wrt X, (HX) = (HX)t)t>0, is the mapping (H.X) : (Sp, pucp(-,-)) = (D, pucp(-;-))
defined as

(HX); = GXo+ Y _ GXT = XT) =(Xo+ > (Xrine — Xrjnr), t>0.
j=0 §=0

Proposition 2.2.15. If X is a semimartingale, then the mapping (H.X) is continuous.

Therefore, we are able to give the following

Definition 2.2.16. LetY € G and X a semimartingale. The continuous (linear) mapping (Y.X) :

(G, Pucp () = (D, puep(+,+)), obtained as extension of (H.X)s : (Sp, pucp(-s+)) = (D, pucp(-,+)) s
called the stochastic integral of Y w.r.t. X. We write

t
(Y.X), :/ Y,dX,, t>0,
0

Moreover, fooo Y.dX, :=1lim;_ fot Y.dX, when the last integral exists.

Remark 2.2.17. When the integrator process is a semimartingale, the integrands are represented
by caglad processes; intuitively, this means that an observer approaching t can be predict the value
of the process at t: jumps (discontinuities) are not sudden events.

We present the main properties of the stochastic integral in form of theorem.
Theorem 2.2.18. LetY € G and X be a semimartingale. Then
1. The jump process A(Y.X), is indistinguishable from Y;AXy, i.e.,

P{w € Q: the mappings t — A(Y.X):(w) and t — Yi(w)AX;(w) are the same function} = 1;

Let 7 be a stopping time; then (Y.X)™ = (Y.(X)7);
The stochastic integral (Y.X) is a semimartingale;

If Z € G we have (Z.(Y.X) = ((Z2Y).X).

AR R

Let 100 < T1n < -+ < 7j,.n be a sequence of random partitions of Ry such that sup; 7, —
o0, P —a.s., and sup; |Tj11.n — Tjn| — 0, P —a.s.. Suppose Y € G orY € D then

jn

D Yo (X7 = XTm) = (V2).X), i uep.

Jj=1
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Remark 2.2.19. The process Y_ is defined by Y_ = (Y;_)t>0 where Yi_ = limgy, Ys. This means
that if Y € G then Y_ € G while if Y € D then Y_ € G.

Theorem 2.2.20. (Protter, 1990) If X is a semimartingale with sample paths of bounded variation
on compacts, then (Y.X) is indistinguishable from the Lebesgue-Stiltjes integral, computed path by
path.

2.3 Quadratic Variation and Quadratic Covariation

Let X be a semimartingale and we assume that Xg = 0, P — a.s.. Consider a sequence of random
partition as in theorem 2.2.2(5). We are interested in the uniform limit in probability of the
sequence of processes {U™(X),n € N} = {(Utn) (X)t>0,n € N} defined by

jn—1

UM(X)p o= Y (XTittn — XTm)2 £ > 0.

§=0

Since
Ju—1
UM(X)e = 3 (X7rr = X2 =

=0

dn—1
[(XT0m)? = (XTm)2 = 2X T (X0 — X0 )] =
=0
Jn—1
(XTrrnn)? =2 Y " X T (XTarn — X,
§j=0

By using theorem 2.2.2(5) we get
U™(X) = [X], in ucp,

that is sup,<, UM (X)) — [X]s] 2,0, 0r
t
UM(X), 25 X2 - 2((X_).X), = X2 — 2/ X,_dX, = [X],,
0

uniformly in ¢. [X] = ([X]¢)¢>0 is called quadratic variation process of X. We immediately see
that it is an increasing (and adapted) process because if s < ¢, U™ (X), contains more nonnegative
terms than U™ (X), and hence U™ (X), < U™ (X),. Since convergence in ucp preserves signs,
we conclude that [X]s < [X];, P — a.s..

Remark 2.3.1. When X is a square integrable martingale (progressively measurable) with con-
tinuous paths, the integral fg X,dX, is also a martingale. That is, [X]; is exactly the adapted,
increasing process defined in section 2.1.1 which guarantees that X? — [X]; is a martingale.

Since the quadratic variation process has (by definition) cadlag paths, we have the following
Proposition 2.3.2. A[X]; = (AX;)2.
Proof. Since [X]; = X? —2((X_-).X); we have
AlX]y = AX2 —2((X_). X)) = A(X?), — 2A((X_).X); = A(X?), — 2(X;_)AX,,
by properties of stochastic integral. Moreover
(AX;)? = (X=X, )? = XP4HXP2 22X, X = X2 X2 —2X; (X;—X; ) = A(X?),—2(X; ) AXy,
so that (AX;)? = A[X];, as required.
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The quadratic variation process of a semimartingale can be decomposed into a continuous part
and a purely discontinuous part, i.e.

X1 = [X)87 + [X]§Y,

where [X]Ed) = > .<;(AX,)% We say that X is a quadratic pure jump semimartingale if and
only if [X]EC) =0.

Now, suppose that the time horizon is fixed at T > 0, and let {0 = tg ,, < t1,, < -+ <tj, n =T}
a sequence of non-random partitions of [0, T, such that supg<;<; 1 [tj+1,.n —tjn| — 0, a8 n — oo,
Define realized variance of X on [0, 7] the quantity

Jn—1

while the realized variance process is given by the process u(™ = (u(™ (X )t)tefo, 1), for each n,
where 1™ (X); = E;’;El(XtHMM — Xy, .at)%. Theorem 2.2.2(5) tell us that
W™ (X) > [X], in ucp,
or
sup [u™(X), — [X],] Lo, uni formly in t.

s<t

By proposition 2.1.6 we see that u(")(W)t 2, t, if W = (W});>0 is a Wiener process. Moreover,
if Xy = (0. W) = fot osdWs, for t € [0,T], as we have seen in subsection 0.1.1,

u™ ((o. £, 1. = T(72 s
(@) 25 [(e.W)r / 2ds,

If we consider two semimartingales X and Y with the usual assumption Xy = 0 and Y, = 0, P—a.s.,
we can introduce the sequence of processes {V ™ (X,Y),n € N} = {(V"(X,Y);)t>0,n € N}
defined by

Jn—1
VX, Y) = D (X740 — XTom) (Y To0n — YTim),
j=0
Since
Jn—1
VX, Y) = D (X+0m — X7 ) (YTothn — Y7o ) =
J=0
Jn—1
Z [XTit1m Y Tittn — XTinYTim — XTim(YTittn — YTim) — YTin (X Titn — XTin)] =
j=0
Jn—1
X Tnt1n Y Tntln _ Z [XTon(YTottn — Y Tim) — YTin (XTitbn — XTin)].
j=0

By using theorem 2.2.2(5) we get
V(X,Y) = XY — ((X_).Y)— ((Y_).X) = [X,Y], in ucp.
that is

t t
VX, Y) 25 XY — (X2).Y) — (V2).X), = XY — / X,_dY, — / Y, dX, = [X,Y],
0 0

uniformly in ¢. [X,Y] = ([X,Y]:):>0 is called quadratic covariation process of X and Y. Since
the quadratic variation process has (by definition) cadlag paths, we have the following



2.4 Poisson processes, Lévy processes and Lévy measures 21

Proposition 2.3.3. A[X,Y]; = AX;AY;.

Proof. Since [X,Y]; = X;Y; — (X-).Y): — (Y-).X); we have

A, Y] = AXLY; — (XY )0 — (Y).X)) = A(XY), = A((X_).Y), — A((Y_).X),
= A(XY): — (X:0)AY: — (Vio)AXy,
by properties of stochastic integral. Moreover
AX A, = (X, - X ) (Vi -Y ) =XV - XyY - X, Vi + X, Y =

XY= X Ve — (X0)(¥ = (Vi) = Yoo (Xe = Xi ) = A(XY); — (X, )AY; — ¥ )AX,

so that A[X,Y]; = AX;AY:, as required.
[ ]

The quadratic covariation process of a semimartingale can be decomposed into a continuous part
and a purely discontinuous part, i.e.

X, Y] = [X, Y] + [X, Y],

where [X, Y] = 3 (AX,)(AY,).
Now, suppose that the time horizon is fixed at T > 0, and let {0 =tg, <t1, <--- <tj =T
a sequence of non-random partitions of [0, 7, such that supg<;<; 1 [tj+1,.n —tjn| — 0, a8 n — o0,
Define realized covariance of X and Y on [0,7] the quantity
Jn—1
v(n) (Xa Y)T = Z (th+1.n - th,n)(}/tj«{»l,n - }/tj,n,)?

J=0

while the realized covariance process is given by, for each n, v(™(X,Y) = (v (X,Y):)sep0,17,

where v(™(X,Y); = ;:ZBI(XtHLn/\t = X, nt) (Y0 ont — Ye, oat)- Theorem 2.2.2(5) tell us that

v (X,Y) = [X,Y], in ucp,
or

sup [v™(X,Y)s — [X, Y] £, 0, wuniformly in t.
s<t

2.4 Poisson processes, Lévy processes and Lévy measures
Let (Q,F, (Fi)t>0, P) be a filtered probability space.

Definition 2.4.1. Let N = (Ny)i>0 be a counting process defined by
Nt221{77lgt}, tZO,

with values in N. We say that N is a Poisson process if

o the sequence {1,,n € N} is a sequence of stopping times such that 1, < 741, P — a.s., and
sup,, T, = o0, P —a.s.;

e (Independent increments) for any s < t, Ny — Ny is independent of Fs;

e (Stationary increments) for any s < t < u < v such that t — s = v — u the distribution of
Ny — Ny is the same as that of N, — N,,.
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The properties of stationarity and independence of increments characterize the Poisson process,
in the sense that each counting process with independent and stationary increments is a Poisson
process.

Remark 2.4.2. The process N = (Ni)i>o is adapted to the filtration F; because
{NMi=n}={we:n(w) <t<Tpni(w)}eF, n=012..

Moreover, since sup,, T, = 00, P — a.s., N is finite P — a.s., that is, P(N; < 00) =1, for every t.

Proposition 2.4.3. Let N be a Poisson process, then for fized t > 0

(A8)"

n!

P(N; =n) =e M , n=0,1,2,...,

for some A > 0; in other words Ny ~ Po(At) for everyt > 0.

Proof. We give the proof by steps as in Protter (1990). We first prove that P(N; = 0) = e~ ,
A > 0. We have for s <¢

{w: Ni(w) =0} = {w: Ns(w) =0} N{w : Ny(w) — Ns(w) = 0},
hence
P(N; =0) = P({N; =0}n{N;— N, =0}) = P(N; =0)P(N;— N, =0) = P(N; =0)P(N;_s =0)

by independence and stationary increments. Now, if we set y(s) = P(Ns; = 0) we obtain the
equality y(t) = v(s)y(t — s): a possible solution is of exponential type, y(t) = e~ for some
A > 0, unless we take v(t) = 0 for all t. However, from «(¢) = 0 follows that N; = oo, P — a.s.,
for all t > 0 which is a contradiction since N; is finite, P — a.s., therefore the unique solution is
P(N; = 0) = e~ as required.

Now, the second fact we need to prove is P(Ny > 2) = o(t). Let §(t) = P(N; > 2). We have to
show that 6(1) = o(1) as n — oco. If we divide the interval [0, 1] into n equally spaced subintervals,
the probability that each subinterval contains at least two events is § (%) By independence and
stationary increments, the number of subintervals which contain at least two events, S,, is a
binomial r.v. with parameters n and ¢ (%) But, for each w for n sufficiently large no subinterval
has more one events by properties of the Poisson process. That is, P(S,(w) — 0) =1, as n — 0.
Hence, lim, né(1) = lim,, E(S,) =0, so that §(%) = o(1).

The third fact to show is that lim;_,q w = A. We have

= —_ = —_ > — e At _
p PONi=1) 1= P(Ni=0)=P(N;22) _ oft) _
t—0 t t—0 t t—0 t
1—e t
lim i 28—y
t—0 t t—0 ¢

which implies that P(N; = 1) = Ate ™.
Finally, we consider the probability generating function (t) = E(z"*). We can write

V(t+s) = E(th+s) — E(ZNt+sts+Ns) — E(Z(Nursts)JrNs) —

(") BN N = BN B(E) = w(s)u(t),

so that v (t) is of the kind 1(t) = ¢/*(*). To determine the explicit form of ¢(z), we remark that
%1/1(75) lt=0= ¢(2); therefore
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PNy =0)+zP(N, =1)+ Y72, 2"P(N = k) =1

lim
t—0 t
P(N;=0)—-1 P(N; =1 t
hm%HimMHim@:
t—0 t t—0 t t—0 ¢
e M1
lim —— + Xz + 0= -+ Az,
t—0 t
hence v (t) = e~ ****t, Then, by Taylor series expansion
oo [e.e]
At k k
v(t) = 3 FPW = k) = M = oy BT
k=0 k=0 ’

so that P(N; = k) = e~ ()‘l:!)k7 as required.

An immediate consequence of the above proposition is that EN; = Var(N;) = At. Then, by
properties of increments, it easily follows that N; — At and (N; — A\t)? — A\t are martingales w.r.t.
the filtration (F;);>0. In fact, for s <+t

E[(Nt — At) — (N5 — As)|Fs] = E[Ny — Ng|Fs] — At —s) =
E(Ny—Ns) = At—s)=At—s)—ANt—s)=0, P—a.s.
The most important properties of a Poisson process are the following.

1. The sample paths, N.(w) : t — Ni(w), are cadlag and in particular are piecewise constants
and increase by jumps of size 1;

2. P(Nt = Nt—) = 1, Vi > O,
3. N = (Ny)i>0 is continuous in probability, i.e.
lin%P(|NS —N¢| >¢e)=0, Vt>0, Ve >0.
S—
Each counting process generates a counting measure on the space where it takes its values. In

particular, they are generally known as random measures. For example, for each w, the Poisson
process yields a measure M on R defined as

Mw,A)=#{neN:1,(w) € A}, ACR,.
We immediately see that Ny(w) = M (w, [0,]) := fot M(w,ds).
Definition 2.4.4. A mapping pu: Q x E — N, where E C R? is a Poisson random measure if

o for almost all w € Q, the function p(w,-) := u(A) : A — p(w,A) is a Radon measure on
(E, Bg), that is, u(A) < oo for any compact subset of E;

o for every A € Bg, the mapping u(-, A) := pa(w) : w — p(w,A) is a Poisson r.v. with
parameter A\(A) where X is a Radon measure on (E, Bg), i.c.,

Ay (A(A)"

S n=0,1,2,...
n.

P(ua=n)=c"

o for any disjoint finite family of measurable sets A1, ...., A, the r.v.s pa,,....,jta, are inde-
pendent.
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Let Rp = R — {0}. We are interested in the Poisson r.m., u, defined on Q x [0,7] x Ry, for
some T > 0. Let A be the Lebesgue measure on [0,7] x Rg. By construction (see Cont-Tankov,
2004), p can be described as the counting measure associated to a random sequence of points

{(tn, Yn),n € N} such that (7,,,Y,) € [0,T] x Ry defined by

1= 1jo1)xzo(Tn Yn),

where {7,,n € N} is a sequence of stopping times and {Y,,,n € N} is a sequence of F, -measurable
r.v.s. Therefore, we have

w(w, [0,1] x A) = 210%”” Y (w) =

#{(th(w), Y, (w)) € [0,T] X Rp : 7, (w) € [0,t] and Y, (w) € A},

for every t < T and A € Bg, by definition, the r.v. pu(-,[0,t] x A) = pp4xa has a Poisson
distribution with parameter Efu xa] = A([0,t] x A). Moreover, since for each w, pu(w,-) is a
measure on [0,7] x Ry we may define an integral w.r.t. it, for measurable functions g defined
on [0, T] x Rg, g : [0,T] x Ry — R. In particular, if g is simple, that is, of the form g¢(¢,z) =
> Z] 1 @il 7,114, where Ay, ..., A, are disjoint sets of Ry, such that A([0,T] x A;) <
o0 j = 1,2,..,n, we define the integral of ¢ w.r.t. p as (g.u) = Y v Z _1 @i ()7, Tiga] ¥
A;). For positive measurable functions the definition is obtained by the monotone convergence
theorem, (¢(™.p) — (g.p), where {g(™,n € N} is a nondecreasing sequence of simple functions
approaching to g. When g is completely general we can define the integral provided that (g.A\) =
f[o T)xRo lg(t, x)|\(dt,dx) < co. Remark that (g.u) is a r.v. with expectation E(g.u) = (g.M).

Proposition 2.4.5. Let pu be a Poisson random measure defined on [0,T] x Rqy and let g : [0,T] x
Ro — R be a measurable mapping satisfying (g.)\) < oo; then the stochastic process

X, = (g t_//RO s,2)fi(ds, dz) =
t g(s,x)p(ds,dx) — t g(s,x)A(ds,dx), te€0,T],
. i L,

18 a martingale.

The random measure i = p— A which appears in proposition 2.4.5 is called compensated Poisson
random measure: it makes (g.f1); be a martingale.

Now, let X = (X;);e[0,17 be a stochastic process with cadlag paths, and consider the sequence
{(7n,AX,),n € N} where 7, are the random jump times of X and AX, =X, — X,  are the
size of jumps. Remark that, by properties of cadlag functions AX, € Ry, and so we can write
{(tn,AX;,),n € N} C [0,T] x Rg. Then

x([0,8] x A) = T gpealrn, AX ) = > 1a(AX,), te€[0,T],
n s€[0,t]

is a random measure and since it is derived by the jumps of the process X it will be called the
jump measure associated to X. As above, we can define an integral w.r.t. yx; in particular, for
measurable functions g we have

| ] stonxianan = 3 gax).

te[0,T)
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If N is a Poisson process (which is cadlag), since the jumps have all size 1, the associated jump
measure y y is defined by

~([0,t] x A) = { g:se[o,t] 1a(1), 121‘2

Definition 2.4.6. An adapted stochastic process L = (L, Ft)i>0 with values in R is a Lévy
process if

1. (Independent increments)for any s < t, Ly — Ly is independent of Fy;

2. (Stationary increments) for any s < t < u < v such that t — s = v — u the distribution of
Ly — Ly is the same as that of L, — Ly,;

3. Lo=0, P—a.s.;
4. it is continuous in probability, i.e.

lim P(|L, — Li| >¢) =0, Vt>0, Ve > 0;

s—t

5. the sample paths, t — Li(w), are cadlag, for every t > 0.
It’s not hard to prove the following

Proposition 2.4.7. Let L = (L, Fi)i>0 be a Lévy process. Then Ly has an infinitely divisible
distribution Yt > 0; conversely, if u is an infinitely divisible distribution then there exists a Lévy
process L such that the distribution of Ly is p.

Since a Lévy process has cadlag paths the jumps AL; = L; — L;_ are defined and AL; € Ry.
Suppose that sup,~ AL < 0o, P —a.s.. Let A € Bg,. Define

7 = inf{t > 0: AL, € A}

7'1(42) inf{t > TA AL € A}
TXLH) inf{t > 7, : AL, € A}

It can be shown that {7 ("),n € N} is a sequence of stopping times s.t. Tg) > 0, P —a.s., and

71(4 ", 00, P — a.s.. Define the counting measure

k([0,1] x A) Zl{<n)<t} > 1a(ALy), t>0.

s<t

It is finite P —a.s., and moreover, it has independent and stationary increments. Hence £([0,¢] x A)
is a Poisson process and for a fixed t it is a Poisson random measure. Thus,

// (dt,dx) = 1a(ALy),
s<t

and

/O /A g(x)r(dt,dx) = g(ALy)14(ALy).

s<t
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Definition 2.4.8. The measure v on Ry defined by

v(A) = E[x([0,1] x A)] = E Y 1a(AL,)

1s called Lévy measure of the Lévy process L.

Remark 2.4.9. Lévy measure v is o-finite; intuitively, it is the expectation of the number of jumps
of L on [0, 1] whose size is in A.

Moreover E[r([0,1] x A)] = v(A) and by properties of the Poisson process we also have
E[x([0,¢] x A)] = tv(A).

Proposition 2.4.10. Let g:[0,T] x Ry — R. We have

E /0 ' /R ot ), ) = /O ! /R ot a)wldr)i

Proof. Suppose that g is simple, that is, of the form g(¢,z) = Y./, ! Zj 1 @ig Lt ) xa, (6 ).

Then .
T m—1 n
E/ / g(t, x)k(dt,dv) = E Z Zaij'f(]ti,tiﬂ] X Aj) =
0 JRo i=0 j=1
m—1 n m—1 n
azyE tzaterl] X A = Z Zaw z+1 _t / / t QIJ d.’E
=0 j=1 =0 j=1 Ro

For general functions g(-,-), we proceed by approximation through a sequence of simple functions
{g™(-,-),n € N} convergent to g(-,-), as usual.
If g(t,x) = f(x) = 327, ajla,(z), therefore

T m—1 n
B[ s =3 ) L) =T [ slowtan)

As an immediate consequence, we have

Proposition 2.4.11. Let f : Ry — R. We have

T
E(/ fx)s(dt,dx) =T | f(x)v(dx))> =T [ f*(x)v(dx).
0 Ro ]R() RO

provided the last integral exists.

Proposition 2.4.12. Let Ay, Ay € Br, such that Ay N Ay = @. Then, the two processes

t
Jt(l) :/ / xk(dt,dz) = ZAleAl(ALS)
0 JA;

s<t

and

t
e = / / wi(dt, dr) = Y AL A, (AL),

s<t

are independent Lévy processes.
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Theorem 2.4.13. (Protter, 1990) Let L = (L;);>o0 be a Lévy process with jumps bounded by
0< M < oo, sup, |[AL{| < M, P—a.s.. Let Zy = Ly — E(Ly). Then Z = (Z)i>0 is a martingale
and Z; = Zt(c) + Zt(d) where Zt(c) s a continuous martingale and

(@‘_ t TR xr) — rviaxr
7= | /ng (w(dt, d) — v(dz)dt)

18 also a martingale. Moreover, Zt(c) and Zt(d) are independent Lévy processes.

Theorem 2.4.14. (Jacod-Shiryaev, 1987) Let L = (L;);>0 be a Lévy process. Then, L has a
decomposition

L, =W, +7t+/ / (k(dt,dz) — v(dx)dt) + Z ALslgaL,>1}>
|9c|<1

0<s<t

where W = (Wy)i>0 is a Wiener process, k([0,t] x A) fo fA (dt,dx) is a Poisson process
independent of W for any A € Bgr,, x([0,t] x A) L k([0,t] x B) if A and B are disjoint, and the
measure v such that E[k([0,1] x A)] = v(A) has the property fRo(l A x?)v(dx) < oo

Theorem 2.4.15. (Lévy-Khintchine formula) Let L be a Lévy process with Lévy measure v. Then,
the Fourier transform of L is given by

pi2) = Bei*H) = et
where

=7 2 s — ")y (dx — e +iza)v(dr).
MG = G2 e [ et s [ e it

Since v is not necessarily a finite measure, that is, it is possible to have v(Rgy) = co, L can have an
infinite number of small jumps on a compact interval [0, 7], and so the sum of jumps is an infinite
series whose convergence requires conditions on v, in particular

/ 2?v(dr) < oo, v(dzr) < oo
lz|<1 |z|>1

Then, we have the celebrate Lévy-Ito decomposition

¢ t
Ly =W +~t+ / / xk(dt,dz) + / / x(k(dt, dz) — v(dx)dt),
0 J|z|>1 0 Je<|z|<1

where the terms are independent and the convergence of the last integral is almost sure and uniform
int € [0,T]. The Lévy-Ito decomposition establishes that for every Lévy process there exist v € R,
o > 0 and a positive measure v that uniquely determine its distribution. The triplet (o,~,v) is
called Lévy triplet or characteristic triplet of the process L.

Definition 2.4.16. We define compound Poisson process with intensity § and jump size
distribution G the stochastic process

N
Yi=) Z
j=1

where Z; ~ G, j =1,2,..., Ny and N; is a Poisson process with parameter 3.
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The following proposition gives a characterization of the compound Poisson processes in terms
of Lévy processes: they are the only Lévy processes with piecewise constant trajectories.

Proposition 2.4.17. The process Y = (Y;)i>0 is a compound Poisson if and only if it is a Lévy
process with piecewise constant sample paths. Moreover, its jump measure is a Poisson random
measure on Ry x R with intensity v(dz)dt = BG(dx)dt, in other words, Y can be written as

t
Vo= [ [oxrlitdn =Y av.,
o JrR <

where, xy is a Poisson random measure with intensity SG(dx)dt.

Since the condition flz\>1 v(dz) < oo in the Lévy-Tto decomposition implies that the number of
jumps with absolute value larger than 1 is finite, we can write the first integral as a compound

t
rk(dt,dx) = AL,.

s<t:]ALgs|>1

Poisson process

Now, suppose we have a bivariate Lévy process (Lgl), LEQ)). In this work we are interested in its
dependence structure. Here, we present two results relative to the marginal distributions and to
the independence of the components Lgl) and ng) which emphasize the role of the Lévy measure.

Proposition 2.4.18. Let (Lil)7 L§2)) be a bivariate Lévy process with characteristic triplet (3, T, v).
(Here, ¥ is a positive definite matriz, T is a vector of R? and v is positive measure on R%). Then
LY has characteristic triplet (5, Ty where

=W =5,

F(l) — Fl +/ x<1w2§1 — 1w2+y2§1)ll(dl‘,dy),
R2
v (A) =v(AxR), VA e Bg.
[ ]

Proposition 2.4.19. Let (Lgl), LEQ)) be a bivariate Lévy process with characteristic triplet (3, T, v).
Then Lgl) and L,El) are independent if and only if the support of v belongs to the set {(z,y) € R? :
xy = 0}, that is, if and only if never jump together. Moreover

v(A) = y(l)(A(l)) + y(z)(A@)),

where AN = {z: (2,0) € A} and A® = {y: (0,y) € A}, and vV and v? are the Lévy measures
(1) (1)
of L;”/ and L;™’.

Notes

The most results presented in this chapter can be found in Karatzas-Shreve (1987), Krylov (2002),
Protter (1990), Cont-Tankov (2004), Sato (1999).



Chapter 3

Preliminary results in continuous
case

”...sorgon cosi’ tue dive

membra dall’egro talamo,

e in te belta’ rivive,

laurea beltade, ond’ebbero

ristoro unico a’ malt

le nate a vaneggiar menti mortali. ”
(U. Foscolo, All’amica risanata)

3.1 Introduction

This chapter provides some preliminary results due to Barndorff-Nielsen and Shephard (Barndorff-
Nielsen and Shephard 2003, 2004c) necessary to derive our main theorems (chapter 4). They
estimate the integrated covariation between two diffusion processes in absence of jumps by using
the realized covariation and provide an asymptotic distributional analysis of it based on a fixed
period of time (e.g. a day or week) allowing the number of high frequency returns during this
period to go to infinity.

3.2 Some preliminary lemmas

Before showing the main propositions of Barndorff-Nielsen and Shephard, we need some useful
lemmas which we prove here.

If {m,,n € N} is a sequence of equally spaced partitions, i.e., m, = {0 =ton < t1, < -+ <
tnn =T} with h,, = tjn —tj—1n, such that h, — 0 as n — oo, we introduce the following process

el _r4l

TN Xy~ X ) Y, — Yo ) = e Y (A X) (A Y,

Jj=1 Jj=1

oD (XY ) = b
for any couple of stochastic processes X and Y defined on some filtered probability space (2, F,
(F)eejo,r), P) and adapted to (F)icjo,17-

Lemma 3.2.1. Let W) and W) be two Wiener processes such that Cov(Wt(l), Wt(Q)) = pt then
vﬂ)(W(l), Wy — pT, P —a.s.
as n — oo.

29
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Proof. Since A;W(@ ~ N(0,h), ¢ = 1,2, we have A, W (@) Z \/EZJ(‘Q where Zj(-:]rz is a standard

normal r.v., for each j and each n and C’orr(Z{l), Z£2)) = p. Moreover, (A; ,WMA; , WP, _;
is a sequence of independent identically distributed random variables such that

E(A;  WWDA;, W) = p\/E(AMLW(U)QE(A]-JLW(Q))2 = ph
Then, by the Strong Law of Large Numbers (SLLN)

o WO, WD)y = 57 A WOALWE = S VRZOVRZE = n S 2073 —
Jj=1 j=1

Jnrn
j=1

Analogously, we have

Lemma 3.2.2. Let W) and W® be two independent Wiener processes, then

.

v(ﬁ)(W(l)7 W(Q))T — Ty rp2g, P—a.s.
as n — oo, where py , and po are the r-th and [-th moments of two standard Gaussian r.v.s.

Proof. As above, by the SLLN
it & _rf o, -
W W) = B S O, WO = A E RS20 2
j=1 j=1

1 s
= nha— > (Z )" (250 = TE(Z) (22 ) = TE(Z) E(Z3) = T ppas, P~ aus.

n
j=1

since {Z.)), j=1,..,n, n=1,2,..} ~ iidN(0,1) and {Z\"), j =1,...,n, n = 1,2,..} ~ iidN(0,1)

(1) 5qs (2 .
and moreover Z; , is independent of Z;° for each j =1,...,n and each n.

Remark 3.2.3. If at least one between the exponents r and l is odd the previous limit is zero. If
WO =W we get anyway that

Uf«ﬁ)(W(l)v W(l))T —Tury;, P —a.s.
where, obviously, p,y; is the moment of order v +1 of a standard Gaussian r.v..

Lemma 3.2.4. Let ¢ = (¢¢)iejo,r) be an adapted stochastic process pathwise Riemann integrable
and such that pathwise 0 < Pp < Pr < 00, where bp = inficj0,m) 0 and oy = SUPyeo,] Pt; then,

asn— oo
n

T
h}zﬁZ(Aj,nsO)rﬂ/o pids, pathwise,

=1
for every r > 0.

Proof. Since there exists ;. such that infep; |, ¢, .19t < 0jn < SUPyepy, ¢, . Pt and

tjn
Ajnp = / Psds = (tjn —tj—1,n)0jn = hnojn,

ti—1,n
then
n n n n T
WS (D) =" hneh, = hnoh, = 05 (tim — ti—1n) — / phds,
J=1 j=1 j=1 j=1 0

by the (pathwise) Riemann integrability of ¢.
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Lemma 3.2.5. Let ¢1 = (@1t)efo,r)] and 02 = (¥at)iefo,r) be two adapted stochastic processes
which satisfy pathwise conditions of lemma 3.2.4; then, as n — oo

hy " lz Ajnp1)" (AJM"? _’/ @l heds,  pathwise,
j=1
for every r,1 > 0.

Proof. As above if infie(; ;191 < 0j,n < SUPye|

Sjm é Supte[tj—l,natj,n] P2t then

hqlm_T_l Z(A]’,n@l)r( Js n‘pQ = hl - ZZ th] n ng'wn = Z th;m%l')n -

ti—1,m:tjn] Pt and lnfte[ta 1,n,t5,n] P <

n T

l l
Z Q;,ngj,n(tj»n - tj—l,n) - / (p{s<p28d8'
=1 0

The following lemma will be used in the proof of proposition 3.3.4.

Lemma 3.2.6. Let o1 = (p1¢)tejo,r] and g2 = (02t)iefo,r) be cadlag adapted stochastic processes
satisfying conditions of lemma 3.2.4; then

- n

Z 1) 2 (0 02) (D s1,001) (D s1,002) = Y (B n1) (B np2)] = Oh).

j=1 7j=1

Proof. To simplify the notation we write t; instead of ¢;, and Aj;p instead of A ,p. We
essentially follow Barndorff-Nielsen and Shephard (2004a). We can write

n—1 n
D (801) P (8502) 2 (A 1101) P (A 4102) 7 =D (Ajeer)(Ajepa) =
Jj=1 j=1

n—1

Ajoa) (A 101) 2 (A 1102) 2 = (8j01)(Aj02)] — (An1)(Angpa) =
j:l
n—1

(A 901
Z A1) 2 (A8j02) 1A 1101) 2 (A 1102) 2 = (8501) 2 (8j02) ] = (Anp1) (Anp2) =

(A (Pl 1/2 2)1/2[(Aj+1<‘01)(Aj+1@2) — (AjSpl)(Aj@Q)]
g J+1<P1) 12(Aj192)Y2 + (A1) V2 (Ajpa) /2 (Anp1)(Anp2)
n—1
1 2(A501)2 (A p2) /2
_ —1 A A —(A; A 4
2 j=1 [ Aj1o1) V2 (A1) Y2 4 (A1) V2 (Do) /2 [(Aj1191)(Ajr1902) = (A 01)(Ajp2)]
177,71
+§ [(Ajr101)(Ajr1902) — (A1) (Ajp2)] — (Aner)(Anp2) =
j=1
L (A1100)2(811902) 2 — (A501) 2 (A02) 2 A A Ajer)(A
2 Z Aji1p1) )1/2 Aj+1¢2)1/2 + (Aj(pl)l/Q(AjSOQ)l/g( i4101)(Aj192) — (A1) (Ajp2)+

(
J:1 (
+%[(Ans@1)(ﬁn<ﬁ2) = (A1p1)(Ar1p2)] = (Anp1)(Anpa) =
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n—1
1 (Aj191)(Ajr192) = (Aj91)(A92)]? 1
——E: — C[(Anen) (A A1) (Args)].
2 ]:1 j+1901 1/2(A]+1§02)1/2+(Aj@1)1/2(Aj902)1/2]2 2[( 901)( 302) +( 1501)( 1()02)}

Now, let ¢2; = h™'Ajpg, ¢ =1,2. ¢2; is bounded and strictly positive because

3]. = h*1A3<pq <h~ h<qu < 00, ¢2 =h" 1AJ‘/’q > hilhqu > 0.

So that
1w« g+1<p1)(Aj+1902)—(Ajwl)(ﬁjsﬂz)]Q 1
z ——[(A, A, +(A A =
QE:: j+1§01 (AJ+1¢2)1/2+(Ajg01)1/2(Ajg02)1/2}2 2[( ©1)(Anp2) + (Arpr)( 1902)]
1 — (h@3 j41hd5 ;11 — hot hes;)? L .22 o 2,2 .2
2 2:: (RY2¢1 jp1h 2o ji1 + Y21 ;R 2 g5)? §(h Pinfan ¥ W O1190) =
1 (42 J+1¢2 J+1 %j(b%j)z 2 2 2 2
+ n n 1)
Y oo T orge + Gtk = ohe)
hence
n—1 n
Z (8501)"2(A502) (A 1101) 2 (A 1102) 2 = (A01)(A02)] =

ol (g2 2 2 1212
h Z (91 4193 j41 — 01;03;) 5 .
2 7 ’ + (91,02, + 9119
2 (1,j4102,j+1 + P1025)? (d1,93 11931)

Now, by assumption

0< inf pu < sup pg <oo, ¢=1,2
0<t<T 0<t<T

and recalling that Aj¢, = [ tt_" ) pgsds we can write
-

0 < inf <inf@? <supp?;, < su < oo =1,2
ogth(pqt— Paj < p¢qa—0§t£T¢qt 4 )2,

uniformly in j. Therefore the quantity (4%,,¢3, + ¢%,¢3,) is bounded from above. Furthermore
(1,j4102,54+1 + 1562))* = (7 j 1105 j 11 + 01,05 + 201 j4102,j4101j625) >

201,j4102,j+1015P2;5 = 2£§T£§T >0
so that

= (¢% '+1¢§ j+1 %¢§)2 1 =
E »J »J Jra) 2 2 2 12 \2
= ((2517], 1¢2,j 1 ¢1j¢2j)2 2 9? 73 ; 1: 1,74+1%2,5+1 15725 )

(see Barndorff-Nielsen and Shephard (2003)). The desired result follows.

Lemma 3.2.7. Let W) = (Wt(l))te[O,T] and W2 = (Wt(z))te[O,T] be independent Wiener pro-
cesses and let p(t) = (apgl))te[O,T] and p?) = (‘PEQ))te[O,T] two cadlag and adapted processes both

satisfying conditions of lemma 3.2.4. Moreover, let r,l positive integers. Then

T
v (W WD), (@D WD) Loy iy / () (o) at
0
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Proof. We prove the statement for simple processes, that is, o) and ¢®) are of the form

oM (W) == €0 ()10 (B) +Z£ Niiq,oqy(t), tE[0,T], weQ,

m

o2 (W) = €7 (W) 10y (1) +Z§2) W)izig s qy(t), £ €[0,T), we

"m

We can choose the same finite partition {i£, i =1,....,m} of [0, 7] for both processes without loss
of generality. Hence

(POW D)y = W — W), g=12,

and
- .

Ajn(P O WD) = DA, WD), if ST <ty <t < —T, i=1,.m, j=1,...n
m m

Now, assuming that each point %, i =1,...,m, belongs to any partition 7, = {0 = ton <tin <
- <tj, n =T}, we may write
n 1-oH .
Uf«,z)((‘P(l)-W(l))’ (90(2)-W(2)))T —hy 2 Z[Aj,n(()o(l)~w(1))]r[(Aj,n(@(Q)-W@))]l _

j=1

- 2 n P
Z ( ) Ly )(W(1)7W(2))[%T,';"T] P
=1

7 —

P - . i 1 T
L pping 3OEOY Y (T - L) =y pin / (@) (o) dt,
— 0

m m

having used lemma 3.2.2. For general progressively measurable processes we can invoke approxi-
mating results presented in chapter 2.
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The previous result holds even if the factors in the sum are more than two provided the Wiener
integrators, giving the considered stochastic integrals are at most two. For example, we can apply
proposition 3.2.7 to quantities of the type

r+l+d n

Z (80 (D WO [(A (0D W) A (0P WD),

where ), 0 and p(3) are progressively measurable processes. In fact, reasoning as in the proof
of the proposition we get

1_7*+l+d r
b 7Y (D@D WA (0@ WA (0 WD) =
j=1
m i P
S E) T E EP) W, WD WD) g gy
1=1

. o
Lo it vanen Y (€D (€Y (D)1 -

m m
=1

n:mﬂw%éwwuﬁhw%%.

3.3 Main results in case of diffusion processes

Let (Q, F, (F)efo,r); P) be a filtered probability space and let XM = (Xt(l))te[O,T] and X® =

(Xt(Q))te[o,T] be two martingales defined on it of the form
t
XW::/awmw:wmwm»tGMﬂ
0

t
x® — / o@aw® = (c@. WD), tel0,T]
0

where W) = (Wt(l))te[o,:r] is a Wiener process and

W = w4 T W
with W) = (Wt(3))t€[0,T] independent of W) and p € [~1,1]. More explicitly
X0 2 (o0 ),

Xt(2) (po (2) W(l) (2)\/— W(B)
Assume that the processes o(?9) = (Uﬁq))te[o’T], q = 1,2, are adapted and cadlag and moreover for

q=1,2

= inf U,Eq) > 0, Egg) = sup ng) < 00.

t€[0,T] t€[0,T)

U(q)

As we have seen in the proof of lemma 3.2.6 these conditions imply that
0< h;lAj,na(Q) <oo, ¢g=1,2.

Proposition 3.3.1. (Barndorff-Nielsen and Shephard (2004c)) If X, ™ = (MWW, t€0,T]
and X(Q) (@D W), t €[0,T)] satisfy the above assumption, then

T
v%amx“h—W/vpﬁw
‘ 0
and

T
n P
z&aﬁﬂ%rewunA@%%%%
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Proof. We can write

vgnl)(X(l),X( ))T - Z(AJ X )(AMX(Q)) _

Jj=1

3 (850 WA (oo D WD) 4 A (0P /1= 2 W)

n n

3 25 (0D WD) AL (pr@ WD) 4+ 57 A (6D WD) A, (02 /T 2 W)

j=1 j=1

0571)((0(1)-‘/‘/(1))7PU(Q).W(I)))T+v§?1)(( O W) (6P /1= p22 W) —>p/ T

having used lemma 3.2.7 and remark 3.2.3 with r,I = 1. Analogously, we have

vénz)(X() X(2 12 an(l X(2))2 _
hy' > (8 (@D WONP[A; L (o@D WD) 4 A (01— 2 WE))2
j=1
IZ o O WIPA (o WO+

2h ! Z puey) W(l))] A, (pa(z) 1974 1) in (2), /1 — W(3)

h;l i j n 1) w 1) j, (2 \/7 W(3

Now,

ot S A (0D WD) P[A  (po @ WO =

T T
n P
o8 (6D WD), (@ WD)y Ly / (0 )2 (o2t = 32 / ()2 (o),

and

hle in 1) W 1) / W(3

vgg)(( (1) W(l @\ /1 W(S) T_,/ (1)) ( t(Q))Zdt,

while the second sum tends to zero because W) appears with an odd power, as observed afterwards
proposition 3.2.7. We conclude that

T
n P
(XM X P22 4 1) / (02 (02,

To show the next proposition, which will be intensively used in chapter 4, we need a classical limit
theorem concerning triangular array of random variables with finite variances.
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Theorem 3.3.2. (Loeve, 1977) Let {H,;, j =1,.....Jn, n =1,2,...} be a double array of r.v.s
independent in each row having the same distribution of a r.v. H with zero mean and finite
variance. Define

an :ananj, j:17....,jn, n:172,....
where an; are real numbers. If the following conditions are satisfied
1. 3735, P(|H| > i) — 0, Ve>0;

2. jn 1 Onj (H1{|H|<$}) — 0, Vy>0;

3. dn [E(H 1{|H\<—7—}) (E(H1{|H|<a_:’;}))2] — 0.

Jan

then, as n — oo

E X”j — 0.
j=1

[ ]
Proposition 3.3.3. Conditions 1.,2., 3. of theorem 3.3.2 are satisfied if
1. max;j—1,.. j, Gnj — 0;
2. j,P(|H| > m) — 0, Ve>0;
3. Supnzj 1 Qnj < 00.
]

Proposition 3.3.4. (Barndorff-Nielsen and Shephard (20046)) If the conditions of proposition
3.8.1 are held, if 0@ L WD W) for g =1,2, and oV L 0@ and if we define

n—1
w™(X® x@) = pt Z Aj,nX(l)Aj,nX(Q)Aj+1,nX(1)Aj+1,nX(2)
j=1
then
w (XM, x@), P, / (0)2(02)2dt.

Proof. Since XV = (¢W.W®), and X2 = (po@. WD), + (6@ /T = p2.W®), we can write

n—1
w™ (X(l), X(Q))T — h:Ll Z Aj,nX(l)Aj,nX(Q)Aj+1,nX(1)Aj+1,nX(2) —
j=1

n—1
Bt S {8 (0D WD) A (po @ WD) + A (0 /T 2 WD)
j=1

><Aj+17n(a(1).W(1))[Aj+17n(pa(2).W(1)) + Aj+17n(0'(2) V 1-— pZW(S)
n—1
Bt ST 80D WA 4 (0@ W O)A 41 (6D WD)A 41 (00 WD)+

n—1

ht ZAj,n(0(1).W(l))Aj,n(pU(Q).W(l))A]H w(eM WA, irin(o® 1= p2w®)+

Jj=1

n—1

ha' AW WAL (0P = 2 WA (0D WD)AG 1 n(pe® W)+

j=1
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n—1
h;lej (e WA L (6P /1 = p2 WA, itin(o O WA, itim c@V/1-p2Ww®).
j=1
We have to study the limit in probability of each term. Our objective is to use theorem 3.3.2
and therefore we show that the conditions of proposition 3.3.3 are satisfied. We begin by the first
term, the other being similar. Since, conditionally on ¢V, A;,, (¢ .WM) = ftt’j oMaw V) ~
j;ﬂ " (eM)2dt) = N(0, /A (0™)2) we have A, (¢ WD) 2 /A (0D) Z(1 where
Z(l) j= 1, ....,n — 1 are independent standard Gaussian r.v.s, and the same holds for the others

g
factors, we can write

n—1
_ D
ha 'Y D@D WA (00D WA (0D WA (po P WD) =
j=1
12 jn (028020 D)) V2 (A1 (0D 2 (A 11,0p2 (0 D)D)V 2202 (28, )2

Now, Hy; = (Z; (1 )) (ZJ(}F)1 )2 are not independent and so we cannot directly apply theorem 3.3.2

and so we have to reason in a different way. Since it is possible to write

n—1
hit Z Ajm(a(l)-W(l))Aj,n(PU(2)~W(1))Aj+17 (o 1) W(l))A (pa(2) W(l))
j=1
—h- 12 jn 1/2(Aj,nPQ(0(2))2)1/2(Aj+1,n(0(1))2)1/2(Aj+1,np2(0(2))2)1/2 2
;! Z Y850 () A B 11,0 (0P A (A1, (0P A (o — 1),
if we are able to prove that
n—1
Bt (8@ 2 (B (02 (1m0 A (A 1 (0P (Hy — 1) =0,
j=1
we can say that
n—1
ha' S AW WI)A; L (po P WAy (0D WD)A L (po® WD) (3.1)
j=1
has the same limit in probability of
n—1
It (B (@) 2 (800 (0 2 (A 41,0 (D)) 2 (A 1,00 (0))7) 12
Jj=1
which is fOT p2(o$™)2(01?)2dt, applying lemma 3.2.6 and lemma 3.2.5 with ¢1; = (0\)2 and

ot = p2(0§2))2. We want to apply theorem 3.3.2 to (3.1). Let

n

bnj = hy (B4 (02 (D50 (@) 2 (A1 (0 )2 (A 1,00 (0)) 2 (Hy — 1),

We can say that b,; L by j+m if jm| > 1. Now, let b;lj be an independent copy of b,; and consider

the sum
n—1 n—1

> bni+ > by

j=1 j=1
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It can be rewritten in such a way that the summands are independent as we like. In fact

n—1 n—1
D bni+ D by = (but + by + bus + by ) + (by bz + byg +bpa ) = S + S,
j=1 j=1

and now each sum S, and S/ has independent summands. Hence, if we prove that .S, F.0 (and
S £ 0), we can conclude that POy T D D .0 and since Z;l; g L D5 ! ;137

Jj=1 nJ
then
n—1
P
§ bnj 07
Jj=1

as required. However, the conclusion S, —— 0 (and S, £, 0) follows by theorem 3.3.2 because
Eb,; = Eb;lj = 0, since E(Zj(lrz) (Zﬁ_)1 )2 =1 and it has finite variance, b,; = an;(H,; — 1) and
an; satisfies conditions 1, 2 and 3 of proposition 3.3.3. In fact, we have

anj = hi (B (@) 2 (A1 (022 (A 41,0 (0D 2 (Aj1,0p® (0D)) 2,

We have to verify conditions of proposition 3.3.3, taking into account that under conditioning the
terms a,; are deterministic. By hypothesis h;,;*(A;.,(c(1)?)1/2 is bounded uniformly in j and all
the other factors tend to zero, so that

max Qn; <
1<j<n_1 ™ =

e 1 A B e o P e B e M A R R P M A R R
hap* (@)@ 3)* — 0.

In particular maxi<j<n—1 an; = O(hy). Moreover, it is easy to see that nP(|H| > ———_—)
>J= sSJIsn— nj

— 0 since

BH en1ang)®  nE[HPO(R
P(|H| > - ) < PP geno ang )T nEIHTOMG) g e s o,

maxj<j<n—10@nj €2 €2

Finally

n—1
supz Qpj =
[t
supzh B30 D)2 PO (A1) A (A1 (o)) <

sup Z i [ @))% (7 (@) 2 [ (@) 2l [ (52))?] 2 =

nh,p? (@) 7 2)? = Tp*(aM)2(7?)? < 00, P —a.s,

as required.
The same reasoning can be applied to the other terms. For example, take the second one. We
see that

n—1
Bt 3 850D WD) A, (oo WD) 1 (0D WD) A1 1 (02 /1= 2. W) 2

n—1

Bt D (A (@) (8500 (02 (D10 (0 (A1 (1= p*) (0P)) V2 H,,

j=1
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where H,; = (Z1))22%), 2%, . Now, since {H,; = (2\}))?2}), 2%, .7 = 1,2,..n

1,n =2,3,...} is a double array of random variables having the same distribution with EH,,; =

E[(Z](l)) Zj(i_)l n]E[Zﬁ_)ln] = 0 and finite variance, we can proceed in the same way setting directly
bpj =
hyt Z M)A 02 0@V (A 410 (0 D)) Y2 (A g (1 - ) (0@)D)V220)220), 23

Then7 the limit in probability is zero as well as for the third and the fourth terms and the proposition
is proved.

Proposition 3.3.5. (Central Limit Theorem) (Barndorff-Nielsen and Shephard (2004c)) If the
conditions of theorem 8.3.1 hold, then

h71/2( (n)(X(l) X f pO'(l) Q)dt)

- N(0.1),
\/U;,;(Xu),X@))T - w(n)(X(l),X@))T

asn — oo.

3.4 The presence of the drift term

Generally, the diffusion part of a stock price model presents a drift term of the type fot azdt where
a = (at)sefo, 1) is a stochastic process which satisfies specified assumptions. In this section we want
to show that the drift term is in fact negligible and does not affect the results of this chapter. In
particular, we assume that

max |a(q)’ - agj)il‘n| = O(hy), pathwise,
q = 1,2. Remark that this assumption is stronger than continuity and moreover it is satisfied by

a pathwise Lipschitz function. Since the time interval [0, 7] is compact, the process al? is also
P — a.s.bounded, a(9 1 = maxg<;<7 a; < c0. Now, define D) and D® in the following way

t t t
Dgl) :/ agl)ds +/ agl)dWs(l) = / agl)ds + Xt(l)
0 0 0

t ¢ ¢ t
DEQ) = / aPds —|—/ poPdwd +/ V1= p2ePaw® = / aPds + Xt(2)
0 0 0 0

We show that
0" (DD, D@)p — (XD, X[ -0, P-as.,

05 (DY, D@ — o) (XD, XP) 7| 0, P—as,
|w™ (DM, D@y — ™ (XD X)) 50, P—as.,
which imply that the drift term is negligible in proposition 3.3.1, in proposition 3.3.4 and in

proposition 3.3.5. We have

|v§"1) (DY, D@, — v%"f (XD, X@) | = |Z(Aj,nD(1)Aj,nD(2) _ Aj,nX(l)Aj,nX(z))\ —
j=1

D12 mat + A5 XD (A0 + 28, XP) = A, XA, XD <
j=1
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n n n
1> 2na MA@+ 1) AW A XD+ Y AL XA ).

j=1 j=1 j=1

Since by the Lévy modulus of continuity and Mancini (2004)
|4 X9

sup —————
P 1

J thngh—"

where K (w) and K3(w) are appropriate constants, we can write

<K (w) <oo, ¢=1,2,

13 800V a?)| < [nhnaDph,a@ 1| = ThylaDr||a® | = O(h,), P —as.,

n 1 _
|ZAj,na(1)Aj,nX(2)| < Kg(w)nhMIthlogh—nm(l)ﬂ =

J=1

TKQ(W)’ / thloghi|mT| = O(H thl()ghi)7

083 (DD, DP) g — ui) (XD, X D) 7| =

while

as required. Moreover

|h 12 (A; . DMY2(A;,DP)? 12 A XWDY2(A;, XP)?| <
j=1

Pt > 2 (Ana D)2 (A 0a?)?| + By 12 Ajnat)? (28, X 32|+
j=1

\h 1 Z j. na(l) Aj a(Q))(Aj’nX(2))| + |h;1 Z(Aj,nX(l))2(Aj,na(2))2|+
j=1

> 28 n XM)A; na®) (A, X |+|hlz Ajna) (A, XDY(A; a2+

j=1

> 2800 (A XA 0 XDV 4+ 1ty 4(A na™M)(A0a®) (A, X D)4, X P,
Jj=1 j=1

and the eight sums tend to zero. For example
1 -
12 i@ (85 X2 < b tn K () (hnlog—)hi (aWr)? =

1. — 1
TKf(w)(hnloghf)(a(”ﬂ2 = O(hulog;—),

and

n 1 _
Pt D228 X D)(A100®) (850 X P) < by KR () Ka(w) (hulog )/ *ha (P 7)? =
=1 "

THE () Ko )V (log 1)@ r)? = O/l (l0g)°7).

Finally, consider
\w(")(D(l),D@))T — )(X(l) x 2 )T| -
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n—1
hy 'Y (A, DVA; DDA DWA; LD — A XVAXOA; G XDA; LX)
j=1
Here the sum is done by many terms each of which tends to zero because the assumption about
the processes a(? is uniform on j and then the shifted increment does not affect the convergence.
In fact, for example

n—1
|h7_11 Z AjX(l)AjX(2)Aj+1a(l)Aj+1a(2)| é
j=1

1 R -
nh’r_LlMl(w)M2(w)(hnlOgh_)hna(l)Thna(Q)T =

n

1 — ¢ 1
TM; (w)M2(w)(hnlogh—)a(l)Ta(Q)T = O(hnlogh—),

n

as required.
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Chapter 4

Main results

This chapter has been written in collaboration with Cecilia Mancini, Dipartimento di Matematica
per le Decisioni, University of Florence.

”Non sarebbe possibile immaginare nulla di cosi’ strano e poco credibile
che non sia stato affermato da qualche filosofo.”
(Rene’ Descartes, Discorso sul metodo)

4.1 Introduction

In this chapter we present the main results of this work relative to the identification of the covari-
ation between the two diffusion parts of two processes driven by stochastic volatility and jumps
where the jump components are Lévy processes. We consider dXt(l) = agl)dt + agl)th(l) + th(l)
and dXt(2) = a§2)dt—|—0§2)th(2) +th(2), for t € [0, T], where Wt@) = th(l) +1- pQWt(S), whereas
W = (Wt(l), t €10,7]) and WG = (Wt(S), t € [0,T]) are independent Wiener processes and
JM and J® are pure jump Lévy processes. Such processes, X (@ are in fact used to model the
log-price of two financial assets. A commonly used approach to estimate the correlation coeffi-
cient, p, between two diffusion parts is to take the sum of cross products > 7, A XA X,
however this is not correct when the processes X (? contain jumps since such a sum approaches
the quadratic covariation containing also the jump term. Our estimator is based on a truncation
principle (Mancini, 2005) allowing to detect the presence of jumps. More precisely, it is crucial
to single out the time intervals where the jumps have not occurred. That is done through an
indicator function which estimates whether the process has jumped or not, depending on whether
the increment X, — X,y
length of the time interval ¢; — t;_; = h, Vj. We derive an appropriate estimator of the con-
tinuous part of the covariation process [X N5'¢ (2)]T. In particular, we introduce the process
@ﬁ) (XM XYy = Py AjX(l)1{(AjX(1))2§r(h)}AjX(2)1{(AjX(2))2§r(h)}7 which represents the
(realized) quadratic covariation ”weighted” by the truncation principle. We call such a process
threshold estimator. We show the consistency of 17%"1) (XM, X@) 7 by using results of Barndorff-
Nielsen and Shephard (2004), presented in chapter 3, which analyzed the same problem in absence

is too big in absolute value with respect to a proper function of the

of jumps. Moreover, after introducing a truncation version of the cross product variation of or-
der (1,1), A1 E;:ll ngo Ajp XD H::O A;1iX® we show that our estimator is asymptotically
normal and converges with speed v/h. The observation times are deterministic equally spaced,
however our results hold even when the observations are not equally spaced. The period of time
[0, 7] is fixed and the number of observed returns is assumed to go to infinity.
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4.2 Finite activity case

4.2.1 Consistency

Given a filtered probability space (Q,F, (Fi)ie,17, P), let X = (Xt(Q))tE[(J,T] and X =
(Xt(2))te[0’T] be two real processes defined by

t t t
xM = / alVds + / cMaw ™ + / FMAND |t e0,T] (4.1)
0 0 0
t t t
x® = / a®ds + / cPaw® + / vPANB | te0,T] (4.2)
0 0 0

where the diffusion parts satisfy condition of section 3.3. The jump component is a compound
Poisson process
N(q)

Jt(q) :/ (q)dN(Q) — Z,y @, qg=1,2
0

in which {T]iq)7 k=1,.., Nj(«q)} denote the instants of jumps of J(9 ¢ =1,2, and 7, denote the
k

size of the jump occurred at T]Eq).

For completeness, we repeat the assumptions just introduced in chapter 3. Let 70T = {0 =
to <ty <---<t, =T} be a partition of [0,7] and let {m[?’T],n € N} be a sequence of partitions
of [0,T] such that maxi<;<n |tjn —tj—1,n] — 0 as n — oco. In this work we assume equally spaced
subdivisions, i.e., hy = tj, —tj_1.n = % for every n = 1,2,..... Hence h, — 0 as n — oo.
Moreover, let A, X = X, — Xy To simplify notations denote h,, by h and A; , X by A;X.
So, we assume

j—1,n"

-
SUP1<j<n ‘ jt]?,l a.(f)ds‘

\/hlog%

2. fOT(agq))zds <oo, P-as, q¢q=12

1. limsup,_, <Cylw) <00, g=1,2

-
SUP1<j<n ] (U‘(eQ))zdS‘

}]L_l < Mq(w) <oo, ¢=12%

3. limsupy,_,q

4. the deterministic function r(h), h — r(h), satisfies the following properties: limy_or(h) =0

and limy,_,g %Z)’% = 0; we denote r(h) by rp,.

We know that P — a.s. for sufficiently small » (Mancini, 2004)

Lia,x@yz<r,y = lia,Nv@w=0y, 7=12,...n, ¢=1,2.

In the case where X (9 include a finite activity jump component, we consider threshold estima-
tors

(XD, XP)p ZA XD a, x092<m1 A X PLga, x)2<0m)

,1

j=1
a9y (XM, X @), 12 (A7 X D)1 a, xy26m 3 (B XD a, x40

and

n— 1 1
@™ (X(l)’ X(2))T =h" Z[H Aj"‘iX(l)1{(Aj+iX(1))2§Th} H Aj"'iX(Q)1{(A]+iX(2))2STh}]'
j=1 i=0 i=0
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Theorem 4.2.1. (Consistency) Let (Xt(l))te[o,;p] and (Xt(2))te[0);p] two wvolatility processes of the
form (4.1) and (4.2) and satisfying assumptions above. Then

i(xW, x@y, L / poValPdt.

Proof. Since for small h Lia,x@y2<ry = Lia,N@=0}, ¢ = 1,2 for every j = 1,2,....,n, we
can write
Plimy o)) (XY, X@)p = Plimy Y A XD a, xy2< 85X P pa, x@y240,)
j=1
= Plim, Y Aj(X) 10 vargy A (XP) DA vy
j=1
= Plimp Y Aj(XD) (1 = 1n, v 20y) A5 (X D)1 = 1a, v 20)
j=1

where (X(@)(©) denote the continuous component of the process. Hence we have

Plimy, o) (XM, X®)); =

Plimyo"} (X)), (X @)z PlzthA XOY A (X)L v soy+

—Plimp Y A;XD)ODA;XP) DL v+

Jj=1

n
Pllmh Z A] (X(l))(c) I{AjN(l);ﬁO}Aj (X(2))(C) 1{AjN(2)750} .
j=1
By proposition 3.3.1, the first term is the statement of the theorem, whereas all other terms are
zero. For example, as for the second one

Plimy, ZA XA (x@ )(c)l{Aij;so} < Plimy, Z |Aj(X(1))(C)HA]'(X(Q))(C)‘1{AJN(2)7£0} <
j=1

Plimy, sup A (X)) sup |A;(X D)) Z Lia,N@ 20y <

j=1
A (X M)y(e) AL (X (2))()
Plimy, sup | ) | | it ) | N(Q) <
1/hlagh \/hlogh
Plimy, K1 (w) Ka(w )hlogh NP =,

since by assumption and by Mancini (2004), we have P — a.s.
(1) (1)
A (X)) \ as’ds + Yaw, |

SHPM su ft f - < Kj(w) < o0

i \/2hlog+ j \/2hlogF
and P — a.s.

tj /
‘A](X(z))(c)‘ |ftj71 agQ)ds + ft pUSQ)dW(l) + ft 1— p20§2)dW8(3)|
sup = sup

i \/2hlog+ J \/2hlog}

This concludes the proof of the theorem.

< Kg(w) < 00.
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Theorem 4.2.2. If the same conditions of theorem 4.2.1 hold, then
r [ 1 2
35 (XM, X®)p — @ (x M, Xy / (1+*)(01)) (0" dt.
Proof. We will prove that
(n) ro " (1) (2)
Ty (XD, XN = [ (20 +1)(07)?(0,”)?dt

and
B (X0, x@),, H/ (020 2at.

As in theorem 4.2.1 we can write

Plzmhvg 2 (X( ) X(2)) Plz’mhh_l Z(AjX(l))21{(AJX(1))2§7";L}(AjX2)21{(AjX2)2§rh} =
j=1

Plzmhh ! Z X(l) (C) 1{AjN(1):O}(Aj (XQ)(C))Ql{AJ,N(Z):O} ==

Plimph™" Z X1 = 1 vr20y) (A5(X2) D)2 (1 = 1ia, n@s0})s
so that
Plimy, 33 (XY, Xo)r =
Plimpvgsy (X))@, (X)) — Plimyh~ 12 XOYENAG;(XD) )21 0 sy +
j=1
—Plimph~! Z XWYENZ(A;XE) D)1 n ) oy +

Plimyh™! Z(Aj (XN 1 a, v 20y (A5 (X PN D)V 1 0 v 2oy

By proposition 3.3.1 Plzmhvgn)((X(l))(C), (X@HE)p = fOT(2p2 + 1)(0t(1))2(0,§2))2dt whereas the
other terms are all zero. Indeed e.g.

Plimph™ > (A;(X)D)2(A;(X D)D) 5 e sy <

Plimp,h ™ sup(A; (X M) ()2 sup(A,; (X)) Zl{A N@ 2oy <
j j =

Plimyh ™" sup(A; (X M) ()2 sup(A; (X @) ()2NP =
j j

(X ())y() (X (2))(0)
A, (XD, XD,

1 1
Plimph™" sup( J2h2log? S N{P < Plim, K’ (w)hlog =Ny = 0.

J ,/hlog% J w/hlog%

Plim ™ (XMW, X5)p =

Analogously
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n—1 1
Plimph™ Z HAJ“X( Lia,ix®y2<m,y HAJ“ 1{(A_7‘+1‘X(2))2§7“h,}] =
j=1 =0 =0
n—1 1
Plimph ™' Y ([ 25+ (X D)Ly, 0= o}HAm D) (aine=0y] =
Jj=1 =0 =0
1
Plimph~! Z H A (X)W = 1ga,pnvm20) [T 254X =1y, 4 ov 20p)-
j=1 i=0 =0
Thus, Plim;a™ (XM, X@)p = Plim,w™(X®, X@)p fT p*(o ))Z(Ut@))th plus a finite
number of terms whose limit in probability is zero. For example
n—1 1
Plimuh™ > ([ A+ (XM) V1, v 20y HAJH (XN ya, vez)] <
j=1 =0 =0
n—1 1
Plimph ™ Y ([T 1854(X D) O L ya,, v 20y H 181 (XP) Ly a,, nes0)] <
j=1 i=0 =0

c - n—1 1
P [oup B P 18Xy o1

p \/T jp loa L o9 h Z H1{(Aj+iN“)¢0}1{(A.7'+iN(2)750} =
i=0 09y =0

0g9% j=11i=0

1 1
Ay (XM A (X3
Pl’imhh71 I | sup | J+ ( ) | sup | Jj+ ( )

)| 1
. p — = log” 5 Zl{ AjrND#0} <
izo J \/hlogg =0 I \/hlog:

1
2K W) K3 (W)NY =0

Plimphlog 5

4.2.2 Central Limit Theorem

We show a central limit result relative to the threshold estimator by using proposition 3.3.5. Our
purpose is to introduce a quantity whose asymptotic distribution is stable. In particular, we prove
that the asymptotic law of a normalized version of 175”1) (XM, X®)p is Standard Normal.

Theorem 4.2.3. Suppose that the conditions of theorem 4.2.1 are held, then

h—1/2(1~}§n1)(X(1) X(2) f pU(l) (Q)dt)

: 2, N(0,1).
VXD, X@)p —a) (XD, X))y
Proof. Remark that
=125 x (1) X _ o110 )dt B—1/2 (n) X(l) 0(1) 1)dt
Diimy, (v V1,1 {(X )T fo PO1t0y — Diimy, (011 ( f P )
Jﬁé@(ﬂlxan—w<n><X<1>,X<2>>T wo (1+p?)(of! )2<a—§2>>2dt
Now
h=1/2(5 (")(X(l) X@) —f pa’ dt)
Dlimh
\/fo (14 p2) (012 (Ut(Q))th
_ n T 1 2
Diim, VAT A X DLy, x w2 A X D Lya, xoypcry = Jy potloPdt)

VI s oo
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RV AGX DY A vy A (XP)OLn ver—gy —fo poe Vo ap) -
VIZa+ ) (0V)2(0)2an B
hROTT AN (XN — fy poyedr)
I+ e 2o e
W2 S A XA (X)L sy
VIFa+ )M 0)2a
W23 AGX IO A )0y A (X3
VIEa+ o)) (0)2dt
R0 AGX IO A v 20y A5 (XP) DT A N 2oy
VIE U+ )02 (o e

The first term is N(0,1) whereas the other ones are all zero as in theorem 4.2.1, because, being
the denominator a well defined finite quantity, we have

Dlimh

Dlimh

—Dlimh

—Dlimy, +

Dlimh

Plimph™"/2 > " Aj(XMW)OA;(X ) O 1A Ny 20y <
j=1

Plimyh~1/? sqp|Aj( Dyle) \sup\A (X)) ZI{A N@ 0} <
J j=1

1A5(X >| p DO Tt
w/hlogh \/hlogh

Plimp K1 (W)K2(w)\/EZOQENI(?) =0,

Plimy, sup

]
4.3 Infinite activity case
In this section, what we suppose is that the jump component have infinite activity, that is, X1 =
(Xt(l))te[O,T] and X = (X§2))t€[07T] are two martingales of the form
¢ ¢
xM = / aVds +/ eMaw® + gV te0,T) (4.3)
0 0
¢ t
X = / a®ds + / oPdw® + I, telo,T) (4.4)
0 0

where we assume that J(@ is a Lévy process; we then can write

JO = g jla) // ) (ds, dz) + // D (ds,dz), q=1,2
\ﬂv|>1 \z|<1

in which (9 is the Poisson random jump measure of the Lévy process J(@, (9 (ds,dz) =
pD (ds,dx) — dsv'@(dx) where v(@ is the Lévy measure of J(9), each JI(Q) is a compound Poisson
process exactly as in section 4.2. Obviously, the rest of the processes satisfy the usual condi-
tions. More specifically, the paths of the infinite activity jump process jQ(q)
times on each compact time interval because v(9(R — {0}) = co. However, the behaviour of the
Lévy measure around the origin determine the nature of the infinite activity of jumps. In fact, if

jumps infinitely many
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flm’\ < 2?v(dz) < oo for any Lévy process, for smaller power of |z| the integral could be infinite,
and this means that the activity of jump is wild. A measure of the amount of activity of the Lévy
process is given by the Blumenthal-Gatoor index which is precisely defined in the following

Definition 4.3.1. (Blumenthal-Gatoor index) Let v be a Lévy measure. The Blumenthal-
Gatoor index is the real number « € [0, 2] defined by

= inf{d > 0, / 2°v(dz) < 0o}
|z|<1

In general « € [0,2]. A compound Poisson process (finite activity) has @ = 0. The Variance
Gamma process, which is characterized by a mild infinite activity has o = 0. Moreover, a process
with Blumenthal-Gatoor index « < 1 has infinite activity but finite variation, whereas if a > 1 it
has infinite variation.

Remark 4.3.2. We deal with Lévy measures v such that for small &

/|m<6f(x)1/(d:17) N /Ms |§|(1ﬁ)adx

The most used models in practice, such as Variance Gamma process, the Normal Inverse Gaussian

process and all a-stable processes belong to this class.

Now, by (Mancini, 2005) we can compute the following integral f\$| < 2?v(dz). In fact

/ 2 (dz) / 2
rv(dx) ~ T =
|z|<e |z|<e ‘mll—i-a

0 2 € 2 2—a 2—«
x x oz x _
/_E (,$)1+ad$+/0 z1+o¢d$ =(-n" Q[Q — a}gs = [270[]6 =0(7").

x
av(dr) ~ / ———dx =
\/5<z|<1 <|z|<1 |m|1+a

(-7 /ﬁxﬂdﬁ/ 2 = (—1) 2 (- ) 4 (S ) = O '),

1 l-a 1-«

Moreover

4.3.1 Consistency

To prove the consistency result we need some notation. Let

¢ t
Dt(l) = /agl)ds—&-/ oMaw®
0 0
t t ¢
P - / o@ds + / po@aw® 4 / V1= p2oe@aw®
0 0 0
Yt(l) _ D(1)+J1()
v® — p® 4 @
So Xt(q) = Y;(q) + J(q), = 1,2. Since J fof lzj<1 % @ (dsdx) = fo fw|<1 (9 (dsdx) —

dsv(9 (dz)) we have
EJ = 0

Var(J(q)) = t/ x21/(q)(dw) = tng(l)
|z|<1
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Theorem 4.3.3. (Consistency) Let (Xt(l))te[o,;p] and (Xt(2))te[0);p] two wvolatility processes of the
form (4.3) and (4.4) satisfying assumptions 1-4 of section 4.2.1. Then

T
7 (x W, x@y L / poNoPdt
0
as n — oQ.

Proof. Firstly, we remark that since AjX(Q) = AjY(Q) + Ajjéq)7 q=1,2, we have

T
DXy~ [ palo ] -
0

n T
|ZAjX(l)1{(A.7X(1))2§Th}AjX(2)1{(AjX(2>)2§rh}_/ poVoPdt] <
0

Jj=1

n T
1> A YV, xm)e<n gAY Plia x@y2<r,) —/0 poi oV dt|+

j=1

F(2
|Z AYWA, T )1{(ij<1>)2§n,}1{<AjX(2>)23rh,}|+
j=1

n
F(1
> AT AY D a w2 cry Lia, x0y2 <y 1+

j=1

n
D AT AT s, x e ey Lo x @)y -
j=1

so that, adding and subtracting 2?21 AjY(l)1{(Ajy<1))2§4rh}AjY(2)1{(Ajy<2))zg4rh},

T
B Xy [ polaPat] <
0

n T
1 2
DAY WL, vanecany Y Py, veecan) —/0 po Vot di|+

j=1

DAY DAY (1, x2<my L, x@)2<my = Lia,yoyz<an, Lia, vz <)+
j=1

F(2
DAY DN T 6 x 02 <ry Lo, x @220y 1+
j=1

n
F(1
> AT AT O a ez, Lia, x )2 <ry [+

j=1

n
F(1 7(2
\ZAjjz( 'n; )1{(ij<1>)2grh}1{(ij<2>)2grh}|- (4.5)

j=1

Our purpose is to prove that all terms of (4.5) tend to zero. The first one tends to zero in probability
by theorem 4.2.1. As for the second one, recalling that 1ang = 1alp, laup = 1a+ 1 — lans
and 14 — 1 = 14nBe — 1 gcqB, we have

lane — lenp = [LanBnee + lansnpe — lanBncenpe] — [Lacncnp + 1Bencnp — LacnBencnbl,

so that

n

1> MY DAY (Lya, x0p2ry a,x@)2<m) = Lia,vop<any Lia, ve <)l =
j=1
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DAY DAY (L p, )28, x@)2 <) = LA,y 0)2<ar,, (A, v @)2<ary)| =
j=1

| Z A Y DAY O (Lga, x 00y 2 (8, X@)2 < (8,7 (D)2 54y ) F
j=1
L4 (A, X)2<rp (A, X2 <rp (A, Y )25 4rm} — L{(A,; X D)2 <rn (A, X D)2 <rn (A, Y (D)2 > drn (A, Y )25 4r,}) T
—(Lpa, x0)2 5, (A, Y D)2 <arp (A, Y @)2<ar,} T (A, X )25, (A, Y (D)2 <dry (A, Y @)2<dr,}
— LA, XD )25 (A, X )25 (A, Y (D)2 <dry (A, Y @)2<dr,})]| =

The way in which the first three terms tend to zero in probability is similar, hence we only deal with
the third one. Since /7, > [A; X @] = |A;Y@| — |A;J{?| implies [A;J7] > [A;Y @] — /7y >
2 /Th — \/Th = \/Th, we have {(A; X (D)2 <, (A, Y@)2 > dry} € {|A 7] > /rn}, ¢ = 1,2, we

can write

DoAYWIAYIL A x0y2<r, (8,705, (A, X )2 (A, ¥ @25, ) <

> oA YIA Ve

N 1 . —
{18, 50 1>y} {18,082 >/}
=1

> A;DWA; D1
j=1

n
S0P
j=1

12,0015 vy (8, 0@ s vy T

12,005 vy i a, 0@ s e T

S A D001

Jj=1

(AT 1> vy 18, 0@ s vy T

ZAJ BT 8,30 15 ) L1, 80 5 ) (4.6)

Let’s show that each term of (4.6) tends to zero in probability. We have

DDA D@
EAJD AL a0 5 iy s, J2 s vy S
p=

Sljl_p |AjD(1)| Sl;p |AjD(2)| Z 1{|Ajj;51)\>w"h}1{|Ajj;52)\>\/Th} -
i=1
|A;D 1>| |A D)

bup Zl 2,001 vy a0 <
\/hlogh \/hlo 9% {18543 1>vTr} {| Ja \>\/_}

]_
n

1
K (w) K (w hlogﬁz (12,0015 L8, 02 > )

However, since {A; jQ(Q), j=1,2,...,n} is a family identically distributed random variables and
convergence in £; implies convergence in probability, we have

1 n
hiogy E Zl La, 501 v s, 12 s gy = Mogy, Z Lia, 501 vy Lo, i@ s ymy) <
j: :
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n

1
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1 E|AJP2 1nh
hlog—n—=2"2 1 — hlog—""p?(1) =T
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as required. As for the second term of (4.6), we have

hlogL
Wk 2(1) — 0,

(2)
|ZA DOATT 0 5015 mry Lo, 0@ sy | S

|A D1
j hlogy, Z|A 1) La, a0 s vl ga, 721> gy <

hlog—

A.N@)
J
W};I ; Ve a5y La, 59 s
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Since {AjN(Q) #0, |Ajj2(1)\ > \/Th, |Ajj2(2)| > /Ty } for some j =1,2,...,n is implied by

n A;N®

Zl| kzl V@, 005 gy Hia, 2 s gy 7 O
i

we get

P <Z| V@ a0 sy L, @15 v 70| <
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i (U{A N £ 0,8, 50| > /i, 18,057 | > /i)
j=1

S PN £0, |80 > i |8 > i) <

Jj=1

N P(AN® £0,A,57) > i) = nP(AN® £ 0)P(ALY| > ),

J=1

because Jl( is independent of N2 being J?) is a Lévy process. The last term tends to zero since

N®) is a Poisson process then P(A;N?) # 0) = O(h), whereas P(]A; JQ(Q)\ > /r1,) is dominated

by %h(l), ie.
n AjN(Z) 9
hpy (1)
z;‘ ; @ La, 5015 v s, 3915 gy 70| S nOM) == =0
j= =
Finally, the last term of (4.6) tends to zero; it suffices to observe that
n  A;ND A;N®
Zl| kz ol Z Ve Lga, 3015 v s, 1215 vy 70| S
7 1

A ND £ 0,A;N@ £0,18; 7V > /i 18,57 > v/}
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nP(AN® £ 0)P(|AL 7| > /rn) — 0
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In order to complete the proof that the second term of (4.5) tends to zero in probability, it remains
to prove that Z?:l AjY(l)AjY(Q)1{(AjX(1))2>rh,(AjY(l))2§4rh}1{(AjX(2))2>rh(AjY(2))2§4rh} — 0 in
probability. Let’s remark for small A

AND < |A; 7] < |A; DDA Y D] < |A; DD |42/, < sup |A; DD |42/, — 0, ¢=1,2,
J

uniformly in j. Hence, for small h on {(A;Y(@)? < 4r,} we have A;N@ =0, j = 1,....,n.
Therefore {(A; X(D)2 > ), (A;Y(@)2 < 4} € {(A; D@ + A, J(Q)) >} C {(A;D@)?
2y {|Ajj2(Q)| > @}, q = 1,2; however, since 1(a,p()25r,} =0, P —a.s., for sufficiently small

h, we obtain 1ya; x@)25r,.(a;y@)2<ar,} < 1ga 0|5 LE A N@ =gy 4 = 1,2. Then
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j=1
Sup |\?hi:)| |\?h2(g)|hloghzll (4, J(1>‘>m} (18,78 |> 8y
h h J

which tends to zero in probability as before.
Now, consider the third term of (4.5), 2?21 AjY(l)Ang(z)1{(A],X(1>)2§Th}1{(AJ_X<2))2§M}, the
fourth one being analogous. We have
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J T2 A XD < A5 TV <2y 1A X @) < A TSP <2}
j=1
ZA YA - 1 o +

{18, X<y |85 70 1>2 0 {185 X< 7|85 057 > 2R}

=1
ZAWUAJ@H . 1 . +
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ZA VORI A 012y, 080 <2y H1as X0 <y 8y 1) 5275) (4.7)

Let’s show that each term of (4.7) tends to zero in probability. Firstly, we remark that on
{A; XD < /i, | A J2 \ < 2,/r3,} for small h we have

AN < 8,17 = |8, X @ = A;DD — AT < i+ A, D9 + 18, 57| <
\/>+bup|A D |—|—sup|A JQ)| — 0,
for ¢ = 1,2, since by Doob’s inequality E(sup; |AjJ2(q)|) < cE|Ajj2(Q)|2 = chn3(1) — 0. Besides

on {|A; D@ + A, JSV| < i, A;N@ =0, |A;J5Y| < 2/} we have [A;D@] < /iy 44,07 <
3\/Th, ¢ = 1,2. Therefore, as for the first term of (4.7) we get

n
§ A;J$P1 - 1 @ -
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However, for sufficiently small h, ja,pwi<symy =1, ¢=1,2, P —a.s.; so we have
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Each term of (4.8) tends to zero. In fact, except for the first one, being 1(n, N)20.a, N 20} <
Lia;n)20) We can write

= 1 7(2)
D AT DWAI A v 20y L 4, 10 <y 18, 70 <2y S

j=1

DN AL )
S‘jpmjD( N8R s vy L a, 50 <oy Lo, 290 <2y
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Now, sup; |AjD(1)| — 0, P — a.s., whereas for the second factor, we see that

AL -
B 18517 s w20yl a, 100 <o L1, 59 <o ) =
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- (2)
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Indeed, for the first one we remark that
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j=1
/ h2771 hlog+ 50
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Besides, (Mancini, 2005, remark 4.2)
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= Plimy, < (D) (Z)© >1 +Plimy, >~ ADM Z{2) = 0
t<T
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t
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’ 0 Jl|z|<2y/Fn 3rn<|z|<1

and A; Z\9 = A, {1 = A, J since P — a.s., for suffi-

(18,77 <277} LS 1878015y}
ciently small h, uniformly in j, on {|Ajj2(q)\ < 2,/r,} one has \Aj§q3| < 3\/ﬁ

Now, we deal with the second term of (4.7). On {|A; X @] < /7, |A; j2 | > 2/}, we have
1A Y @] >/ since 24/7, — |A;Y @] < |A; 7] — |A;Y @] < |A; XD < /i, g = 1,2, so that
P —a.s.
1A 09 > 7\/;_’1 or |A;D@]> —\/;_”

Since for small h P — a.s =0 and |4; J(q)| > ” implies A;N(@ £ 0, we have

1 r
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which tends to zero as before.
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Finally, the last two terms of (4.7) can be treated simultaneously. As above

- 1 7(2)
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j=1
- DA 7
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which tends to zero in probability analogously as before.
It remains to consider the last term of (4.5). We can write
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Again the the last three terms tend to zero since, for example
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On the contrary, taking into account remark 4.2 in Mancini (2005) we conclude
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by Minkowski’s inequality.
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By remark 4.3.2 we may derive a result which will be useful in the proof of the next theorem.
We are interesting in the value of the integrals zv(dz) and f$|<2\/_ x?v(dz) . We have

1—ocq
/ xu(‘n(dx)rv/ 71311& de=0(c—cr,* ), q=1,2,
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Now, by (Mancini, 2005), we can write
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where A; jQ(f,)l denotes the martingale part of A; jQ(q)l while A jQ(g) denotes the com-
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pensator of the jumps bigger than 2,/r,. We have
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Theorem 4.3.4. Under the same assumptions of theorem 4.3.8 and if ——2- — 0, and moreover

fOT(a N4dt < oo, then

T
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Proof. We will prove that
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Let’s begin with the first one. As in theorem 4.3.3 we can write
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The first term of the right side of (4.9) can be split up into two parts by adding and subtracting
the quantity h_l Z?:l(AjY(l))21{(A_7'Y(1))2§4rh}(Ajy(g))21{(AjY(2))2§4rh}; we obtain
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Now, followmg the same technique used in the proof of theorem 4.3.3, we only have to prove the
convergence to zero (in probability) of |h~! 2?21(Ajy(l))2(Ajy(g))21{(ij(1>)2§rh,(Ajy<1>)2>rh,}
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LA, X@)25m,,(A, Y ®)2<r, } |- For the first one we can write (see theorem 4.3.3)
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All terms tend to zero in probability. Consider for example the first and the fifth ones. We have
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At the same way
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which tends to zero in probability since
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P(AND £0)P(|ALTY| > /i) — 0,
as in the proof of theorem 4.3.3. To conclude the proof that the first term of (4.9) tends to zero in
probability it remains to show that [h~! Z?Zl(AjY(l))Z(AjY(Z))21{(ij<1))2>T}“(Ajy<1))2§rh}
].{(AJ,X@))2>Th7(Ajy(2))2§Th}| .0, We can write (theorem 4.3.3)
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which tends to zero in probability like as before.

The other terms of (4.9) tend to zero in probability. We only show this for the second, the
third, the sixth and the last since the techniques we use can be replicated for the others. As for
the second one, we have
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The last three terms tend to zero in probability in the same way. For example take the second
term like as in proof of theorem 4.3.3; we can write
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j=1
P(ULAND 20,|8;08] > 2/, A;N® 20,18, > 2/ }) <
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P(ALND £0, AT > 2/m) — 0

For the first term of (4.10) we can still follow the proof of theorem 4.3.3 and write
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The last three terms of (4.11) tend to zero. For example
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The second factor approaches to zero in £'. In fact
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For the first term of (4.11) we can write

n2(1) — 0.
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Since Y7, (A;DM)? = Z?:l(Dijl) 8)1) £, foT(agl))th which is finite by hypothesis, it
suffices to prove that the first factor converges to zero. We have
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by using remark 4.3.2 and observing that if we choose 7, = h® with 3 €]0, 1[, as usually happens,

we have
az )

h(c— h™ )2 = _o2pH Aptthl—az)

which tendb to zero if 1 + 6(1 — ag) > 0. Now, if ag < 1 this is immediately true; otherwise, if
1 €]1, oo, as required.

To show that the other terms of (4.9) tend to zero, taking into account the proof of theorem
4.3.3 and what done up till now, we only need to prove the convergence to zero of three quantities
for each term. Consider the third one
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We know that the first one tends to zero for the presence of the event |A; qu)| > 2y, ¢ =1,2,
whereas for the second one we have
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where the first factor tends to zero in probability, while the second one is finite P — a.s. In fact,
S (A ;DM)2 has a finite limit in probability, then every power variation process of order greater
than 2 tends to zero in probability unless is multiply by an appropriate power of h. In this case,
Rt (A D) L DR = [T (o{V)4dt which is finite by hypothesis. We deal with the
fifth term of (4.9). We can write
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The last three terms tend to zero in probability as always, while for the first one we have
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Each term tends to zero in probability. In fact,
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The second factor is deterministic and tends to zero because
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Now, we deal with the sixth term of (4.9). We have to prove that

€]1, oo, as required.
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The second factor converges to zero in £! as always; besides recalling that sup j
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As concerning with eighth term of (4.9), we have to show that
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This concludes the proof of the first statement of the theorem.
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Now, adding and subtracting

2 2
WY T AY D 1a, v wyrcany [T A Y D1, v@yp<an) ),
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to the first term of the right hand side, we obtain
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The first term tends to zero in probability by theorem 4.2.1, whereas for the second one and all
others in (4.12), according to what we have done until now, we only show the convergence to zero
for some of them because they have a similar behaviuor for small A. Really, in this proof, we
repeatedly use the Cauchy-Schwartz inequality in such a way that to exploit the previous proof
taking into account that
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We only study terms whose convergence to zero is not immediate. They are
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Let’s begin by (4.13). Since
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The convergence to zero is immediate by the first part of the theorem. The same holds for (4.14)
if we remark that
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We can still proceed at the same way for (4.15); in fact
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by assumption. This concludes the proof since the other terms would be treated at the same way.
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4.3.2 Work in progress: the Central Limit Theorem

Differently from the case of finite activity jump component, a Central Limit Theorem for a nor-
malized version of the threshold estimator only holds for a restricted class of Lévy processes and
precisely for those one which are a-stable. To define it, recall that if X is a random variable taking
values in R with distribution function Px its characteristic function (Fourier transform) is given
by

Px(z) = / ¢** Px(dz), z€R.
R
Definition 4.3.5. A random variable X is said to have a stable distribution if Va > 0, Ib(a) > 0

and c(a) € R such that
Px(2)® = Px(2b(a))e”*®) | VzeR,

whereas it has a strictly stable distribution if

~

Px(2)* = Px(zb(a)), Vz€R
Definition 4.3.6. A Lévy process L is said to be strictly a-stable, for a €]0,2], if it satisfies

( LCt
cl/oz

)>0 2 (Lt)t>0, Ye>0.

Proposition 4.3.7. A distribution on R¢ is a-stable with o €]0,2[ if and only if it is infinitely
divisible and there exists a finite measure A on the unit sphere S of R¢ such that

V(A) = /S Ady) /R ) 1:33) dr.

Theorem 4.3.8. (Central Limit Theorem) If the conditions of theorem 4.3.3 are held, if O’t(q) >0
Vvt € [0,T], ¢ =1,2, and if the jump components of XD and X3 are both a-stable processes with

ay = ag =0, then
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The first term of the right hand side of (4.16) tends in distribution to a standard Normal law by
Proposition 3.3.5, while the other terms tend to zero in probability and so in distribution. For
each one we can neglect the denominator since it is a finite quantity. The second, the third and
the fourth terms tend to zero in the same way. Consider the second one. We have to prove that
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n
—1/2 1 2
et ZAJ'D( )AjD( )1{AjN“>¢0}1{|Ajj§2>\>2\/ﬁ}+

j=1

—1/2 1 2
B2 Y S ADDADPL 01 ey Lia, N0yt
j=1

W2 A DWA; DO vz Lia, v@ 20}
j=1

where for the first inequality we use lemma 3.5 in (Cont-Mancini, 2005), because sup; |AjD(1)AjD(2) | =
O(hlog%). The last three terms approach zero. In fact, each one is dominated for some ¢ = 1,2 by

1 1
K (w)Kg(w)\/ElogE Z Lia,nzoy < K (W)KQ(W)\/EZOQENY(—?) —0, P-—a.s.
j=1
i i -1/25™n DOA.D® . .

It remains to consqder.h Zj.:.l A;DWA;D 1{|AJ-J2(1>\>2\/ﬁ}1{\AJ‘J§2)I>2\/ﬁ}' In order to show
that it tends to zero in probability we can prove that a subsequence tends to zero P — a.s.. By
Cont-Mancini (2006), for small h, for such a subsequence 1{\Ajm JO|saymy = 0,P—a.s.,q=1,2,
therefore

h2 N A DWA; DRI

Jm=1

- 1 . = P —a.s.
(185, TV |>2ym (18, I s2ymy = O )

and hence the term tends to zero in probability.
Moreover, for the fifth term of (4.16), we see that

_ = P
12y ADWAI DA xwp g lia, xee<n) — 0

Jj=1
because

Plimhh71/2 Z AjD(l)AjJ(Q)1{(AjX(1))2§rh}1{(AjX(2))2§r,L} =

j=1

Plimph ™2 " A DM (a, x )2 <r,y AT

j=1

{18,787 |<2y/. A, N@ =0}

where we still use lemma 3.5 in Cont-Mancini (Cont-Mancini, 2005), since |A;J3)| < 2,/7, on the
set {(A;X2)2 < ry}. Therefore

Plimph™ 2> " A; DM a xy2ny 8571

Jj=1

{18,782 |<2 A N =0} =

Plimph™/2> " AjD(l)1{(AjX(1))2§Th}Ajj2(2)]‘
j=1

{1a; 7P <2y}

n tj tj ~
Plimhh_l/QZ(/ “gl)d”/ oMW )Ly a,x0022ry 85537 L1 50 <2y

j=1 Jti-1 tj—1
. 1 .
Since sup;c(o,r |a§ )|(w) < 00, we can write

n

tj ~
P“’mh’flmz(/ a0 d) Ly (a x0T a5 <oy S

=1 Jti—1
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n

’ 72
Plimn | 1 12/ a1 a x| ARV a0 <oy S
tj— j=1

Plimy,, [h—1nh2( sup a( AJ ~(2) =0
\/ (Te[om' ’ jz::l R LENE

since the first factor is bounded and the second one has the same limit in probability of

T
/ / w20 (da)dt = Ti3(2y/7m),
0 J|z[<2{/Tr

which is zero. Now, consider

n t; ~
Plimhh_l/Q Z(/ Ugl)dWs(l))1{(AjX(1))2§rh}AjJ2(2)1{‘A].j2(2)|§2\/ﬁ}'

j=1 Jti-1

We have

n t
. — F(2
Plimyh~"/ ) (/t oDV L (a,x02ry B5 T3 ) 30 <oy =
=1 Jti-1

i—

n

Plimp, [h71/2(2(/ Ugl)dWs(l))l{(iju))z <rnyBj J2(,2,1+

j=1 Yti-1

n t;
*Z(/ oMdW N 1A, x0)2< ) A T,
j=1

For the second term we can write

n

tj N
hm2y (/ Ugl)dWs(l))1{(AjX(1>)2§Th}AjJ2(3))] =
tj—1

j=1 Jti-

tj ~
1/22/ VAT 4 b 1/22(/ D AWDNL((a, x 0250 A5 T2
tj— j=1 Jti-1

l—ag
Now since A; J22) =hO(c—cr, > ) we can write

n 10<2

tj n tj
po1/2 Z(/ (l)dW(l))A J(2) \fO(c—crh )Z(/ Ugl)dWs(l)) —

j=1 7ti-1 j=1 Jti-1

VhO(c — crh )( O W, -0, P—as.

Moreover, we can apply lemma 3.5 in Cont-Mancini (Cont-Mancini, 2005) to obtain

1/22/ gl)dWs(l))1{(ij<1>)2>rh}Ajjz(g) =
tj 1

n

tj
— 7(2
h 1/2 Z(/ Ugl)dWs(l))(]'{(Ajj§1>)2>47"h} + 1{AjN(l>¢0})AjJ2(c)7

j=1 Jti—1

so that both terms tend to zero

n tj ~
h1/? Z(/ oMAW D)L a, v 0 Ag Tz <
j=1 tji—1
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1 A
N(1 Ky (w )\/_logﬁsup 1/526 —0, P-—a.s.

while h~1/2 2?21( ttjj;l Ugl)dWS))1{(A.jj£1>)2>4rh’}Ajj2(? =0, P — a.s., for small h, because

1{(Ajj2(1>)2>4rh} =0, P —a.s., for small h. Indeed
n t; ~
Plimyh~ /2 Z(/t o MAW D)1 a, x)y2<rm A dsm =
j=1 7ti-1
n t; n tj -~
Plimhh‘l/QZ(/t eMdW AT + Plimph™ UQZ([ oAW1 a, x0y25rm) A Ta)
j=1 7ti—1 j=1 7ti—1

For the first term it is sufficient to show that the square tends to zero in probability, since X2 Eil

P . . . .
0 = X, — 0. However, since the factors are increments of martingales it suffices to prove the
convergence of the sum of squares; we have

Su.p ] 2m Z/ gl)dv[/s(l))21>o7

7(2) )
&s72n)” 2. 0 by Doob’s inequality while 7, ( S ePawDy L L eD)2t,
5 (Cont-Mancini, 2005)

because sup,
which is bounded P — a.s. by assumption. Indeed, by lemma 3.

n

tj _
Plimhh71/2 Z(/ Ggl)dwgl))(AjJQ(iZ)l{(AJ_X(l))2>Th} <

j=1 Jti-1

n

tj ~
P“mhh_l/2z(/ oD AW (A; T (Lia, w0020y + Lia, 7002540,

j=1 Yti-1

Both terms tend to zero; in fact, the first one contains at most N}l) terms

~ [ - o AT
—1/2 1 1 (2) JjY2ml Ar(1)

j=1 7t
For the second one, since there exists a subsequence such that 1{(A‘ ID)2samy = 0, P—a.s
Im 2 v
(Cont-Mancini, 2005), we conclude that
-1/2 W g @ 72 5 - _
h Zl(/tj o AW (A Tym)L (a, ji0y2samy = 00 P —as.,
= _

and so . ,

j=1 Jti-1
as required.

L)

To conclude the proof it remains to show that
W= 230 AT WA TP xy2<ry Ly, x@)2<m)
VIT 1+ ) (0V)2(0)2dt

Dlimy, =0,
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which is implied by

_ n 7(1) 7(2)
h—1/2 Zj:l AjJQ 1{(Ajj§1))2g4rh}AjJ2 1

Vh

The situation is very complicated and a possible approach requires the application of the following
celebrate Central Limit Theorem on the triangular array of r.vs. due to Lindeberg and Feller.

(A, J5)2<ar,} 0

Dlimh

Theorem 4.3.9. (Lindeberg-Feller) Let {Hp;, j = 1,....,jn, n = 1,2,....} be a double array of
r.v.5 independent in each row such that EH,; = 0 and EH,QLJ- = aftj < oo for each n and j and
moreover Z;”:'l U%j = 1. Let F,; be the distribution function of H,;. In order that
1. maxi<;<j, P(‘H’I’Lj| > 6) — 0, Ve > 0,
‘VL D
2. Z;Zl H,; — N(0,1),

it is necessary and sufficient that for each > 0 the Lindeberg condition holds, i.e.
Jn Jn
Z/ 2’ Foj(d) = > EHz1m, |5y — 0.
j=1 |z|>n j=1

Our array is done by the r.vs. H;U- = Ajjél)l Since the

7(2)
(1,50 <2y 2902 La, 5 <oy
theorem can be applied to centered r.vs. our first objective is to compute expectation of H, nj- I
particular, we are interested in its speed of convergence to zero. Then
#(1 51 #(2 (2
) = BI(A;JS) — A5 (AT — A2,

E(A; 01 NSS!

{18, 75V <27} (8,72 <2y

The first factor E(A;J{)A;JE2) is not immediate because it requires the computation of an
integral of the type

/ ryv(de, dy).

|z <2y, ly|<2y/Tr

which says to us the speed of convergence of co-jumps of a bi-dimensional pure jumping Lévy
process. v is the Lévy measure of such a process. The computation of the integral is more simple
if we limit ourselves to the case of positive jumps and we assume without loss of generality r;, = h?
with 8 €]0, 1[. The result is
j(Z) B(agtag—ajag)

BN TS =0 21 ).

Ajjz(g)) = Ajjé?EAjjél) = 0 and so it does not

m

As regards the other terms, we have E(Ajj(l)

2m
contribute, whereas

Ajjéi)Aij(?:) = h2/ xu(l)(dx)/ 2 (dx) =
2 <|z|<1 2yrp<|z|<1

ay)

B(1— B(l—ag) B(l—ay) B(l—ag) B(2—a3—ag)
R*O(c—ch™ 2z )O(c—ch ™ = ) =0(h*> = c*h*" =2 —2r*T = 4+ 2h%" 2 ),

Blaytag—ajag)
which can be compared with O(h 21 ). We have two cases
1. a1 < as < 1. In this case

B—ay)
O(?h? — h*T = — 2h*T

B—ag)
2

+ AR Z on2),

so that the expectation is

Blajtag—ajag)

(1) 7(2) - 2 2y _
BTy L 6, 501<0my B2 Ya, 0 <2ymy) = ) Fow) =

Blajtag—ajag)
B { o B hoea< 4—234-25042

O(h?), ay > 74_@25&2
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2. 1 < a1 < as. In this case

B(l—oay) B(l—ag) B(R—ay—ag) B(R—oy —ag)
O(h? —c2p*t = =T =z 4 2R*T 2 ) =0(m*T 2 )

)

so that

E(A; 01 A IS

(8,78 <2 my)

B(R—ay—ag)
2

{18, 75" |<2y/m}

Blajtag—ajas)

P )+O(h2+

BR—ay—ag)
2

) = O(h* ).

We see how the situation is complicated only to compute the expectation of H,/Lj. We expect
further difficulties when we try to calculate the speed of convergence of the second moment of H ;lj
to obtain its variance necessary to apply the Lindeberg-Feller theorem.



Chapter 5
Simulation results

?[ filosofi hanno solo interpretato il mondo in vari modi,
il punto e’ cambiarlo.”
(K. Marz)

5.1 First case: the jump component is a Compound Poisson

process

We show the performance of the threshold estimator 171"1) (XM, X@) 7 of the covariation between
the two diffusion parts by a simulated model. In particular, we simulate jump diffusion processes
with jump components given by compound Poisson processes with Gaussian size of jumps and

constant diffusion coefficients
N

dxV = oWaw + 3" zY
k=1

and
(2)
NT

dX? = o@aw® + Y 27
k=1
where Z,gl) ~ 1.5.d.N(0,0.36) and Z,iz) ~ 1.1.d.N(0,0.25). The parameters of the Poisson processes
N and N@ are AV = 5 and A®) = 6 respectively, whereas o)) = 0.3, 0(?) = 0.4 and p = —0.7.

04

Figure 5.1: Example of sample path of a jump diffusion process with Compound Poisson jumps

To generate 5000 trajectories of each X (9, we fix T = 1 and take n equally spaced observations
Xi,j=12,....,n. To evaluate the performance of our estimator we simulate several situations in
which n assumes increasing values. If T' = 1 represents a year if we choose n = 250, 500, 1000, ...,

(0]
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Number of returns (n) Mean Median Standard Deviation Kurtosis Skewness

250 0.4218  0.3598 1.0610 3.3346 0.3779
500 0.3110  0.2738 1.0260 3.0216 0.1847
1000 0.2399  0.2081 1.0283 3.2531 0.1640
2000 0.1816  0.1543 1.0184 3.1137 0.2199

Table 5.1: Descriptive statistics relative to N=5000 replications of the jump diffusion model with Compound Poisson
jumps.

Quantiles of Input Sample:

4 E) 2 B 3 4

= o 1
‘Standard Normal Quantiles

R0 XD X T pat o an

Figure 5.2: Histogram and Normal Probability Plot of 5000 values of , with

V/{,g”g(x(l) x @)y —w(n) (x (1) x(2)) 4,
n =250.

we reproduce the situation where we have daily observations, two observations per day and so on.

Finally, we choose r(h) = h0-9.

h—l/z(ﬁﬂ)(X(“,X("’))Ta[OT pUEl)UEQ)dt)
B (XD, X @)~ () (XD X @) 7

to evaluate the performance of the threshold estimator in small sample. Table 5.1 contains the

descriptive statistics relative to 5000 replications of the sample path of our model. We observe a

moderate bias which tends to decrease as the number of returns n increases.

In particular, we are interested in values assumed by the quantity

)

5.2 Second case: the jump component is a Variance Gamma

process

The Variance Gamma process, which we use in this second simulated model, is a purely jump-
ing process with infinite activity and finite variation whose Blumenthal-Gatoor index is 0. The
following figure depicts an example of a sample path.

The VG process of parameters , 6 and ¢ is obtained by evaluating Brownian motion with drift

Quanties of Input Sample

Za ) 2 2 3 4

-1 o 1
‘Standard Normal Quantiles

h_l/Q(ngtI'l)(X(l),X(Q))TffoT potD P ar)

Figure 5.3: Histogram and Normal Probability Plot of 5000 values of , with
V/ﬁé”g)(X(l)VX@))TﬂD(")(X“),X@))T

n =500.
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Quanties of Input Sample
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-1 o 1
Standard Normal Quantiles.
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Figure 5.4: Histogram and Normal Probability Plot of 5000 values of , with

n =2000.

—0.01

—0.02|

—0.03|

—0.04

Figure 5.5: Example of sample path of a Variance Gamma process

at a random time given by a gamma process, I', which is a process of independent increments
distributed as a Gamma r.v. with mean and variance depending on the time interval time h.
Formally VG¢(x,0,s) = Wr,(1,6)(s, &), (Madan, Carr, Chang, 1998). In this simulated model we
choose to test the performance of the threshold estimator in two cases: in the first one the jump
component is given by a VG process only, in the second one we add the rare jumps of a Compound
Poisson process too. The parameters of the VG process relative to the first simulated model
XM are k1 =0.08, 6; =0.1, ¢ =0.03, while for the second VG are ko =0.02, 65 =0.08, ¢» =0.06.
Tables 5.2 and 5.3 show the descriptive statistics of the replications in the two cases.

As in preceding section we show a graphical analysis of the simulated results.

5.3 Final remarks

[h] The simulated results presented in this paragraph emphasize how the threshold estimator is
characterized by a moderate bias in small samples. In particular, a positive skewness is evident
when the number of sampled points n is not large, especially when the jump component contains
a Compound Poisson process. However, such property rapidly tends to disappear as n increases.

Number of points Mean Median Standard Deviation Kurtosis Skewness

250 0.1067  0.0331 1.0489 3.8937 0.4654
500 0.0928  0.0403 1.0367 3.2456 0.2796
1000 0.05675  0.0351 1.0045 3.1936 0.1711
2000 0.0199  -0.0095 1.0142 2.9879 0.1944

Table 5.2: Descriptive statistics relative to N=5000 replications when the jump part is given by a VG process.
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Number of points Mean Median Standard Deviation Kurtosis Skewness
250 0.3824  0.3152 1.0515 3.6118 0.4212
500 0.2842  0.2285 1.0191 3.0262 0.2075
1000 0.2071  0.1556 1.0497 2.9948 0.2148
2000 0.1624  0.1410 1.0104 2.9946 0.0473

Table 5.3: Descriptive statistics relative to N=>5000 replications when the in the jump part are both VG and Compound

Poisson processes.

Figure 5.6: Histogram and Normal Probability Plot of 5000 values of

n =250 and jump part given by a VG process only.

Figure 5.7: Histogram and Normal Probability Plot of 5000 values of

n =500 and jump part given by a VG process only.
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Figure 5.8: Histogram and Normal

n =2000 and jump part given by a VG process only.
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Figure 5.9: Histogram and Normal Probability Plot of 5000 values

n =250 and jump part given by a VG process plus a Compound Poisson.

Figure 5.10: Histogram and Normal Probability Plot of 5000 values of
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Moreover, in every case the mean of the simulated values of @ﬁ”l) (XM, X@) 7 is very close to the
theoretical integrated covariation po(Yo(?). The median of the normalized version of the threshold
estimator is always less than the mean whereas the skewness approaches to zero (as n increases)
more quickly in the case where the jump component is given by a Variance Gamma process only.
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