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Preface 

 

 

 
The relationship between fertility and poverty is a topic studied by economists 

and demographers for a long time. The very first researches on the linkage 

between population and poverty adopted a macro perspective, that is, the topis 

was studied at the national or state level. In this context, the neoclassic economic 

theories argue that population growth has a negative impact on economy due to, 

mainly, decreasing marginal returns of work and to existing obstacles to capital 

accumulation.  In the last decades, the micro approach, which usually takes the 

household as unit of analysis, has been remarkably developed. In this context, 

the crucial aspect of the interaction between the quantity and quality of children 

was introduced (Becker and Lewis, 1973; Barro and Becker, 1989; Becker et al, 

1999). Children are considered as an essential part of the household’s work force 

as they generate income, as well as providing insurance against old age. This is 

especially true for male children and for households living in rural 

underdeveloped regions (Admassie, 2002). 

Existing micro-level researches on the relationship between poverty and 

fertility in Less Developed Countries (LDC) are mainly based on cross-sectional 

data. The results vary considerably (Schoumaker and Tabutin, 1999). However, 

the most common relationship between poverty and fertility, in contemporary 

LDC, is positive. These results underlie the presumption of a positive causal 

relation between poverty and fertility at the household level. Whereas there is a 

clear positive association between fertility and poverty, it is not equally clear to 

what extent fertility actually leads to a worsened economic situation. This is of 

course a very different question, since we are in this case interested in the causal 

effect of fertility on poverty, which ultimately is what we would need in order to 

give sound policy advice. Policy-makers are naturally interested in causality. 
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Good public policy decisions require reliable information about the causal 

relationships among variables. Policy-makers must understand the way the world 

works and the likely effects of manipulating the variables that are under their 

control. If, for example, having more children causes poverty, policy makers 

could, adequately, plan some actions to impact on fertility, directly or indirectly. 

Alternatively, if the only policy goal is to contrast poverty conditions without 

any wish to determine fertility behaviours, it could be simply decided to 

compensate the higher costs supported by households with a lot of children 

through state benefits. 

In order to draw proper causal conclusions about the effect produced by a 

social phenomenon on another we need to use appropriate statistical 

methodologies and data. In the literature, there are few studies that approached 

the fertility-poverty relationship from a causal perspective using adequate 

methodologies. Moreover, only recently panel data on LDC are made available 

due to the implementation of Living Standards Measurement Surveys (LSMS) 

conducted in a number of countries with technical assistance from the World 

Bank.  

Likewise all LSMS, the Vietnamese surveys (VLSMS) include rich 

information on variables that are important determinants for the household’s 

standard of living and fertility behaviour. For example, it collects data on 

education, employment, fertility and marital histories, together with detailed 

information on household income and consumption expenditure. A very 

interesting feature of the VLSMS is that it also provides, for the rural areas, 

detailed community information from a separate questionnaire.  

The longitudinal dimension of the data available is crucially important to 

be allowed to draw robust causal inference about the effect of interest. In fact, 

only longitudinal data allow us to keep into account the dynamic nature of 

fertility and poverty processes. By using data on two time points we properly can 

implement a pre-post treatment analysis which is vital for our study of causal 

inference. 

 On the other side, as already mentioned, we need to use adequate 

statistical methodologies for causal inference. Despite other situations, the study 
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of the relationship between fertility and poverty cannot rely on experiments. On 

the contrary, we can use survey data, such those coming from the VLSMS, and 

adopt a quasi-experimental approach for our observational study. 

 The approach to causal inference we adopt is the potential outcomes 

framework, pioneered by Neyman (1923) and Fisher (1925) and extended by 

Rubin (1974, 1978) to observational studies. Recently, the approach has been 

adopted by many in both statistics and econometrics (e.g. Rosenmbaum and 

Rubin, 1983a; Heckman, 1992 and 1997a; Imbens and Angrist, 1994; Angrist, 

Imbens and Rubin, 1996; Heckman, Ichimura and Todd, 1997). This literature 

formalises notions of cause and effect and is based on the counterfactual idea. 

Counterfactual refers to what would have happened if, contrary to fact, the 

exposure had been something other than what it actually was (Greenland and 

Brumback, 2002). As a means to show the idea, suppose we have a population of 

individual units under study (in our case households) indexed by i = 1, 2, ... N, a 

treatment indicator D, that assume the value 1 for treated units and 0 for 

untreated or the controls and an outcome variable, here indicated by Y. Each unit, 

i, has two potential outcomes depending on its assignment to the treatment 

levels: Yi1 if Di=1 and Yi0 if Di=0. The fact that potential outcomes for each unit 

depends only on the treatment received by that unit corresponds to the “no 

interference among units” assumption of Cox (1958), which Rubin (1980) refers 

to and extends as the Stable Unit Treatment Value Assumption (SUTVA).  

As with many of the other assumptions to be discussed, it is important to 

note that SUTVA is not directly informed by the data. In other words, it is an un-

testable assumption that stems from the scientist’s assessment or knowledge.  

Following Rubin (1978), each comparison (obtained through means, 

ratios and so on) among potential outcomes defines a causal effect of potential 

interest. It is obvious that the two potential outcomes are not observables for the 

same unit - a feature referred to by Holland (1986) as the “fundamental problem 

of causal inference”. In so far, causal inference can be seen as a missing data 

problem.  

Generally, we cannot draw valid causal conclusions without considering 

what makes some units receive a treatment whereas others do not. This is 
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referred to as the assignment mechanism, and there is a critical distinction 

between randomized and observational studies. The key difference is that in 

randomized settings, the analyst can control assignment to treatment and the 

probabilities of being assigned to treatment are known. In observational studies, 

as ours, these conditions are unlikely to hold and the researcher can only 

estimate probabilities of assignment to treatment on the basis of the data 

available. By adopting the potential outcomes framework and by using panel 

data from the VLSMS, we review the fertility-poverty relationship from a causal 

perspective.  

Another key perspective that we take in this work is a multilevel one. The 

multilevel approach is motivated by the consideration that the place where 

households reside has important consequences both for their poverty and fertility 

conditions. In particular, households can be considered as clustered in 

communities. This implies a two-level data structure, with households at the first 

level and communities at the second.  

Keeping explicitly into account this multilevel dimension in the study of 

the causal effect of fertility of poverty is central, both for statistical and for 

substantive research reasons. The fact that community characteristics 

(infrastructure, remoteness, culture and so on) influence both phenomena 

requires to control also for them in the statistical analyses. Otherwise, we might 

capture associations that are not causal. Moreover, the multilevel dimension 

implies specific challenges for causal inference. Apart from the statistical 

motivations, the multilevel structure of the data brings some interesting research 

question. For example, it is of interest to understand if the effect of fertility on 

poverty changes by community.  

 

 

Outline of the thesis 

The outline of the thesis follows the logical development of the previous 

discussion. We start (chapter 1) by introducing the background of our empirical 

analyses. The principal concepts and measures of poverty are briefly discussed. 

We use a very standard and consolidated approach for poverty measurement in 
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LDC based on households’ consumption expenditure as a measure of welfare. 

Then, we discuss the main determinants of poverty and fertility, as they are 

analyzed in the theoretical and empirical literature on the topic. Understanding 

the common determinants of the two phenomena is vital for our study of causal 

inference. Failing to control for these variables hamper any detection of causal 

effects. We, briefly, discuss the previous works studying the fertility-poverty 

relationship, stressing that they often fail to use adequate data and 

methodologies. Then, we introduce the data we use in our applications. As 

already mentioned, they come from the VLSMS, which is a panel consisting of 

two waves covering the 1990s, a period of strong economic growth for Vietnam. 

We clarify that the process of the improvement in the economic and social 

conditions is imputed, by many observers, to the “Doi Moi” (renovation) policy 

implemented from 1980s by the Vietnamese government. Finally, chapter 1 

concludes by explaining the motivations underlying the need for adopting a 

causal and a multilevel perspective in our work. 

 We continue (chapter 2) presenting the potential outcomes framework, 

under which our causal inference is made. We show the basic concepts and 

definitions of causal effects and assignment mechanism. We categorise different 

situations for causal inference, distinguishing among randomised and 

observational studies. Among observational studies we distinguish two situations 

referred to as regular and irregular assignment mechanisms. The first concerns 

studies where the analyst can reasonably assume that characteristics driving 

selection into treatment are all observed. Among irregular assignment 

mechanism the most important case is represented by the latent regular 

assignment where selection also depends on unobserved characteristics. 

Randomized experiments with non compliance, and by extension, instrumental 

variables estimation, belong to this setting. We review several methods for 

causal inference that we can use in the manifold outlined situations, stressing the 

differences among them in terms of assumptions and data requirement. This 

review includes, in particular, recent methodology for using instrumental 

variables with covariates avoiding traditional methods, which often rely on 

strong assumptions. 
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 In chapter 3, we present the general motivations for using a multilevel 

approach to the study of social phenomena. The traditional multilevel linear 

model is reviewed, focussing on the second level endogeneity problem. By using 

the potential outcomes framework, we originally re-analyse multilevel linear 

models, stressing the modifications needed to the standard framework when 

causal inference is made in a multilevel setting. Some pitfalls of these models in 

recovering causal effects are emphasised. Finally, we discuss the statistical and 

substantive motivations to keep explicitly into account the multilevel dimension. 

Three vital topics for causal inference in a multilevel setting are, in particular, 

explored.  

The first one refers to the cluster-heterogeneity in the treatment effect. 

Actually, this issue is not a statistical one but it is driven from a research 

question about the heterogeneity of the treatment effect. Moreover, it is not 

specific to multilevel settings. In all studies of causal inference we could be 

interested in the treatment effect heterogeneity. However, in a multilevel setting 

it could be of specific interest to learn if and why some heterogeneity in the 

treatment effect is driven by the characteristics of the cluster to which units 

belong. 

The second issue concerns the fact that, in a multilevel setting, not only 

the outcome model, but also the selection process can have a multilevel 

structure. This is the case when the probability of being treated changes 

substantially by cluster, and the effect of some covariates on this probability 

varies by cluster. The first aspect requires the inclusion of a random intercept in 

the model of the propensity score, while the second one asks for the inclusion of 

random slopes. In other words, the statistical implication of the multilevel 

structure of the selection process is that including only observed covariates in the 

model for the propensity score, and hence balancing only for them, might not be 

sufficient. Some unobserved cluster level characteristics could be related to both 

the treatment and the outcome, generating bias in the estimation of causal 

effects. In this context, we propose a two-stage strategy to allow balancing 

observed covariates, defined both at the first and at the second level, as well as 

xiv 
 



empirical bayes predictions of the random effects, which capture unobserved 

effects at the cluster level.  

Finally, we consider the potential invalidity of the SUTVA in a multilevel 

setting. In general, this assumption is problematic when sharing and competition 

for resources generate interference among units (at least) belonging to the same 

cluster. Inference without SUTVA is complicated since potential outcomes for 

each unit depend also on the treatment received by the other units. In a multilevel 

setting, this problem is traditionally overcome by redefining the unit of analysis 

at the minimum aggregate level for which the assumption is tenable. However, 

the consequence is that the analysis should be conducted at an aggregate level 

and we cannot refer our results to the individual level. Otherwise, we could 

commit an ecological fallacy error. Since in our application, as it is often the 

case in multilevel analyses, we are interested in drawing inference at the unit 

level we need a weaker version of SUTVA that allow us to conduct the study 

still at the first level. We discuss a weaker version of the SUTVA, which 

amounts to assume that there is no interference among units belonging to 

different clusters, while the within-cluster interference is fully captured by the 

level of the proportion of treated (high versus low).   

 In the following three chapters we present the empirical part of our work. 

Chapter 4 contains a multilevel analysis of poverty exit determinants in Vietnam. 

This application is appealing per se. However, in the economy of the present 

work, it is interesting to explore the between-communities variability in the 

change of household living standards. If there is substantive between-

communities variability, even after controlling for observed covariates, then a 

multilevel analysis is justified. We would like to learn about the key 

determinants of the transition from poverty to non-poverty, keeping into account 

the clusterisation of household in communities. An attractive development of the 

analysis is the proposal of using empirical bayes prediction of the random effect 

to help policy makers to better calibrate their decisions.  

 In chapter 5, we apply some of the methods discussed in the chapter 2 to 

the problem of estimating the causal effect of childbearing on changes in 

households’ consumption expenditures. The issue is that childbearing events 
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cannot be considered as an exogenous measure of fertility, especially when the 

outcome relates to economic wellbeing – in our case measured in terms of 

consumption expenditures. We, first, contrast some methods based on the 

unconfoundedness assumption: regression and propensity score matching. We 

then assess the potential effect from omitting relevant but unobserved variables 

without actually implementing an Instrumental Variable (IV) approach, through 

an extended sensitivity analysis. This is a very useful tool, in the sense that valid 

and relevant instruments are often hard to come by. However, in our application 

we also explore the use of the IV method using two different instruments. The 

first is a well-used instrument that relates to couples’ preference for sons. The 

second instrument is related to the contraceptives availability in the community 

where household reside. Since this second instrument cannot be thought as 

random we need to control for covariates. We explore the use of a recent 

approach suggested by Frölich (2007), which overcomes many of the stringent 

assumptions typical of the traditional IV methods with covariates. We use this 

application as a means to illustrate the existing difference among methods based 

on different assumptions. In particular, we contrast regressions and PSM versus 

IV.  

In chapter 6, we re-analyse the estimation of the causal effect of fertility 

on poverty, treated in the previous chapter, with the goal of keeping into account 

the multilevel dimension of the problem. First, we analyse the effect of fertility 

on poverty using multilevel models. Then, we adopt a different strategy 

consisting in a combination of multilevel models for the estimation of the 

propensity score and matching methods for the estimation of causal effects. We 

compare different strategies for the specification of the propensity score, which 

are evaluated with reference to the balance they allow us to achieve in observed 

covariates and in the prediction of random effects included in multilevel models. 

Finally, we explore the complication due to the potential violation of the SUTVA 

in a multilevel setting. We compare results obtained under the standard version 

of this assumption with those we get under a weaker version. We conclude this 

work with some overall considerations on the key empirical and methodological 

results we found. 
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Chapter 1 

Analysing the causal effect of fertility  

on poverty in Vietnam 

 

 

 
Introduction 

 
A common observation in developing countries is that large households with 

many children tend to be poorer. Whereas there is a clear positive association 

between fertility and poverty, it is not equally clear to what extent fertility 

actually leads to a worsened economic situation. This is of course a very 

different question, since we are in this case interested in the causal effect of 

fertility on poverty, which ultimately is what we would need in order to give 

sound policy advice.  

 The main thesis goal is to use advanced statistical techniques in order to 

estimate the causal effect of fertility on poverty. In this chapter we introduce the 

background and discuss the perspectives we used in this work. 

 The chapter is organized as follows. Section 1.1 briefly discusses the 

principal concepts of poverty and the view we adopt in this work. Sections 1.2 

and 1.3 examine, respectively, the theoretical determinants of poverty and 

fertility. This discussion is important to understand which are the most important 

variables potentially correlated with both phenomena. Failing to control for these 

variables hamper any detection of causal effects. Section 1.4 offers a short 

review of the existing literature about the relationship between poverty and 

fertility. Section 1.5 presents the data we used in the thesis and the Vietnamese 

context. Section 1.6 motivates the perspectives we adopted to develop this work. 

Section 1.7 concludes.  
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1.1 Concepts and measures of poverty 
 

According to the World Bank (2000), “poverty is pronounced deprivation in 

well-being.” This of course begs the question of what is meant by well-being. 

The conventional view links well-being primarily to command over 

commodities, so the poor are those who do not have enough income or 

consumption to put them above some adequate minimum threshold. This view 

sees poverty largely in monetary terms. Poverty may also be tied to a specific 

type of consumption; thus someone might be house poor or food poor or health 

poor. These dimensions of poverty can often be measured directly, for instance 

by measuring malnutrition or literacy.  

The broadest approach to well-being (and poverty) was pioneered by Sen 

(1987) and focuses on the “capability” of the individual to function in society. 

The poor lack key capabilities, and may have inadequate income or education, or 

be in poor health, or feel powerless, or lack political freedoms. Viewed in this 

way, poverty is a multi-dimensional phenomenon, and less amenable to simple 

solutions. So, for instance, while higher average incomes will certainly help 

reduce poverty, these may need to be accompanied by measures to empower the 

poor, or insure them against risks, or to address specific weaknesses (such as 

inadequate availability of schools or a corrupt health service). 

Recognizing the multidimensional nature of poverty is important when 

we want to analyse living standard conditions or dynamics in a given area. The 

definition of poverty rates based only on monetary (consumption or income) data 

can be misleading or insufficient to describe the complexity of the reality of 

poor’s conditions. This argument is valid in developed as well as Less 

Developed Countries (LDC), like Vietnam. However, in LDCs the monetary 

dimension of well-being assumes a higher relative weight. Moreover, 

multidimensional measures of poverty are more difficult, requiring more detailed 

information and sophisticated methods. In our work we adopt the first concept of 

poverty which seems quite adequate to study the situation of the rural Vietnam 

and allow us to use a standard and consolidated measure of poverty.  

2 
 



  The first step in measuring poverty is defining an indicator of welfare 

such as income or consumption. Information on welfare is derived from survey 

data. The World Bank-inspired Living Standards Measurement Surveys (LSMS) 

feature multi-topic questionnaires and strict quality control. The flexible LSMS 

template is widely used. We used in this work the Vietnamese LSMS we present 

in section 1.5. 

Income is generally used as a measure of welfare in developed countries, 

but tends to be seriously understated in less-developed countries (Coudouel et al., 

2002; Deaton and Zaidi, 2002). Consumption is less understated and comes closer 

to measuring “permanent income.” However, it requires detailed information on 

consumption behaviours, their expenditure pattern and the evaluation of durable 

goods (by assessing the implicit rental cost) and housing (by estimating what it 

would have cost to rent).  

While consumption per capita is the most commonly-used measure of 

welfare, some analysts use consumption per adult equivalent, in order to capture 

differences in need by age, and economies of scale in consumption. The standard 

solution is to impose an assumption on inter-household resources allocation, and 

adjustments can be done by applying an equivalence scale that is consistent with 

the assumption made – producing a measure of expenditure per equivalent adult. 

As a measure of household’s living standard, we use the household’s 

consumption expenditures using the expenditure variables calculated by the 

World Bank procedure which is readily available with the Vietnam LSMS 

(VLSMS) survey. We apply a simple equivalence scale similar to the one White 

and Masset (2002) estimated on VLSMS, giving to each child aged 0-14 in the 

household a weight of 0.65 relative to adults. This means that the mean poverty 

rate for the two waves will be different from the official ones, given that the 

latter is based on per capita expenditure, which in effect implies an equivalence 

scale assigning equal weights to all household members.  

When using consumption or income data we have also to bear in mind 

that households face different prices according to the place they live. Moreover, 

since we use two waves surveyed in different time points, we have to consider 

also the variability of prices over time. In order to keep into account both 
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aspects, we opportunely deflate households’ consumption expenditure by means 

of price indexes available with the VLSMS.  

 

 

1.2 The determinants of poverty 
 

Poverty and poverty reduction are currently the central concerns of development 

discourse and policy-makers agenda. Although the construction of poverty 

profiles is useful because it allows us to know whether poverty is increasing or 

decreasing, as well as the changes in the composition of the population in 

poverty, poverty profiles do not throw much light about the causes of poverty.  

In fact, a country poverty profile simply sets out the major facts on 

poverty (and typically, inequality), and then examines the pattern of poverty, to 

see how it varies by geography (by region, urban/rural, mountain/plain, etc.), by 

community characteristics (e.g. in communities with and without a school, etc.), 

and by household characteristics (e.g. by education of household head, by 

household size). They only provide a description of poverty according to several 

economic, demographic or social characteristics, but do not go in depth as to 

look for the underlying causes of differences in poverty rates across population 

groups and/or across time. Understanding the determinants of poverty is 

crucially important for policy making. We discuss this issue, specifically the 

need for a causal perspective, in section 1.6. 

Few questions have generates much discussion across time as that of the 

causes of poverty. The sources and origin of poverty have been debated for 

centuries. In fact, almost as long as there has been poverty in the world, there 

have been attempts to explain it with the ultimate goal of alleviate poor 

conditions. As the historian Hartwell (1986) notes, ‘‘The causes of poverty, its 

relief and cure, have been a matter of serious concern to theologians, statesmen, 

civil servants, intellectuals, tax payers and humanitarians since the middle-age’’.  

In general, empirical studies on the poverty determinants have used 

different methodologies, including ordinary least square regression where the 

dependent variable is continuous (e.g. logarithm of consumption expenditures), 
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logistic regression where the dependent variable is binary (poor or non poor), 

and quantile regressions (Garza-Rodríguez, 2004). The adequacy of regression 

approach to causal inference will be discussed in chapter 2.  

 However, it is important to recognize that these methodologies can only 

corroborate or contradict, empirically, a theoretically defined relationship among 

poverty and a group of variables, assumed to be its determinants. In this section 

we briefly review which are the most important theoretically determinants of 

poverty as they are stated by economic, sociologic and other theoretical studies. 

The empirical literature, obviously, it is important since it has served to confirm 

the theoretical beliefs. 

 The determinants of poverty can be distinguished in three groups: 

individual, household and aggregate.  Individual and household determinants can 

be organized into three groups: demographic, economic and social 

characteristics. Important individual characteristics are without doubt 

represented by age, sex and marital status. Also the demographic composition of 

the household is a key factor: number of children, of elderly members, the 

dependency ratio (calculated as the ratio of the number of family members not in 

the labour force to those in the labour force in the household). Also the gender of 

the household head can significantly influences household poverty. In many 

LDCs females are discriminated in the labour market and generally in the 

society. This fact impacts directly on females’ living standards and on female-

headed households’ conditions.   

As economic characteristics are concerned, apart from income or 

consumption, which are typically used to define whether a household is poor, 

there are a number of other economic aspects important for individual and 

household poverty. First of all, employment status including the type and sector 

of activity is an important aspect to be considered in a poverty analysis. Another 

important feature refers to the assets owed by household members, including the 

house, land, livestock, and agricultural machinery. However, these assets, at least 

some of them, could also be included in a broader measure of well-being. 

Aside from the demographic and economic indicators, several social 

characteristics are important for living standards. The most critical are measures 
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of health and education. Nutritional and disease status, are examples of 

indicators normally used to characterize health in analyzing living standards. As 

education is concerned, literacy and schooling are important indicators of the 

quality of life in their own right, as well as being key determinants of poor 

people’s ability to take advantage of income-earning opportunities. Race and 

religion are other factors to be considered in those countries where some form of 

discrimination against minority is in action. This is the case of Vietnam where 

some of the ethnic groups different from the Kinh are segregated. 

In addition to the individual and household characteristics, the literature 

has been placing an increasing focus on the role of the features of the place 

where households reside (e.g. Van de Walle, 1996; Glewwe et al, 2002; Ali and 

Pernia, 2003; Mukherjee and Benson, 2003; Justino and Litchfield, 2004).  

There are a lot of geographical and institutional features that impact 

considerably on poverty. At the regional level, there are numerous characteristics 

that might influence peoples’ living standards. The relationship of these 

characteristics with poverty is country-specific. In general, however, poverty is 

high in areas characterized by geographical isolation, a low resource base, low 

rainfall, and other inhospitable climatic conditions. Vietnam is poor in part 

because it is regularly hit by typhoons, which destroy a significant part of the 

accumulated stock of agricultural capital. In many parts of the world the 

remoteness of rural areas (which lower the price farmers get for their goods and 

raise the price they pay for purchases, due to high transport costs) is responsible 

for generating food insecurity among the poor. Inadequate public services, weak 

communications and infrastructure, as well as underdeveloped markets are 

dominant features of life in many rural parts of the world, and clearly contribute 

to poverty. 

Other important regional and national characteristics that affect poverty 

include good governance, economic, political and market stability, mass 

participation, global and regional security, intellectual expression and a fair, 

functional, and effective judiciary. Regional-level market reforms can boost 

growth and help poor people. 
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As with regional characteristics, there are a variety of community-level 

characteristics that may influence poverty. Among them, infrastructures are a 

major determinant of peoples’ economic conditions. Indicators of infrastructure 

development that have often been used in econometric exercises include 

proximity to paved roads, whether or not the community has electricity, 

proximity to large markets, availability of schools and medical clinics in the 

area, and distance to local administrative centres. Other indicators of community 

level characteristics include average human resource development, access to 

employment, social mobility and representation, and land distribution. The 

VLSMS include, as we will see in section 1.5, for the rural part of Vietnam 

essential data on community characteristics allowing to include an important part 

of the information into the analysis. 

Recent research has also stressed the importance of social networks and 

institutions, and “social capital” (which includes, for instance, the level of 

mutual trust in the community). Social institutions refer to the kinship systems, 

local organizations, and networks of the poor and can be thought of as different 

dimensions of social capital. Research on the roles of different types of social 

networks in poor communities confirms their importance.  

In general, we cannot deny the role that the geographical environment 

(physical, as well as social) plays in the formation of all sorts of human 

behaviour including economic behaviours in a broad sense (Skinner, 1965). This 

is the case also for fertility behaviour. As we will argue in the next section, also 

for fertility the geographical dimension plays a crucial role.  

If all the mentioned factors can be viewed as causes of poverty is not 

always clear. There are reasons to raise questions about the direction of causality 

for a lot of these variables, that is, in several cases authors have raised questions 

such as whether poverty influences the level of the variable in question, or 

whether the variable in question is not an intervening variable for some more 

fundamental determinant of poverty. In this work we are specifically interested 

in the relationship between poverty and fertility. If is fertility to cause poverty or 

vice-versa is matter of debate, as we will see in section 1.4. 
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1.3 The determinants of fertility 
 

Fertility makes possible the continuity of populations, societies and cultures. It is 

central, ineluctable and remarkably complex. As much as any human activity, 

reproduction involve biology and culture, individual and communal. While 

numbers of births over time have significant consequences for population size 

and structure, its analysis cannot be only demographic. Its study has been 

approached, in fact, by different branch of social science: economics, 

anthropology, sociology. 

In any discussion of fertility, it is useful to begin with the recognition of 

the role of intermediate variables, through which any social factors influencing 

the level of fertility must operate. The intermediate fertility variables, also called 

the “proximate determinants” of fertility, offer a way of attributing the variation 

in fertility to specific mechanisms. A variety of explanatory variables, including 

biological variables, infant and child mortality, the role of women, education, 

and access to resources, have been shown to directly or indirectly explain 

observed variations in fertility. Davis and Blake (1956) provide a taxonomy of 

mutually exclusive intermediate variables suggesting that there are 3 categories 

of variables that are necessary for successful reproduction: variables which 

define the probability of sexual intercourse, such as age of entry into sexual 

unions; variables which define the probability of a conception resulting from 

sexual intercourse, such as contraceptive use and fecundity; and variables which 

define the probability of a conception resulting in a live birth, such as 

spontaneous or induced abortion. 

According to Easterline (1975), in the microeconomic theory the 

determinants of fertility are seen as working through one or more of the 

following processes: 1) the demand for children, that is the number of surviving 

children parents would want if fertility regulation were costless; 2) the potential 

output of children, that is the number of surviving children parents would have if 

they did not deliberately limit fertility; and 3) the costs of fertility regulation, 

including both subjective (psychic) costs and objective costs, the time and 

money required to learn about and use specific techniques. 
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Economists in their research about the determinants of fertility have 

typically emphasized the following variables: age; mortality; budget constraints; 

the status of women; education; direct costs and benefits of children. Another 

category of variables relates to the environment within which family decision 

making is undertaken. There are two basic kinds of variables which we can 

include under this heading: variables relating to the political, social, and 

economic status of the community as a whole; and variables relating to specific 

policies and programs which are likely to have a direct or indirect influence on 

population or one of its components.  

 As happened for poverty, in the literature, the role of the characteristics 

of the place where households reside have been received an increased attention 

(e.g. Entwisle et al, 1989; Hirschman and Guest, 1990; Josipovic, 2003). This 

fact derives from the recognition that the human fertility is a socially modified 

biological process. This social modification of fertility is the consequence of 

numerous groups of factors that issue directly from society or are its product. 

From the viewpoint of geographical factors of fertility, where a person 

lives is significant since to what extent she will realize her physiological 

fecundity also depends on the place (that is, on the relief, the transportation 

infrastructure, the distance from central settlements, accessibility to various 

facilities, the economic activities, the quality of the environment and living 

conditions, the level of urbanization, and similar factors).   

In the field of fertility behaviour, geographical differences can occur due 

to the specific regional-geographical structure or due to the different strength of 

individual factors. The strength of an individual factor is linked to the place 

where it occurs. Thus, each indirect fertility factor has its spatial or regional 

component that reflects its differential strength or spatial or regional 

differentiation. 

Summarizing, the determinants of individual fertility, likewise those of 

poverty as we have seen in the previous section, can be distinguished in 

individual, household and geographical/institutional factors. This motivates, as 

we better discuss in section 1.6 and chapter 3, the need for a multilevel 

perspective to the study of these phenomena. 
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1.4  The literature about the relationship between fertility and 

poverty 
 

The relationship between fertility and poverty is a topic studied by economists 

and demographers for a long time. As Livi-Bacci (1994) observes, there are 

mainly two ways of dealing with the relation between the two phenomena. The 

first approach analyzes this relation at a macro level, that is, at the level of 

country or region. In this framework, the main empirical finding is related to the 

observation of a positive relation between the rate of population growth and the 

incidence of poverty. The second approach analyzes the relation at the household 

or individual level. This is the approach that we employed in our research for the 

Vietnam context taking the household as the statistical unit of analysis. 

 The very first researches on the linkage between population and poverty 

adopted a macro perspective. We cannot fail to remember the celebrated work of 

Malthus (1798), An essay on the principle of population, which can be considered as 

the first organic work on the impact that population growth has on economy. On 

the basis of some well-known assumptions, Malthus explained the ineluctable 

tension existing among available resources and demographic trends. The 

Malthusian model continues, in part, to live in the neoclassic economic theories. 

These argue that population growth has a negative impact on economy due to 

decreasing marginal returns of work and to obstacles existing to capital 

accumulation. 

 In the last decades the micro approach has been remarkably developed. In 

this context we have to remember the fundamental work of Becker and 

colleagues (Becker and Lewis, 1973; Barro and Becker, 1989; Becker et al, 1999). 

They introduced in the economics of family the crucial aspect of the interaction 

between the quantity and quality of children. In these theoretical works, the 

household utility function include as argument both the quantity and quality of 

children. The key theoretical aspect of these models is that the shadow price of 

children with respect to their number (i.e., the cost of an additional child, holding 

their quality constant) is greater the higher the quality is. Vice versa, the shadow 

price of children with respect to their quality (i.e., the cost of an increase in quality 
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holding quantity unchanged) is greater the number of children is. An important 

consequence is that if the “price” of a child increases (for example, due to a raise in 

the cost opportunity of time for the mother or due to greater investments in 

education) then the effect will be a substitution of quantity with quality. These 

theoretical considerations solicit to put great attention on education when we analyse 

the fertility-poverty relationship. Education, as said in the previous two sections, is a 

determinant of both phenomena. Moreover, different levels of parents’ education 

imply a different consideration of children.  

It is important to mention that the traditional micro-economic framework 

considers children as an essential part of the household’s work force as they 

generate income, as well as providing insurance against old age. This is 

especially true for male children. In rural underdeveloped regions of the world, 

which rely largely on a low level of farming technology and where households 

have no or little access to state benefits, this argument makes a great deal of 

sense (Admassie, 2002). In this setting households will have a high demand for 

children. The down side is that a large number of children participating in 

household production hamper investment in human capital (Moav, 2005). There 

are of course important supply side considerations to be made in this regard: 

rural areas in developing countries have poor access to both educational 

infrastructure and contraceptives, both limiting the extent couples are able to 

make choices about fertility outcomes (Easterlin and Crimmins, 1985).  

As households attain higher levels of income and wealth, they also have 

fewer children, either due to a quantity-quality trade-off as suggested by Becker 

and Lewis (1973) or due to an increase in the opportunity cost of women earning 

a higher income as suggested by Willis (1973). Expansion of female education, 

which reduces women’s willingness to give up work for childbearing, is possibly 

the most important driver behind increased opportunity cost and fertility decline. 

Consequently, fertility reduction is often seen as a direct result of increased 

empowerment of women through education. Educational infrastructure and 

educational policies are clearly important as higher compulsory childhood 

schooling will delay the onset of a young adult’s working life, thereby reducing 
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child labour (Livi-Bacci 2000; Kabeer 2001). Lack of education opportunities for 

women reinforces social norms of women’s role and position in society.  

In many traditional societies, men’s status depends very much on their 

ability to foster a large family and household heads are often considered more 

successful if they have many children. Such perceptions are likely to be stronger 

in rural areas, where, households always show a stronger gender bias in favour of 

boys when deciding to send kids to school. The consequence is that women’s 

roles tend to be limited to childrearing and other household chores. With 

economic progress and urbanisation, however, women gain in empowerment 

through higher education and independence (Drovandi and Salvini, 2004). Social 

norms become weaker, and traditional demographic patterns fade, which is 

reflected by the demographic transition. Moreover, economic progress reduces 

labour intensive technologies, and thereby reduces the demand for child labour.  

As noted by McNicoll (1997) the interpretation of the link between 

poverty and fertility cannot neglect the institutional settings. Households’ 

fertility behaviour adjusts to changes in perceived and actual cost and benefits of 

children. Economic forces, social organizations and cultural patterns strongly 

influence prices that determine costs and benefits of children. Factors like the 

educational system and infrastructures, health facilities, family planning policies 

and centres, culture, religion, social norms are all crucially important for both 

fertility and poverty and for the relationship between them. 

Existing research on the relationship between poverty and fertility in 

LDC are mainly based on cross-sectional data. For a review of this literature we 

can refer to Schoumaker and Tabutin (1999). The results vary considerably: 

some studies find a negative relationship between poverty and fertility; in others 

the relationship seems to be very weak; in the majority of cases the relationship 

is found to be positive. These mixed results are explained in consideration of the 

different level of country development and demographic transition.  

Within the poorest countries for example, the relationship between 

poverty and fertility is often negative. Fertility appears higher among “wealthier” 

households, which is a result of low reproduction capability and general higher 

rates of infertility among the poor (Lipton 1998; Livi-Bacci and di Santis 1998).  
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In some cases, such as rural areas of India and Cameroon where fertility 

rates are very high, the relationship takes the inverse “J shape”, implying that 

both low and high-income households have lower rates of fertility, whereas 

medium level income households have higher fertility (Schoumaker and Tabutin, 

1999). It is argued that very low income households tend to be landless farmers, 

hence less reliant on children as cheap labour, whereas those with the highest 

income has lower fertility due to higher investment in child quality. The middle 

income families are landholding farms which depend on cheap labour, and 

therefore have a higher demand for child quantity, which explains the apparent 

inverse J-shape.  

The most common relationship between poverty and fertility in 

contemporary less developed countries is however positive. For instance 

countries with low fertility levels during the eighties and the nineties (TFR less 

than 3.5 – including Vietnam, Costa Rica, urban Paraguay, and urban South 

Africa) and with high fertility levels (TFR above 4.5, e.g. Guatemala, Cameroon, 

Bolivia, Calcutta in India, Belize), as well as medium level fertility (TFR 

between 3.5 and 4.5, e.g. Mexico, rural India, rural South Africa, Brazil, El 

Salvador, Ecuador, Paraguay), all show a positive relationship. 

All of the studies referred to above are based on cross-sectional data, and 

as far as we are aware none have looked at the relationship in a dynamic 

perspective. However, with the emergence of longitudinal data, research on 

poverty dynamics for developing countries is now rising, though emphasis on 

fertility is still limited (Aassve et al, 2006b). 

The project “Poverty dynamics and fertility in developing countries”, 

involving the participation of ISER, the Vienna Institute of Demography (VID) 

and the Department of Statistics of the University of Florence, was developed 

with the purpose of compensate the gap existing in the demographic and 

development economics applied literature. The study of the Vietnamese case 

belongs to the project’s goals.  

The longitudinal dimension of the data available is crucially important to 

be allowed to draw robust causal inference about the effect of interest. In fact, 

only longitudinal data allow to keep into account the dynamic nature of fertility 
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and poverty processes. As we better explain in chapter 2, using data on two time 

points we are allowed to properly implement a pre-post treatment study which is 

vital for our study of causal inference. 

 

 

1.5 The Vietnam Living Standard Measurement Survey and 

the Vietnamese context    
 

As formerly said, the data we use in our applications come from the Vietnamese 

Living Standard Measurement Surveys (VLSMS; see for details GSO, 1994 and 

2000). The first VLSMS was conducted in 1992-93 by the State Planning 

Committee of Vietnam (now called Ministry of Planning and Investment) along 

with the General Statistical Office (GSO). The second VLSMS was conducted 

by the GSO in 1997-98. Both VLSMS surveys were funded by UNDP and 

Swedish International Development Authority. The survey was part of the Living 

Standards Measurement Study (LSMS) household surveys conducted in a 

number of developing countries with technical assistance from the World Bank. 

The second VLSMS was designed to provide an up-to-date source of data 

on households to be used in policy design, monitoring of living standards and 

evaluation of policies and programs. The timing of the second VLSMS 

approximately five years after the first allows analysis of medium term trends in 

living standards as a large part of the questionnaire is the same in both surveys. 

Likewise all LSMS, the Vietnamese surveys include rich information on 

variables that are important determinants for the household’s standard of living 

and fertility behaviour. For example, it collects data on education, employment, 

fertility and marital histories, together with detailed information on household 

income and consumption expenditure. According to Falaris (2003), the overall 

quality of the panel is impressive with a very low attrition rate. 

A very interesting feature of the VLSMS is that it also provides detailed 

community information from a separate community questionnaire. Community 

level information is available for rural areas only and includes 120 communities, 

with information on markets, roads, electricity and other important 
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infrastructures and main economic activities. The communities in Vietnam range 

in size from 8,000 inhabitants to 30,000 and represent a key geographical 

dimension for economic, fertility and social behaviours in general.  

The target sample size selected for the 1997-98 VLSMS was 6000 

households. The majority of the sample was comprised of the households 

interviewed in 1992-93 with the first VLSS survey (4800 households). 

Households are defined as people living and eating meals together in the same 

dwelling. In most cases there is only one household per dwelling as people who 

live together usually eat together.  

The sample in 1992-93 was a self-weighted sample drawn from all areas 

of Vietnam. The overall sampling frame was stratified into two groups urban and 

rural, with sampling carried out separately in each group (strata). According to 

the 1989 census, about 20% of Vietnamese households lived in urban areas so 

the sample stratification ensured that 20% of selected households also came from 

urban areas. The selection of communes was done to ensure that they were 

spread out evenly among all provinces in Vietnam. 

The sample was drawn in three stages with communes (in rural areas) and 

small towns (in urban areas) chosen as the primary sampling unit as that was the 

lowest administrative unit for which the GSO had estimates of population in 

1992. A total of 120 communes and 30 towns were out of the 10,000 in all of 

Vietnam with probability of selection proportional to their population size. As 

some communes are quite large in size, logistically it would have been difficult 

to interview 32 households selected randomly within each commune/ward. 

Instead, population figures for each village (in rural areas) or block  (in urban 

areas) were compiled from the selected communes to select two villages/blocks 

randomly with probability proportional to their population size. Finally, the third 

stage involved listing all households within each selected village/block and 

selecting 20 households (16 for the sample and 4 extras if it became necessary to 

replace a selected household).  

For the sample to reach 6000 households in 1998, an additional 1200 

households were required. This was done by selecting households from the total 
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sample of the 1995 Multi-Purpose Household Survey of the GSO. Obviously we 

used only the panel households in the analysis. 

The introduction of the VLSMS has sparked several poverty studies 

(examples include Haughton et al, 2001; Glewwe et al, 2002; White and Masset, 

2002 and 2003; Justino and Litchfield, 2004). These studies suggest that female 

headed households, lack of education, rural households (or living in the Northern 

Uplands), households dependent upon agriculture, are associated with higher 

poverty. They also suggest that children, despite declining fertility rates, remain 

an important driver behind poverty. This is confirmed by Pudney and Aassve 

(2007ab) who shows that childbearing is strongly associated with lower living 

standards also during the 1990s, a period where poverty reduction was strong.  

The process of poverty reduction in Vietnam started during 1980s. At the 

beginning of the 1980s, Vietnam was one of the worlds’ poorest countries. Since 

then the country embarked on a remarkable recovery, a fact that is reflected by 

strong economic growth (Glewwe et al., 2002). The country also experienced a 

dramatic improvement in several indicators of social and economic wellbeing. 

For example, school enrolment rates increased during the period both for boys 

and girls. In particular, upper secondary enrolment rates increased from 6 to 27 

percent for girls, and from 8 percent to 30 percent for boys (World Bank, 2000). 

Access to public health centres, clean water and other infrastructure have all 

increased, as well as the ownership of important consumer durables. Overall 

these improvements have had a positive effect on households’ own assessment of 

their living conditions. As The World Bank Vietnam Development Report states: 

“[…] Household reports a greater sense of control over their livelihoods, reduced 

stress, fewer domestic and community disputes […]”.  

  Much of this improvement has been attributed to the “Doi Moi” 

policy (translated in English as “renovation”). This was initiated in the late 1980s 

and roughly coincided with the collapse of the Soviet Union, on which Vietnam 

had been heavily dependent. The Doi Moi had many similarities with the reforms 

taking place in China a decade earlier.  

The main elements of the Doi Moi were to replace collective farms by 

allocating land to individual households; new legalisation encouraging private 
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economic activity; removal of price controls; and legalisation and 

encouragement of Foreign Development Investment (FDI). During the nineties, 

immediately following the Doi Moi, Vietnam experienced a positive 

macroeconomic trend: strong inflation reduction, stabilization of exchange rate, 

sustained economic growth. The average annual GDP growth was at a staggering 

7 percent. In the period covered by the Vietnam LSMS panel (i.e. from 1993 to 

1998), the growth rate was even higher at 8.9 percent. This was followed by 

significant changes in the labour market; during the 1990s the employment grew 

by 2.5%. Output was increased through improved productivity and prices rose as 

a result of expansion in export of rice. By mid 1990s Vietnam passed to be a net 

importer to be one of world’s largest exporters of rice on the international 

markets. The increase in agriculture diversification was another remarkable 

factor of the economic change.  

 Given such a strong economic performance, it is not unexpected 

that the overall poverty rate fell. The official poverty rate, which is derived from 

the per capita household consumption expenditure, declined from 58% in 1993 

to 37% in 1998. Though the exact number is contested, as this depends on how 

poverty is measured through the equivalence scale, (Justino and Litchfield, 2004; 

White and Masset, 2003; World Bank, 2000), there is little doubt that poverty 

did indeed decline during this period.  

However, economic growth by itself is not a sufficient condition for 

poverty reduction (Huong et al, 2003; Ghura et al, 2002; Glewwe et al, 2002; 

Bruno et al, 1999) and the way in which individuals may gain from the growth 

depends on their individual skills, education and health, ethnicity, their religion, 

geographical location, and type of employment and occupations. Whereas the 

economic boom in Vietnam affected all geographical, ethnic, and socio-

economic groups, it did so in very different ways, and the poverty reduction was 

certainly not uniform across the population (Justino and Litchfield, 2004; 

Balisacan et al, 2003; Glewwe et al, 2002). In particular, it is noted that 

inequality increased during the nineties (Haughton et al, 2001), a fact that is 

robust to how inequality is measured. Gains from economic growth was stronger 
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in urban areas, for South East and Red River Delta2, for Kinh3 which is the main 

ethnic group in Vietnam, for households headed by a white collar worker and for 

those with higher education. However, the data also shows much stronger 

heterogeneity in poverty reduction in rural areas. There is in other words a 

significant degree of clustering across rural areas. 

As a result we focus our analysis on the rural areas of Vietnam. Focusing 

on rural household has also other motivations: only the rural sample of the 

VLSMS contains some interesting community level information. Finally, our 

focus on rural households is further justified by the fact that the majority of the 

Vietnamese population lives in rural areas, the poorest part of the country, 

dominated by agriculture. 

From a demographic point of view, an important aspect to bear in mind 

analysing Vietnam situation is that this country has experienced a tremendous 

decline in fertility over the past three decades, and at present one can safely 

claim that the country has completed the fertility transition.  

The figures speak for themselves: in 1980 Total fertility Rate (TFR) was 

5.0, in 2003 it was 1.9. Naturally, fertility levels in rural areas remain higher than 

in urban areas, but with a rural population of 80 percent, the overall TFR reflects 

in any case a substantial decline in fertility. Vietnam's TFR is now one of the 

lowest in the developing world, higher only than Thailand and China (Haughton 

et al, 2001). 

Duy et al (2001), argue that the drop in fertility is due in about equal 

measure to later and fewer marriages, and to an increase in contraceptive use. 

The proportion of married women who say they are using modern contraceptive 

methods, particularly IUDs, is very high, having risen from 43.9% in 1993 to 

55.1% by 1998. Contraceptive use rates also vary less across regions than they 

did in 1993; the Mekong Delta in particular has largely closed the contraceptive 

                                                   
 
2 The Red River Delta and the Mekong River Delta were the regions that benefited more from 
rice market liberalisation (Justino and Litchfield, 2004).   
3 In Vietnam there is a large population of ethnic minorities that tend to be significantly poorer 
than Kinh majority. An analysis of the sources of the ethnic inequalities in Vietnam is found in 
Van de Walle and Gunewardana, 2001.   
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use gap with the rest of the country (Haughton et al, 2001; Anh and Thang, 

2002). 

However, the previous considerations do not clarify what fundamental 

forces are behind the drop in fertility. Bearing in mind the theoretical economic 

considerations discussed in section 1.4, we can argue that Vietnamese 

households are moving from a desire for a large quantity of children to a 

preference for quality, but this begs the question of why such a shift is underway. 

Possibly the mixture of rising and high educational costs along with reduced 

labour contributions from children (who are more likely to be at school) and 

changed expectations about how to finance old age, may be combining to make 

having children less attractive (Haughton et al, 2001). Increasing urbanization, 

high and rising levels of maternal education, and a vigorous family planning 

program also play a part.  

 

 

1.6  Why adopting a causal and a multilevel perspective in 

studying the relationship between fertility and poverty? 
 

In the previous sections we outlined the most important theoretical 

considerations, to be kept into account in the analysis of the fertility-poverty 

relationship. In this section we want to highlight two key aspects for the 

development of the following chapters. In particular, we want to focus the 

attention on two approaches we use in the thesis: causal and multilevel. 

 We are interested in causality when we want to take a decision. Policy-

makers are naturally interested in causality. Good public policy decisions require 

reliable information about the causal relationships among variables. Policy-

makers must understand the way the world works and the likely effects of 

manipulating the variables that are under their control. If, for example, having 

more children causes poverty, policy makers could plan, adequately, some 

actions to impact on fertility, directly or indirectly. Alternatively, if the only 

policy goal is to contrast poverty conditions without any wish to determine 
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fertility behaviours, it could be simply decided to compensate the higher costs 

supported by households with a lot of children through state benefits. 

 A complication in the study of the causal relationship between fertility 

and poverty is the reverse causality problem: theoretically, not only fertility 

impacts on poverty but also the contrary could be true. However, previous 

researchers have found little or no effect of fertility on poverty (e.g., Aassve et 

al, 2006ab). Also in our application we found some evidence against a causal 

feedback from fertility to poverty. In the thesis, we hence concentrate on the 

impact of fertility on poverty. Moreover, we think that also theoretically fertility 

per se cannot impact directly on poverty. In the next chapter we discuss the 

approach to causal inference we adopt and some methods for the estimation of 

causal effects in observational studies. 

 As the multilevel perspective is concerned, this is motivated by the 

consideration that the place where a household reside is important, as we already 

argued, both for poverty and fertility. In particular, households can be 

considered as clustered in communities. This implies a two-level data structure, 

with households at the first level and communities at the second.  

Keeping explicitly into account this multilevel dimension in the study of 

the causal effect of fertility on poverty is important, both for statistical reasons 

and for substantive research questions. The fact that community characteristics 

(infrastructure, remoteness, culture and so on) influence both phenomena 

requires to control also for them in the statistical analyses. Otherwise, we risk to 

find spurious effects. Moreover, the multilevel dimension implies specific 

challenges for causal inference that we discuss extensively in chapter 3.  

 Apart from the statistical motivations, the multilevel structure of the data 

brings some interesting research question. For example, it is of interest to 

understand if the effect of fertility on poverty changes by community.  

Community characteristics can determine a considerable heterogeneity in 

the effect of fertility on poverty for several reasons. For example, the presence of 

some specific facilities in the community may help women (and families) to rise 

up children. Examples could be health facility centres which could offer sanitary 

assistance (eventually free or partly free). Also the quality of facilities is 
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important and it varies considerably in Vietnam by province, district and even 

commune (Evans et al, 2007). 

In Vietnamese rural communities, as in all rural areas in LDC, also 

unofficial forms of “assistance” can be very important. As noted by Justino 

(2005), “the most common forms of social security in Vietnam, as in most 

developing countries, are informal and delivered through family and community 

social networks”. This informal social security system includes informal work 

exchange, food assistance among neighbours, loans made available by family 

and moneylenders.  

The general economic community environment is also important. For 

example, if a community shows a high degree of economic development it is 

more likely that women loosing work can easily find another work after the first 

years of life of children. Finally, community institutional setting and social 

norms are crucial. It could be the case that the social system and the family 

taxation legislation are defined at national level but at the local level some forms 

of autonomy is leaved. For example, communities could have the power to 

assign some benefits to families with more children or to the new born children. 

This seems not to be the case in Vietnam. In fact, income taxation play a very 

small role in Vietnamese fiscal policy. However, some considerations are 

important. The Vietnam taxation system ensures a certain degree of autonomy to 

provinces. But we were not able to know on what this autonomy precisely 

consists and then we are not able to know if it can be an effect on the impact of 

childbearing events. Apart from this, however, at local level a series of charges 

for local environmental policies, school enrolment and other services exist. The 

amount of these charges varies considerably by community. In addition to formal 

charge, there are also informal charges and gifts due to local public servants for 

any services (Evans et al, 2007). 

Finally we note that Vietnam social security system envisages a maternity 

benefit (Evans et al, 2007; Justino, 2005; S.S.A, 2006).  As noted by Justino 

(2005) in areas such rural Vietnamese communities it is much likely that the 

concrete intake of these kind of provisions heavily depends on the context, and 

specifically on the competences, skills or training of the municipality employees, 
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isolation of the community, global education (in more educated communities is 

more likely to know about benefits and how to get them). Administrative 

inefficiency and low literacy levels can prevent people from claiming the 

benefits to which they are entitled. These aspects are discussed, from a 

methodological point, of view in chapter 3, while in chapter 6 their importance is 

assessed in the context of our application. 

 

 

1.7 Concluding remarks 
 

This chapter, basically, serves as a base for the following discussion. We have 

introduced the concept and measure of poverty we will use in our analyses and 

discussed the main determinants of poverty and fertility. Understanding the 

common determinants of the two phenomena is crucial in order to address the key 

question of the thesis: is there a causal effect of fertility on poverty? 

 The determinants of poverty and fertility can be distinguished in three 

groups: individual, household and aggregate. Individual and household 

determinants include demographic, economic and social characteristics. Aggregate 

determinants refer to characteristics of the place where people reside: 

infrastructures, social norms, institutions, and so on.  

As emerging from theoretical and empirical researches, education plays 

undoubtedly, a key role for fertility behavior, as well as for living standards 

conditions. Expansion of female education, which reduces women’s willingness to 

give up work for childbearing, is possibly the most important driver behind 

increased opportunity cost and fertility decline. Consequently, fertility reduction is 

often seen as a direct result of increased empowerment of women through 

education.  

 Analyzing the literature about the relationship between fertility and poverty, 

we noted that few works use longitudinal data and a causal perspective. We have 

explained that adopting a causal point of view is vital to give valuable policy 

advices. The availability of longitudinal data is a valuable aspect to give robustness 

to the estimation of causal effects.   
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The other fundamental approach we take in the thesis is the multilevel one. 

This is justified by the consideration that both fertility and poverty are heavily 

influenced by the characteristics of the community where households live. In this 

perspective, recognizing this two-level structure (household within communities) is 

important for statistical and substantive issues, as we more meticulously explain in 

chapter 3. 
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Chapter 2 

Causal inference in observational studies 

under the potential outcomes framework 

 

 

 
Introduction 
 

In this chapter we present the framework in which our causal analysis is 

developed and compare several approaches to handle the issues of selection bias 

and endogeneity. Whereas we develop our reasoning in the light of the specific 

context of our application, we present here a more general framework for causal 

inference.  

We start the chapter (section 2.1) by discussing the potential outcomes 

framework that we adopt in this work. We introduce key concepts, such as 

assignment mechanism, randomised experiment and observational study. We 

then discuss the estimation of causal effects in randomised (section 2.2) and 

observational studies (sections 2.3 and 2.4). Since our application concern an 

observational study, we focus on this kind of setting. In section 2.3 we present 

methods for estimating causal effects in those situations where the unknown 

assignment mechanism is assumed to be regular. In this setting we contrast 

regression and propensity score matching methods, with the goal to highlight 

differences and similarities among these methods. Section 2.4 analyses studies of 

causal inference in which the assignment to treatment is assumed to be regulated 

by a latent regular mechanism. In this context, we explore the use of instrumental 

variables for the identification of causal effects. We distinguish randomised and 

conditionally randomised instruments, where the difference lay on the fact that 
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the latter can be assumed to be randomised only conditional to a set of observed 

covariates. 

 

 

2.1 The potential outcomes framework 
 

In many field of social sciences there is a growing interest in the methods that 

can be used to evaluate the effects of social programs and public policies. While 

academic researchers are increasingly focused on assessing the strengths and 

weaknesses of the evaluation methodology itself, policy makers are turning to 

the results to provide the foundations for evidence-based policy. 

Causal inference is a part of the statistical research which has received 

increasing interest in recent decades. In this work we adopt the counterfactual or 

potential outcomes framework to causal inference, which was pioneered by 

Neyman (1923) and Fisher (1925) and extended by Rubin (1974, 1978) to 

observational studies. Recently the approach has been adopted by many in both 

statistics and econometrics (e.g. Rosenmbaum and Rubin, 1983; Heckman, 1992 

and 1997; Imbens and Angrist, 1994; Angrist, Imbens and Rubin, 1996; 

Heckman et al, 1997). This literature formalise notions of cause and effect and is 

based on the counterfactual idea. Counterfactual refers to what would have 

happened if, contrary to fact, the exposure had been something other than what it 

actually was (Greenland and Brumback, 2002).  

Two fundamental assumptions of the standard potential outcomes framework 

are that: 

 

a) each unit in the population of interest could have received any one of the 

treatments, 

b) for each unit i and treatment d, at the time of treatment assignment, the 

outcome that individual i would have if the unit gets treatment level d 

exists, even if the individual does not in fact get d; this value is called the 

potential outcome of the unit under treatment d. 
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Let us suppose we have a population of individual units under study (in 

our case households) indexed by i = 1, 2, ... , N, an indicator for a binary 

treatment1, D, which assumes the value 1 for treated units  and 0 for untreated, or 

controls, and an outcome variable, which we indicate by Y. Each unit, i, has two 

potential outcomes depending on the assignment to the treatment levels: Yi1 if 

Di=1 and Yi0 if Di=0. Potential outcomes for unit i and treatment d can be written 

as Yid, with d ∈ {0,1}. The fact that this variable is labelled only by i and d 

corresponds to the “no interference among units” assumption of Cox (1958), 

which Rubin (1980) refers to as the Stable Unit Treatment Value Assumption 

(SUTVA).    

SUTVA consists of two components. The first states that the potential 

outcomes for any unit do not vary with the treatments assigned to any other 

units. In our application it means that having a child has an effect on household 

consumption, independently of fertility behaviours of the other households. The 

second component requires that there are no versions of the treatment (and 

controls) (i.e. treatment characteristics are the same for each treated (control) 

units). In our application this implies that the characteristics of the new child 

(sex, weight, etc) are not relevant. Without this assumptions we would no longer 

have only two potential outcomes for unit i.  

As with many of the other assumptions to be discussed, it is important to 

note that SUTVA is not directly informed by the data. In other words, it is an un-

testable assumption that stems from the scientist’s assessment or knowledge. 

SUTVA has been criticized in many situations, an example being the evaluation 

of the effect of a vaccination campaign on a contagious disease (Halloran and 

Struchiner, 1995). The authors are worried about the fact that interference among 

units exists. In the context of this application, in fact, it is plausible that the effect 

of vaccinating a unit changes according to the number of the other units being 

vaccinated. Another context in which the assumption is criticized is when 

evaluation is undertaken within multilevel structures (Subramanian, 2001), an 

example being educational research, where students are clustered in schools. 
                                                   
1 In this work we use binary treatments. Recently, the literature has extended the potential 
outcome framework to cases of multi-valued (Imbens, 2000; Lechenr, 2001), as well as 
continuous treatments (Imai and van Dyk, 2003; Imbens and Hirano, 2004). 
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Whereas several approaches have been developed to allow for violation of the 

SUTVA, we maintain this assumption in the following discussion. We discuss 

possible sources of violation, and resulting methods to deal with this problem in 

the light of our application in chapter 3. 

Under the SUTVA, the N x 2 matrix of all potential responses defines the 

true population: Y = (Y0, Y1), where Yd is the N x 1 vector of responses if all the 

units in the population were to receive treatment d. Following Rubin (1978) the 

true causal effect of the treatment for a given unit i, is defined as the comparison 

between the two potential outcomes Yi1 and Yi0, which can be constructed, for 

example, as a ratio or a difference. If we consider simply a difference, the true 

casual effect can be written, for the unit i as: 

 

 ∆i = Yi1 – Yi0. (2.1) 

 

It is obvious that the two potential outcomes in (2.1) are not observable 

for the same unit at the same time. Holland (1986) refers to this aspect as the 

“fundamental problem of causal inference”. For each unit we can observe only 

one of the two potential outcomes, according to the treatment the unit actually 

received, the other being missing. In this sense, causal inference can be 

considered as a missing data problem.  

The following relationship makes clear that the observed outcome for 

unit i, which we indicate with  depends on the treatment indicator obs
iY

 

 ≡Y(Dobs
iY i) = Di * Yi1 + (1-Di) *Yi0 = Yi0 + Di * (Yi1-Yi0). (2.2) 

 

The last equality in (2.2) states that the treatment “adds” a quantity (Yi1-

Yi0) to the outcome with respect to the case of no treatment. We indicate with 

Yobs the N x 1 vector of outcomes observed on the N units under study. 

In spite of the apparent non resolvability of the “fundamental problem”, 

several approaches are developed to overcome it. One option is to observe the 

same physical unit at different points in time. Under certain strong assumptions, 
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the individual specific causal effect (that is, the causal effect that refers 

exclusively to that unit) will be identified. However, one would need to assume 

temporal stability, in the sense that the effect of the treatment does not depend  

on when it is applied, as well as causal transience, which imply that the 

exposure to control (treatment) at time t does not affect the result of the exposure 

to treatment (control) at succeeding times (see Holland, 1986).  

However, in most cases we are not interested to the estimation of a causal 

effect on a single unit, but on the entire population, or on a relevant sub-group of 

it. Hence, the statistical solution to the fundamental causality problem consists to 

substitute the estimate of individual causal effects by an estimate of an average 

causal effect. Therefore, in order to make causal inference possible, a key 

requirement is that of replication (see Stuart, 2007).  

Replication means, in this context, that there must be multiple units for 

which we can observe each one of the potential outcomes. If only one unit was 

assigned either to treatment or control, we would have no sufficient information. 

However, with some units receiving the treatment and others the control, we can 

use the treated units to learn about the potential outcomes under treatment (that 

is, for control units we can “impute” a potential outcome under treatment using 

information on observed outcomes for treated), and the control units to learn 

about the potential outcomes under control. In this regard, we can argue that 

potential outcomes models have the main virtue, with respect to other 

approaches, of make explicit the need of what Maldonado and Greenland (2002) 

call a substitution step, which refers to the need of estimate a counterfactual 

outcome: for treated units we need to estimate what would have been their 

outcome if they were exposed to control, and vice versa for controls. The 

problem attributed to modelling such unobserved quantities, which in essence 

implies the need for an un-testable assumption, is part of the intrinsic problem of 

causal inference. Whereas this issue comes up-front in this framework, it is often 

obscured in alternative approaches (Greenland and Brumback, 2002).  

An important insight from the potential outcomes approach is that the 

presence of multiple units does not solve the problem of causal inference. 

Rather, multiple units guarantee that associational parameters can be calculated, 
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but for the identification of causal effects we always need to impose some 

assumptions, whose plausibility depends on the specific application under study. 

The potential outcomes framework is not the only approach to causal 

inference that has been developed in the literature. Other important approaches 

are represented by Structural Equation Models (SEM) and Direct Acyclic Graphs 

(DAG).  

Structural Equation Models (SEM) have a long history, dating back to 

path analysis developed by geneticists (Wright, 1928)2. Structural equations 

methods are predominant in economics for modelling, identifying, and 

estimating causal effects of interest. The early work of the Cowles Commission 

studied identification and estimation of causal effects (e.g. Haavelmo, 1943; 

Simon, 1954). This literature also introduced notions of “endogeneity” and 

“exogeneity.” Reiersøl (1945) formalized the method of “instrumental variables” 

(IV), originally introduced by Philip Wright (1928), within the structural 

equations framework. Ever since, this method has played a central role in 

handling issues of endogeneity (e.g. Goldeberger, 1972; Heckman, 1997; Angrist 

and Krueger, 2001).  Structural equation models, basically, rely on the 

specification of systems of equations with parameters and variables that attempt 

to capture behavioural relationships and specify the causal links between 

variables. Inference in SEM often exploits the presence of some instrumental 

variables, which are variables explicitly excluded from some equations and 

included in others. As we will see in section 2.4, Angrist et al (1996) provide a 

link between the potential outcomes and the SEM approach. 

Another line of research has emerged in the machine learning literature in 

the work of Pearl (1995, 2000), Spirtes, Glymour, and Scheines (1993), and 

Dawid (2002) among others. In particular, Pearl (1995) introduced two methods 

related to the labor economics and treatment effect literatures, the “back door” 

and “front door” methods. A distinctive feature of this literature is the use of 

                                                   
2 A curiosity is reported by Stock and Trebbi (2003) about the authorship of the solution of the 
identification problem in a system of simultaneous equations. The earliest know work on this 
issue is included in the appendix of the book written by Philip G. Wright, The tariff on animal 
and vegetable oils. Because this appendix differ so from the rest of the book, its authorship has 
been in doubt. There is, in fact, another plausible author: Philip G. Wright’s eldest son, Sewall. 
Stock and Trebbi implemented a stylometric analysis, which evidence favours Philip G. Wright. 
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directed acyclic graphs (DAGs) to represent causal relations and of graphical 

criteria to determine if particular causal effects are identifiable, with less 

attention to the estimation of these causal effects. Recently, White and Chalak 

(2006) propose the “settable system” framework as a means to unify all the three 

cited approaches.  

In the sequel we will see how by using the potential outcomes approach 

we are able to define several causal parameters of potential interest and, at the 

same time, make clear the assumptions needed to estimate them. We do so by 

demonstrating different methods. Our aim is to present the different methods in a 

comparative way and make explicit the differences between them with respect to 

the underlying assumptions and data requirement. We present these methods in 

sections 2.3 and 2.4. In the next section we analyse some fundamental aspects 

for causal inference, such as the role of covariates, which are fundamental for the 

following discussion. 

 

 

2.1.1 The role of covariates 

In most empirical studies concerned with causal inference, researchers have 

information about other variables than just the treatment indicator, D, and the 

outcome, Y. These are normally termed attributes or covariates and represent 

characteristics that the unit possesses before exposure to the treatment. For this 

reason they are called also background or pre-treatment characteristics. 

Supposing that we have M covariates, these can be collected into a N x M matrix 

that we indicate, from now on, with X.  

The role of these variables in causal inference is threefold. As covariates 

do in many statistical applications, these attributes serve to make analysis more 

precise by controlling for parts of the variation in the outcome. Second, for more 

substantive reasons, the researcher may be interested in causal effects for 

subpopulations defined by values of these variables. This is the case when 

researchers suspect that some heterogeneity is present in the treatment effect, and 

it is of substantial interest to explore which characteristics drives it. However, 

the most important role of covariates in causal inference concerns their effect on 
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the assignment to the treatment. Often, assumptions about the assignment 

mechanism are more plausible if made within homogeneous subpopulations than 

in the overall population. In other words, some assumptions are valid only 

conditioning on these covariates. It is critically important that these variables are 

not affected by the treatment. Rosenbaum (1984) examines the consequences of 

including potentially predetermined variables in the estimation and concludes 

that such adjustment results in unbiased estimates only if the variables are not 

affected by the treatment. Often, the covariates take their values prior to the unit 

being exposed to the treatment and, in this case, it is natural to think that they are 

not influenced by the treatment exposure. However, this is not sufficient for the 

conditions they need to satisfy. In fact, it could be the case that units have some 

expectation about the future values of the outcome and it is possible that the 

decision to take the treatment can affect these covariates through some 

“anticipation effect”.  

As we will discuss in the section 2.3 and in chapter 5, in observational 

studies, as we will see, it is of crucial importance, in order to draw correct causal 

inference, to have a sufficient rich set of observed covariates, since it make more 

plausible the assumptions on which researcher relies. We discuss these aspects in 

more details in the following.  

 

 

2.1.2 Causal parameters of interest 

Under the potential outcomes framework we can define several causal 

parameters, but the ones receiving most attention in the literature are the Average 

Treatment Effect (ATE), the Average Treatment Effect on the Treated (ATT), 

and the Average Treatment Effect on the Untreated (ATU). They are defined as 

follows: 

 

 ATE = E(Yi1-Yi0),  (2.3) 

 ATT = E(Yi1-Yi0| Di=1), (2.4) 

 ATU = E(Yi1-Yi0| Di=0). (2.5) 
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The ATE is the expected effect of the treatment on a randomly drawn 

unit from the population. The relevance of this parameter for policy analysis is 

often questioned, since it averages across the entire population and, hence, 

includes units who would be never eligible to the treatment (Heckman, 1997). 

For example, if a program is specifically targeted at low income individuals, 

there is little interest in the effect of such a program for someone being 

extremely well off. Heckman et al (1997) argue that the subpopulation of treated 

units is often of more interest than the overall population in the context of 

narrowly targeted programs. Therefore, the most prominent evaluation parameter 

is the average treatment effect on the treated (ATT), which focuses explicitly on 

the effects on those for whom the program is actually intended. In particular, the 

ATT gives the expected effect of the treatment on a randomly drawn unit from 

the population of treated. It is therefore more interesting for policy makers. The 

ATU, on the contrary, is the effect on the subpopulation of controls and is not 

frequently used in the evaluation literature. 

 It is simple to note that the ATE could be written as a weighted average 

of ATT and ATU: 

 

 ATE = ATT * P(D=1) + ATU * P(D=0), (2.6) 

 

where P(D=1) and P(D=0) are, respectively, the proportion of treated and 

controls units in the population. Therefore, the three parameters coincide when 

the average effect of the treatment is equal in the treated and controls population. 

It is straightforward to verify that this happens when the difference Y1-Y0 is 

independent of D or, less strongly, if it is mean independent of D. In particular, 

this condition holds if both potential outcomes Y1 and Y0 are independent, or 

simply mean independent, of D. In fact independence implies that: 

 

 E(Y1|D=1) = E(Y1|D=0) = E(Y1) (2.7) 

and 

 E(Y0|D=1) = E(Y0|D=0) = E(Y0). (2.8) 
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From (2.7) and (2.8) follows that: 

 

 ATT ≡ E(Y1-Y0|D=1) = E(Y1-Y0|D=0) ≡ ATU = E(Y1-Y0) ≡ ATE. (2.9) 

 

As we already mentioned, in many applications we would be interested to 

estimate the effect of the treatment on a sub-population defined on the basis of 

the values of one or more covariates. Therefore, it is of interest to consider also 

the following conditional versions of parameters (2.3)-(2.5): 

 

 ATE(x) = E(Yi1-Yi0| X=x),  (2.10) 

 ATT(x) = E(Yi1-Yi0| Di=1, X=x), (2. 11) 

 ATU(x) = E(Yi1-Yi0| Di=0, X=x). (2. 12) 

 

Likewise we shown in (2.6), also ATE(x) can be thought as a weighted average 

of ATT(x) and ATU(x): 

 

 ATE(x) = ATT(x) * P(D=1| X=x) + ATU(x) * P(D=0| X=x), (2.13) 

 

where P(D=1| X=x) and P(D=1| X=x) are, respectively, the proportion of treated 

and controls units in the population with X=x. Similarly to the previous 

discussion, we can note that if Y1 and Y0 are independent of D conditional on X 

(or simply mean conditional independent) then ATT(x) = ATU (x) = ATE(x) for 

each x in the support of the variable(s) X. In fact conditional independence 

implies: 

 

 E(Y1|D=1, X=x) = E(Y1|D=0, X=x) = E(Y1| X=x) (2.14) 

and 

 E(Y0|D=1, X=x) = E(Y0|D=0, X=x) = E(Y0| X=x). (2.15) 

 

From (2.14) and (2.15) follows that: 
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 ATT(x) ≡ E(Y1-Y0|D=1, X=x) = E(Y1-Y0|D=0, X=x)  

      ≡ ATU(x) = E(Y1-Y0| X=x) ≡ ATE(x). (2.16) 

 

The marginal average effects can be obtained from the respective 

conditional versions by averaging with respect to the distribution of X on the 

appropriate population. For example, the ATE can be obtained from the ATE(x) 

by averaging over the entire population: 

 

 ATE = EX [ ATE(x) ] = ∫ dxfx X   )(ATE ,  (2.17) 

 

where fX is the density function of X in the w hole population. In a similar 

way, the ATT and ATU are obtained as follows : 

 

 ATT = EX|D=1 [ ATT(x) ]= ∫ = dxfx DX   )(ATT 1| ,  (2.18) 

 ATU = EX|D=0 [ ATU(x) ] = ∫ = dxfx DX   )(ATU 0| ,  (2.19) 

 

where fX|D=1 and fX|D=0 represent, respectively, the density function of X in the 

treated and in the controls population. Let us consider the three important cases: 

 

1) ATE(x)=ATT(x)=ATU(x)=r(x) for each x,  

2) ATE(x)=ATT(x)=ATU(x)=r(x)=λ for each x,  

3) fX|D=1 = fX|D=0, 

 

where r(x) is a real-valued function and λ is a constant.  

In the first case, the three conditional parameters are equal for each value 

of the covariate X, but they are allowed to vary by the X-values. In this case, the 

marginal parameters (ATE, ATT and ATU) are, in general, different. In fact, 

from (2.17), (2.18) and (2.19) it is easy to see that they weight in different ways 

the values r(x). In the second case, instead, ATT, ATU and ATE coincide. 

Finally, under the third condition the three marginal parameters will 

coincide even if r(x) is not a constant function (first case). From this discussion, 
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we learn that the first and the third conditions combined, or the second condition 

taken alone, are sufficient for the equality of ATE, ATT and ATU. On the other 

hand, in case of heterogeneous treatment effects and different distribution of 

covariates in the treated and control population, the three parameters are 

expected to be different3. We will use this discussion in the interpretation of 

results of our application in chapter 5. 

Before discussing methods for the estimation of the parameters of interest 

we need to introduce a key concept in causal inference: the assignment 

mechanism.   

 

 

2.1.3 The assignment mechanism 

In the previous section, in order to define the causal parameters we only used the 

potential outcomes definition and SUTVA. Importantly, the causal parameters 

are defined independently of which potential outcomes we actually observe. It is 

the fact that we do not observe all potential outcomes that induces inferential 

problems, in which we need to rely on statistical techniques (Imbens, 2007). In 

this sense, we already said, that the problem of causal inference is a missing data 

problem. A key issue in the missing data literature is the so called missing data 

mechanism, which in the causal inference framework is often termed the 

assignment mechanism (Rubin, 1978). Its role is fundamental in the sense that 

we cannot draw valid causal conclusions without considering what makes some 

units receive a treatment, whereas others do not.  

In simple terms, the assignment mechanism is defined as the mechanism 

that determines which units get which treatment. More formally, the mechanism 

is defined as a function that assigns probabilities to all possible N x 1 vectors of 

                                                   
3 Obviously, in an observational study both conditions 2 and 3 are rarely respected. We note, for 
completeness, that by chance ATT and ATU, and hence ATE, can coincide. For example, let 
suppose we have only one covariate X taking three values: X = {1,2,3}. And that ATT(X=1)=300; 
ATT(X=2)=100; ATT(X=3)=100; ATU(X=1)=100; ATU(X=2)=200; ATU(X=3)=300. Finally, let 
assume that the conditional distribution of X are: P(X=1|D=1)=10%;  P(X=2|D=1)=50%; 
P(X=3|D=1)=40%; P(X=1|D=0)=50%; P(X=2|D=0)=40%;  P(X=3|D=0)=10%. Then, it easy to 
verify that ATT=ATU=ATE=160. However, this is an extreme situation and, in general, when a 
difference between ATE and ATT is found this is a sign for heterogeneous effects and for 
unbalance in the distribution of covariates in the treated and control groups. 
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binary assignments D given the N x 1 vectors of potential outcomes Y1 and Y0 

and the N x M matrix of covariates X. The notion of assignment mechanism is 

further formalized in the following definition: 

 

 

Definition 2.1 - Assignment mechanism 

Given a population of N units, the assignment mechanism is a row-exchangeable 

function Pr(D; X, Y1, Y0) taking on values in {0, 1}N satisfying  

 

 1)Pr( =∑
D

01,YX,YD; , (2.19) 

 

 for all X, Y1, Y0.  

 

The probability assignment to the treatment for individual units can be defined 

according to definition 2.2: 

 

 

Definition 2.2 - Unit assignment probabilities 

The unit assignment probability for unit i is  

 

 Pri(Di=1| X, Y1, Y0) =  ∑
=1|

)Pr(
iDD

01 Y,YX,D;  (2.20) 

 

We can rewrite (2.20), for convenience, distinguishing element of X, Y1, 

Y0 relative to i from those concerning the other N-1 units: 

 

 Pri(Di=1| X, Y1, Y0) = q(Xi, Yi1, Yi0, X-i, Y-i1, Y-i0) (2.21) 

 

where X-i, Y-i1, Y-i0 are obtained, respectively, deleting ith row from X and ith 

elements from Y1, Y0. The (2.21) it is interesting since, depending on the 

37 
 



 
 

mechanism operating in a specific application, the function q(·) will be free of 

dependence on some of its arguments. 

When considering the assignment mechanism, there is an important 

distinction between randomized and non-randomized experiments (or 

observational studies). The key difference is that in randomized setting the 

researcher can control assignment to treatment and the probabilities of treatment 

are known. In observational studies these conditions are unlikely to hold and the 

researcher can only estimates probabilities of assignment to treatment on the 

basis of the data available. In terms of inference, the simplest possible 

assignment mechanism (and the one that traditionally has been viewed as the 

only credible base of causal inference) is randomized assignment. It is defined as 

follows: 

 

 

Definition 2.3 - Randomized experiment 

A randomized experiment is an assignment mechanism that is 

1) probabilistic, that is unit assignment probabilities lies strictly between 0 

and 1 for each unit; 

2) ignorable, which means that it does not depend on the unobserved 

potential outcomes; 

3) a known function of its arguments. 

 

An important special case is the completely randomized experiment. This is 

defined so that the assignment mechanism is locally independent. This means 

that the assignment mechanism is separable in the unit assignment probabilities, 

at least conditional on (D, X). We can thus write: 

 

 

      

           (2.22) 
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Another condition for the assignment to be locally independent is that the 

individual assignment probability function q(·) introduced in equation (2.21) has 

to be free of X-i, Y-i1, Y-i0, i.e., Pri(Di=1| X, Y1, Y0) = q(Xi, Yi1, Yi0), for all i and 

for some function q(·). An important characteristic of completely randomized 

experiments is that it is said to be unconfounded, which in essence means that it 

is independent of the potential outcomes: 

 

 

Definition 2.4 - Unconfounded assignment mechanism 

An assignment mechanism is unconfounded if the assignment mechanism does 

not depend on the potential outcomes: 

 

 Pr(D; X, Y1, Y0) = Pr(D; X, Y’1, Y’0), (2.23) 

 

for all X, Y1, Y0, Y’1, Y’0 . 

 

It is important to note that in (2.23) the independence holds conditional 

on X and could fail marginally. In contrast to randomized experiments, inference 

becomes considerably more complicated when assignment probabilities are 

unknown to the researcher. These situations are generally referred to as 

observational studies. 

 

 

Definition 2.5 - Observational studies  

An assignment mechanism corresponds to an observational study if the 

assignment mechanism is an unknown function of its arguments. 

 

In observational studies we distinguish between regular and irregular 

assignment mechanisms. 
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Definition 2.6 - Regular assignment mechanism 

An assignment mechanism is regular if it is 

1) probabilistic, 

2) ignorable, 

3) locally independent.  

 

Regular assignment mechanisms are in observational studies the equivalent 

of a classical randomized experiment. The only difference between the two types 

of assignments concerns the knowledge of the researcher about the assignment 

mechanism. Because ignorability and local independence imply 

unconfoundedness (for a formal proof see Imbens, 2002), regular assignment 

mechanisms, just as classical randomized experiments, are always 

unconfounded.  

 Irregular assignment mechanisms represent the most difficult situation 

and for these mechanisms there is no general approach. Our interest will be on 

those designs in which the assignment mechanism is assumed to be “latent 

regular”, which means that it is regular given certain covariates which are not 

observed. Randomized experiments with non compliance, and by extension, 

instrumental variables analysis, belong to this setting.  

In the following we present different approaches to the estimation of 

causal effects, organized on the basis of the assignment mechanism.  

 

 

2.2 Estimating causal effects in randomised experiments 
 

In the previous discussion we ignored the potential problem of non-compliance 

in randomized experiments. Non compliance takes place when the researcher 

cannot force units that are assigned to a specific level of the treatment to comply 

with this assignment (Imbens and Angrist, 1994). In other words, some units 

assigned to the treatment may choose to obtain the control and vice versa. These 

are defined as non compliers. In contrast, units that receive the treatment for 

which they are assigned are termed compliers. In this section we abstract from 
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this potential complication. The issue of non-compliance can be studied by using 

the instrumental variable setting we discuss in section 2.4.  

 Randomized experiments without non-compliance are the easiest case to 

treat from an inferential point of view. We can distinguish between two 

situations: assignments that are made independently of any unit characteristics 

and assignments in which probabilities depend on covariates. In the first case, 

randomization implies that the treatment indicator D is statistically independent 

of potential outcomes Y1 and Y0 : 

 

 Yi1, Yi0 ⊥ Di, (2.24) 

 

where ⊥ in the notation introduced by Dawid (1979) means independence. As 

illustrated in section 2.1.2, an important consequence of (2.24) is that ATT, ATU 

and ATE coincide. 

In these situations, randomization ensures that, on average, units 

belonging to the treated and comparison group differ only with respect to the 

treatment status and, therefore, if we observe a difference in the average outcome 

between the two groups this can be addressed to the treatment effect. Formally, 

assuming (2.24) and taking expectations of equation (2.2) yields 

 

E( | Dobs
iY i = 1) = E(Yi1 | Di = 1) = E(Yi1), 

and 

E( | Dobs
iY i = 0) = E(Yi0 | Di = 0) = E(Yi0). 

 

Thus, 

 

 ATE (= ATT = ATU) = E( |Dobs
iY i = 1) - E( |Dobs

iY i = 0). (2.25) 

  

The right-hand side of (2.25) is easily estimated through its sample 

equivalent, as the difference in the sample means of the observed outcomes, 

, in the two groups: obs
iY
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The (2.26), which is referred to also as the naïve estimator, gives an 

unbiased, consistent and asymptotically normal estimate of ATE (Wooldridge, 

2002).  

The independence assumption on which estimator in (2.26) relies is, 

obviously, very strong in observational studies. However, in order to estimate 

correctly ATE through (2.26) we need a less restrictive, but still strong condition. 

What we need is that independence holds, at least, on average: 

 

 E(Yi1| Di) = E(Yi1) and E(Yi0| Di) = E(Yi1). (2.27) 

 

Moreover, if the parameter of interest is the ATT we need to impose only 

that 

 

 E(Yi0| Di) = E(Yi1). (2.28) 

 

In fact, if we write the ATT as:  

 

ATT = E(Yi1- Yi0| Di =1) = E(Yi1 | Di =1) – E(Yi0| Di =1) 

 

we note that the first term, E(Yi1| Di =1), can be easily estimated through its 

sample analog, E( |Dobs
iY i =1) and that, given (2.28), E(Yi0| Di =1) = E(Yi0| Di =0) 

and hence the second term be estimated through E( |Dobs
iY i =0).  

In the second group of randomized experiment, we have cited before, 

assignment probabilities depend on covariates. For increase efficiency, for 

example, researcher could randomize assignment to treatment within blocks 

defined by the values of certain observed covariates X, which are known to 

influence the outcome. This type of randomization is called stratified 
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randomized experiment or randomized blocks. In this case, condition (2.24) 

holds within blocks defined by the covariate values. Hence, we can re-write it as: 

 

 Yi1, Yi0 ⊥ Di |Xi. (2.29) 

 

Whereas independence does not hold in this case, unconfoundedness 

does, as in all classical randomized designs. We can think to such a design as a 

set of completely randomized experiments taken within blocks defined by the 

values of X.  In section 2.1.2, we noted that (2.29) implies ATT(x) = ATU(x) = 

ATE(x).  

In this case, in order to get an unbiased estimate of the ATE, the (2.26) 

needs to be adjusted by weighting units with the inverse of the treatment 

probabilities: 

 

 

          (2.30) 
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The estimator in (2.30) is similar to the Horwitz-Thompson estimator, well 

known in sampling literature. This is an estimator with beneficial asymptotical 

properties (Hirano et al. 2000).  

As we will see in the next section, the last outlined situation is the more 

similar to an observation studies with a regular assignment. 

Before concluding this section we note that experimental designs, as a basis 

for causal inference, are criticized by some authors. For example, Manski and 

Garfinkel (1992) note that “experimental evaluation actually requires that a 

highly specific and suspect structural assumption hold: individuals and 

organizations must respond in the same way to the experimental version of a 

program as they would to the actual version". In other words, experiments can be 

seriously affected by lack of external validity, that is, we are not always allowed 

to extrapolate results from an experimental setting to a natural occurring one. 

Anyway, many social research questions cannot be investigated through 
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experiments, either for ethical or practical reasons (experiments are expensive 

and time consuming). 

 

 

2.3 Estimating causal effects in observational studies under 

regular assignment mechanisms 
 

In the previous section we have seen that in experimental studies the 

independence hypothesis is plausible when the researcher is able to randomise 

the assignment of units to control and treatment. In this case, a simple estimator 

can be used (2.26).  

In observational studies, in general, the independence hypothesis is not 

plausible. In our setting we would be willing to assume that childbearing 

decisions are purely random or, at least, that characteristics of households 

deciding to have a child are, on average, equal to those of the other households. 

The more likely scenario, however, is that the two groups of households will 

differ quite substantially. If the characteristics that determine the childbearing 

decision impact also on the consumption growth, which is the outcome of 

interest, then the simple estimator in (2.26) will give a biased estimate of the 

childbearing effect. Several methods can be adopted in alternative to handle this 

problem. Each relies on specific assumptions and requirements that we want to 

make evident and compare in the remaining of this section. 

We organize these methods in two groups. The first one includes 

methods relying on the assumption of selection on observables, while the 

methods in the second group address the presence of unobservable confounders. 

In other words, the first group of methods assume a regular assignment 

mechanism, whereas the others assume a latent regular one. Methods in the first 

group allow, in different ways, to make comparisons between treated and 

untreated units “ceteris paribus”. In other words, the idea is to make comparisons 

between units in the two groups with the most similar characteristics as possible. 

These methods include regression, matching, stratification and weighting 

methods. In the second group we will consider the IV methods. 
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We start in this section by presenting the first group of methods. The 

fundamental identifying assumptions in this case are:  

 

 Yi1, Yi0 ⊥ Di |Xi , (2.31) 

 0 < P (Di =1| Xi) < 1. (2.32) 

 

Assumption (2.31) is known as unconfoundedness (UNC)4. The 

combination of the two hypotheses (2.31) and (2.32) is referred to as strong 

ignorability.  

The unconfoundedness assumption asserts that the probability of 

assignment to a treatment does not depend on the potential outcomes conditional 

on observed covariates. In other words, within subpopulations defined by values 

of the covariates, we have random assignment. This assumption rules out the role 

of the unobservable variables. The issue of unobserved covariates can be 

addressed using models for sensitivity analysis (e.g., Rosenbaum and Rubin, 

1983b) or using non parametric bounds for treatment effects (Manski, 1990).  

Assumption (2.32) implies equality in the support of X in the two groups 

of treated and controls (i.e. Support(X|D=1) = Support(X|D=0)) which guaranties 

that ATE is well defined (Heckman et al, 1997). Otherwise for some values of 

the covariates there would be some units in a group for which we could not find 

any comparable units in the other.  

At this point it is interesting to remember the decomposition of the 

selection bias proposed by Heckman et al (1998). They showed that the selection 

bias (B) can be decomposed in three components: B = B1 + B2 + B3. The first 

component, B1, refer to the bias caused by non-overlapping supports of X in the 

treated and control group. The term B2 depends on misweighting within the 

common support, as the empirical distributions of treated and non-treated may 

not be the same even when restricted to the common support. Finally, the term 

B3 is the true econometric selection bias resulting from “selection on 

unobservables”, that is, it is the bias arising from a different distribution of 
                                                   
4 The unconfoundedness assumption has been referred to also as the conditional independence, 
selection on observables or the exogeneity assumption (Imbens, 2004).  
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relevant unobserved variables between treated and controls. Under UNC the term 

B3 is zero. The other bias components are cancelled out when we restrict the 

analysis on the common support (B1) and we balance covariates in the group of 

treated and controls (B2). 

It is important to note that identification of ATT requires weaker versions 

of assumptions (2.31) and (2.32). In particular we need only: 

 

 Yi0 ⊥ Di |Xi , (2.33) 

 

 0 < P (Di =1| Xi). (2.34) 

 

Under unconfoundedness, various alternative estimators have been 

proposed for the estimation of average causal effects. These estimation methods 

includes: (i) methods based on estimating the unknown regression functions of 

the outcome on the covariates (Hahn, 1998; Heckman et al, 1997; Heckman et al, 

1998), (ii) matching on covariates (Abadie and Imbens, 2002), (iii) methods 

based on the propensity score including blocking (Rosenbaum and Rubin, 1984) 

and weighting (Hirano et al, 2003), (iv) combinations of these approaches, for 

example weighting and regression (Robins and Rotnizky, 1995) or matching and 

regression (Abadie and Imbens, 2002), and (v) Bayesian methods, which have 

found relatively little following since Rubin (1978). All these methods attempt, 

in different ways, to cancel the bias term B2. We will discuss in the following, 

regression and propensity score matching methods. 

Clearly, assumption (2.31) may be controversial. It requires that all 

variables that affect both outcomes and the likelihood of receiving the treatment 

are observed. Although this is not testable, it can be a very strong assumption in 

some applications. However, any alternative assumption that does not rely on 

unconfoundedness while allowing for consistent estimation of the average 

treatment effects must make alternative untestable assumptions. In the literature, 

especially econometrical, several approaches are proposed that overcome the 

UNC hypothesis.  
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The well-known “Heckit” correction (Heckman selection model; 

Heckman, 1979) is one of the traditional approaches to dealing with the sample 

selection problem. It is now widely recognised that without an instrument for 

selection into the treatment group (in other words, a variable that has explanatory 

power in a selection equation but does not affect outcomes except through 

selection) these models are identified only by assumptions about functional form 

and error distributions. Identification through functional form alone has been 

shown to be quite tenuous, resulting in standard errors that are often very large, 

and results that are very sensitive to the particular distributional assumptions 

invoked (see Puhani, 2000). Alternatively to the methods, semi-parametric and 

non-parametric IV models have been received an increasing interest.  

Another favourable situation for the identification of treatment effects 

arises when participation into treatment is determined by a Regression 

Discontinuity Design (RDD). In this design, assignment to treatment solely 

depends on whether observable pre-intervention variables satisfy a set of 

conditions known to the analyst. For example, units willing to participate are 

divided into two groups according to whether or not a pre-intervention measure 

exceeds a known threshold, but only units scoring above that threshold are 

assigned to the program. In a neighbourhood of the threshold for selection a 

RDD presents some features of a pure experiment (see for example, Hahn et al, 

2001). 

Finally, we mention the Difference-in-Difference estimator (DID), which 

is well-known in the econometric literature (see e.g., Wooldridge, 2002). DID 

methods for estimating causal effect of policy interventions are widely used in 

economics, in particular when outcomes are measured in both the treatment and 

control group before and after the policy intervention. To apply DID we need 

that units are observed at least in two time points. Let suppose we have N 

individuals observed at two time periods t0 and t1 and suppose that some units are 

exposed to the treatment between these two time points. The difference in 

difference (or "double difference") estimator is defined as the difference in 

average outcome in the treatment group before and after treatment minus the 

difference in average outcome in the control group before and after treatment: 
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[ ] [ ]0101
0011
tttt YYEYYE −−− . An advantage of the DID estimator is that it allows us 

to control for selection into treatment caused by time-invariant unobserved 

variables. Heckman et al (1998) propose to combine the DID with propensity 

score matching methods in order to relax the UNC assumption. In other words, 

we have not to assume that the bias term B3 is zero, but we have only to assume 

that is zero the difference in the bias at the two time points.  Therefore, some 

authors have found the DID-PSM estimator useful arguing that it is more robust 

since it eliminates temporarily invariant source of bias (Dehejia and Wahba, 

1999; Smith and Todd, 2005; Aassve et al, 2007). We use a combination of DID 

with other methods in the applications we present in chapter 5 and 6, taking 

advantage on the panel structure of our data. 

However, the interpretation of the standard DID estimator depends on the 

assumptions about the unobserved components. In the traditional DID is 

supposed that the effect of the time is linear and constant across individuals. 

Recently, Athey and Imbens (2006) proposed a generalisation of the standard 

DID method, the change-in-change estimator, in which they allow the effects of 

both time and intervention differ systematically across individuals.  

  

 

2.3.1 Regression methods  

The assumptions underlying the regression model are well known and outlined in 

common econometric text books (e.g. Green, 2002; Wooldridge, 2002). 

However, these assumptions are usually stated out of any framework for causal 

inference. Then, it is of interest to clarify the regression model under the 

potential outcomes framework introduced earlier. Let specify a linear model for 

the two potential outcomes: 
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(2.36) 

 

where ∆ = E(Y i1)-E(Yi0) = ATE. 
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The models expressed by (2.35) and (2.36) assume that the relationship 

between potential outcomes and covariates are linear and that there is no 

interaction between X and the treatment. In fact, the vectors of parameters in the 

two regressions are equal. Moreover, the treatment effect is assumed to be 

constant (in fact ∆ is not indexed with i). Substituting the two models for 

potential outcomes (2.35) and (2.36) in the equation (2.2) we get the traditional 

linear multiple regression model: 
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If the true model were non linear, the OLS estimates of the treatment 

would be in general biased (see the discussion in Goodman and Sianesi, 2005). 

Moreover if the effect of the treatment changes by unit characteristics 

(heterogeneous treatment effect) OLS will not in general recover the ATT. In 

fact, the constant treatment effect assumption implies that ATE coincides with 

ATT, as previously noted. Both these problems are exacerbated if some units fall 

outside of the common support of the covariates, that is, if there are units 

receiving the treatment for which there are no comparable unit receiving the 

control. In this case, performing OLS might hide the fact that the analyst is 

actually comparing incomparable units by using the linear extrapolation. Of 

course, the problem can be circumvented by estimating the common support and 

running the regression conditioning on it. Moreover, heterogeneous treatment 

effect can be allowed by including a complete set of interactions between 

covariates, X, and the treatment, D. This gives rise to the so called Fully 

Interacted Linear Model5 (FILM – see Goodman and Sianesi, 2005). We can be 

obtain the FILM under the potential outcomes framework in this way: 

                                                   
5 Note that the FILM introduced here is different from a fully saturated model, which is a linear 
regression of Y on D controlling non parametrically for the full set of main effects and 
interactions of the covariates X and the treatment D. This is the most flexible form of regression 
is possible and the most similar to an exact matching on covariates. However, both exact 
matching and fully saturated regression may not be feasible when the sample is small and/or the 
set of covariates is large and many of them are multivalued, or, worse, continue. If the number of 
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In the two models (2.38) and (2.39) the parameters of covariates X are 

allowed to be different. As a consequence we get the model:  
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where IX includes all the possible interactions among covariates in X and the 

treatment indicator, D, while he vector Φ collects the coefficients of variables 

included in IX. These coefficients coincide with the difference between the 

correspondent vectors of coefficients in the model for the two potential outcomes 

(3.24): Φ = β’ - β. In the model (2.40) we assume that individuals with the same 

value of X have the same treatment effect, but that the impact of the treatment 

can differ across individuals with different observable characteristics. In this 

case, ATE(x) = ATT(x) = ATU(x) but ATE, ATT and ATU are, in general, 

different. We also note that in this case the parameter ∆ does not represent the 

ATE as in model (2.37) but it represents the effect of D when the variables 

interacting with it are all equal to zero. The ATE and ATT in this model are, 

respectively, given by: 
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 (2.41) 

(2.42) 

 

where T indicates the transpose operator. As we can easily see from the (2.41) 

and (2.42), under the regression model (2.40) ATE and ATT differ if the effect 

                                                                                                                                         
cells is very large with respect to the size of the sample is possible that some cells contain only 
treated or only control subjects. 
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of the treatment interacts with at least one of the covariates included into the 

model and the mean of this covariate differ in the treated and control groups. 

The previous discussion clarifies that we can make the standard multiple 

regression models increasingly flexible to outrun hypotheses that seem 

implausible in a given setting. Also the linearity assumption can be relaxed if we 

use a non-parametric method, such as a kernel estimator (see Hardle and Linton, 

1994). Non-parametric methods, however, are affected by some problems (for 

example inefficiency) when the number set of covariates is large and many of 

them are multi-valued, or, worse, continue. This problem, known as curse of 

dimensionality, is common also to matching methods that we discuss in the 

following section.  

 

 

2.3.2 Propensity score matching methods 

 Regression is not the only way to deal with selection on observables. Matching 

estimators are another class of estimators that rely on the same 

unconfoundedness assumption as regressions. However, the weighting of 

estimated treatment effects across different individuals remains under the explicit 

control of the researcher, rather than being implicit in the estimator, as in OLS. 

Thus, matching methods are likely to be more amenable to heterogeneous 

treatment effect context. 

Matching is an intuitive and appealing method, which basic idea consists 

of contrasting treated and control units with the same characteristics X. Starting 

from assumption (2.31), the basic idea is that within each cell defined by the 

values of the covariate X assignment to treatment or control group is random. 

Therefore, if in a given application we know, or we are willing to assume, that 

all relevant variables that impacts the selection on treatment and outcome are 

collected in the set X (and hence we are confident that assumption (2.31) holds) 

we can match each treated unit with one (or more) control unit with the same 

values of X. The group of treated and matched controls will differ only for the 

exposure to treatment and, therefore, differences in the outcome between the two 

groups can be attributed to the treatment.  
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We have already noticed that the fundamental problem of causal 

inference can be seen as a “missing data” problem. From this viewpoint, 

matching methods are a way to “impute” missing observations for counterfactual 

outcomes. Using the missing data terminology, we can say that their validity 

stands on the assumption that the counterfactual observations are “missing at 

random” (Rubin, 1974), while randomized experiments ensures that the missing 

information is “missing completely at random”. 

Let’s re-write the ATE in the following way: 
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In words, the (2.43) says that the ATE can be calculated as the average, with 

respect to the distribution of X, of average causal effects calculated in 

subpopulations defined on the X-values (that is, ATE(x)). However, in order to 

apply the (2.43) to the group of treated and matched controls we need to have 

perfectly balanced distributions for X. When the number of matching variables is 

large and/or when some of X are continuous exact matching becomes unfeasible 

and a distance metric have to be used to weight comparisons of matched treated 

and control units. An alternative is to implement the matching on a univariate 

variable, which “summarizes” the information incorporated in X, as opposed to 

matching directly on the multivariate set X. Well known are matching methods 

that use the propensity score, which can be defined as  

 

 

Definition 2.7 – Propensity score  

The propensity score is the conditional probability of receiving a treatment given 

pre-treatment characteristics: 

 

 e(X) ≡ Pr{D = 1|X} = E{D|X}. (2.44) 
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The substitution of the multivariate set X with the univariate e(X) in the matching 

procedure is justified by the following important theorems due to Rosenbaum 

and Rubin (1983a): 

 

 

Theorem 2.1 - Balancing property of the propensity score 

Conditioning on the propensity score, X and D are independent: 

 

X ⊥ D | e(X). 

 

 

Theorem 2.2 - Ignorability given the propensity score 

If treatment assignment is strongly ignorable given X, then it is strongly 

ignorable given any balancing score; that is 

 

(Y1, Y0) ⊥ D | X  and  0 < P(D=1|X ) < 1 

implies 

(Y1, Y0) ⊥ D | e(X)  and  0 < P(D=1|e(X) ) < 1 . 

 

Theorem 2.1 states that observations with the same propensity score have 

the same distribution of characteristics X, independently of treatment status. In 

other words, for a given propensity score, exposure to treatment is random. 

When the propensity scores are balanced across the treatment and control 

groups, the distribution of all the covariates are balanced in expectation across 

the two groups. Therefore, matching on the propensity score is equivalent of 

matching on X.  

Theorem 2.2 is the key result to show that if treatment assignment is 

strongly ignorable, then adjusting for e(X) is sufficient to produce unbiased 

estimates of ATE. On the basis of these two theorems we can substitute in (2.43) 

e(X) to X: 
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where the outer expectation is over the distribution of e(X). 

In observational studies the propensity score is not known and it has to be 

estimated from the data available. Since a fully nonparametric estimation of the 

propensity score would be liable to suffer from the same curse of dimensionality 

as the standard matching estimator, the estimation task is generally accomplished 

parametrically. Propensity score matching thus becomes a semi-parametric 

approach to the evaluation problem 

Using the common logit or probit models, we can write e(Xi) ≡ Pr{Di = 

1|Xi} = F[h(Xi)], where F(.) is, respectively, the normal or the logistic cumulative 

distribution and h(Xi) is a function of covariates with linear and higher order 

terms. The choice of which higher order terms to include, as well as interactions 

among covariates, is determined solely by the need to balance covariates 

distribution in the two treatment groups (Dehejia and Wahba, 1999). Simple 

parametric specifications for the propensity score have indeed often been found 

to be quite effective in achieving the balancing required (see for example Zhao, 

2005). 

The estimation of the propensity score is, however, not sufficient to 

estimate ATE using the (2.45). The reason is that the probability of observing a 

treated and a control unit with exactly the same value of the propensity score is, 

in principle, zero, since e(X) it is a continuous variable. Then, we need to use 

some algorithm to match treated and controls. 

Various matching methods have been proposed in the literature to 

overcome this problem and the most widely used are stratification, nearest 

neighbour, radius, kernel matching.  

The idea of stratification matching is to partition the range of the 

propensity score into a set of intervals (strata), such that within each interval 

treated and control units have, on average, the same propensity score. Then, 

within each interval in which both treated and control units are present, the 

difference between the average outcomes of the treated and the controls is 

computed. The ATT, for example, can be, finally, obtained as the average of the 
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ATT calculated in each block, with weights given by the distribution of treated 

units across blocks. One of the pitfalls of the stratification method is that it 

discards observations in blocks where either treated or control units are absent.  

The most straightforward alternative matching estimator is the nearest 

neighbor (NN) matching, which consists of taking each treated (control) unit and 

searching for the control (treated) unit with the closest propensity score, i.e. the 

nearest neighbor. Several variants of NN matching are proposed, e.g. NN 

matching “with replacement” and “without replacement”. In the former case, an 

untreated individual can be used more than once as a match for treated units and 

vice versa, whereas in the latter case each unit is considered only once. Matching 

with replacement involves a trade-off between bias and variance. If we allow 

replacement, the average quality of matching will increase and the bias will 

decrease. Once each unit has found a match in the other group, the difference 

between the outcomes of the two units is computed. The ATT is then obtained by 

averaging these differences. Another alternative to the NN matching is the k-NN 

method, which consists to use more than one (k > 1) nearest neighbours. This 

form of matching involves a trade-off between variance and bias, too. It trades 

reduced variance, resulting from using more information to construct the 

counterfactual for each participant, with increased bias that results from on 

average poorer matches (see e.g. Smith, 2000). Then, the outcome of each unit is 

contrasted to a weighted average of the outcome of the k-nearest neighbours. 

This involves another choice concerning the weights to be used.   

In the case of the nearest neighbor method all treated units find a match. 

However, it is obvious that some of these matches are fairly poor because for 

some treated units the nearest neighbour may have a very different propensity 

score and nevertheless he would contribute to the estimation of the treatment 

effect independently of this difference. This can be avoided by imposing a 

tolerance level on the maximum propensity score distance (caliper). Bad matches 

are avoided and the matching quality rises. However, if fewer matches can be 

performed, the variance of the estimates increases. A variant of caliper matching 

is the so-called radius matching. The basic idea of this method is to use not only 

the nearest neighbour within each caliper but all of the comparison members 
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within the caliper. A drawback of caliper and radius matching is that it is 

difficult to know a priori what choice for the tolerance level is reasonable. 

With kernel matching all treated are matched with a weighted average of 

all controls with weights that are inversely proportional to the distance between 

the propensity scores of treated and controls. The way the weights are calculated 

depend on the specific kernel function we use. The widest employed versions are 

the Epanechnikov and Gaussian kernel. 

It is clear from the above considerations that the various methods reach 

different points on the frontier of the trade-off between quality and quantity of 

the matches and none of them is a priori superior to the others. Asymptotically, 

all PSM estimators should yield the same results (Smith, 2000), while in small 

samples the choice of the matching algorithm can be important (Heckman et al, 

1997). The performance of different matching estimators varies case-by-case and 

depends largely on the data structure at hand (Zhao, 2005). Pragmatically, it 

seems sensible to try a number of approaches. If they give similar results, the 

choice is irrelevant. Otherwise, further investigation may be needed in order to 

reveal more about the source of the disparity (Bryson et al, 2002).  

We can write a general formula for the matching estimators of ATT, 

ATU and ATE in the following way. Let denotes with I0 and I1 the sets of indices 

for untreated and treated units, respectively. To estimate the treatment effect for 

a treated person i ∈ I1, outcome Yi1 is compared to an average of the outcomes 

Yj0 for matched units j ∈ I0 in the untreated sample. Typically, when the 

observed propensity score of an untreated person is closer to that of the treated 

person, using a specific distance measure, the untreated person gets a higher 

weight in constructing the match. Following Heckman et al. (1997), the 

estimated gain for unit i in the treated sample is 

 

                                      (

 

2.46) 

here W(i,j) is usually a positive valued weight function, defined so that for each 

∑
∈

−
0

01 ),(
Ij

ji YjiWY

w

i ∈ I1 ∑j ∈I0 W(i, j) = 1. The choice of a weighting function reflects the choice of 

a particular distance measure used in the matching method, and the weights are 
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based on distances in the e(X) space. For example, for each i ∈ I1 the nearest-

neighbor method selects one individual j ∈ I0 as the match whose ej(X) is the 

closest value to ei(X). On the opposite side, the kernel methods construct matches 

using all units in the comparison sample and down weighting “distant" 

observations.  

ATT is estimated averaging (2.46) over the sample of treated: 

                      (2.47) 

 

where w(i) are the weig ation of the average, at each unit 

hich satisfy the condition that ∑i∈I1 w(i) = 1. In the simplest case w(i) = 1/n1 for 

 

,                   (2.48) 

where in squared brack a

unit and w(j) are the weights assigned in the average to effects estimated on the 

ATE as a weighted average of ATT and ATU with weights 

proport

 

 

, 

hts assigned, in calcul

w

each i ∈ I1, where n1 is the number of treated units in the sample. Different 

values of w(i) may be used to select different domains of e(X), or in order to 

account for heteroschedasticity.  

Similarly, the ATU is estimated by 

 

ets we represented the estimated g in for an untreated 

single units. 

At this point ATE can be estimated combining (2.47) and (2.48). In fact, 

writing the 

ional to n1 and n0, it can be estimated by 

 

   ⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤⎡ 01
^ nn

⎢
⎣

−= ∑∑∑∑
∈∈∈∈ 10101

1001 ),()(),()(
Ii

ij
IjIj

ji
Ii

YjiWYjw
n

YjiWYiw
n

ETA , (2.49) 

where we compare the outcome observed on each treated unit with outcomes 

bserved on some matched untreated and vice versa. When w(i) = 1/n1 for each i 

∈ I1 and w(j) = 1/ n0 for each j ∈ I0, the (2.49) simplifies to 
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Formulas (2.47)-(2.50) will be differently specified accordi

specific matching algorithm we choose. 

As the estimation of the standard errors of the treatment effects is 

concern

e propensity score, as well as by the 

matchin

on versus propensity score matching methods 

e have seen that both regression model and propensity score matching rely on 

e UNC assumption. However, they are different in the way they estimate 

ds is that PSM 

rence between 

regress

 

ng to the 

ed, it should ideally adjust for the additional sources of variability that 

are introduced by the estimation of th

g process itself. For kernel-based matching, analytical asymptotic results 

have been derived by Heckman et al (1998), whereas for others matching the 

common solution is to resort to bootstrapped confidence intervals. However, 

Abadie and Imbens (2004) proved that bootstrap fails with nearest neighbor 

matching, due to its extreme non-smoothness. The implication for empirical 

practice of these results is that for methods like nearest neighbor matching one 

should use analytical variance estimators, such those developed by Abadie and 

Imbens (2006). 

 

 

2.3.3 Regressi

W

th

causal effects. A fundamental difference between the two metho

makes more explicit the comparison of treated and control units. 

Matching techniques offer a number of practical advantages relative to 

regression. They are nonparametric and tend to focus attention on the common 

support condition. However, a principal conceptual diffe

ion-based and matching techniques is the flexibility the latter gives the 

researcher in choosing how to aggregate heterogeneous impacts. In a matching 

estimator, the weighting is easily manipulated so that interesting parameters (that 

is, interesting averages) like the average effect of the treatment on the treated, 
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can be estimated. On the other hand, if treatment effects are homogeneous, then 

the regression-based estimator is more efficient. 

We have seen that investigators using regression based approaches could 

relax many parametric assumptions, like homogeneous treatment effects. 

Moreover, it is also possible to incorporate common support concerns in a 

regress

tegies that require 

selectio

nment 

mechanism using Instrumental Variables 

r 

treatme ove on to the 

ase where we suspect failure of the unconfoundedness assumption. More 

ion framework. The essential difference between regression and matching 

remains the weighting scheme used to take the average of the treatment effects at 

different values of the covariates. Regression gives more weights to cells in 

which the proportion of treated and non-treated is similar. Matching gives more 

weights to cells in which the proportion of treated is high when calculating the 

ATT and, vice versa, it gives more weights to cells in which the proportion of 

untreated is high when calculating the ATU (Angrist, 1998). 

Concluding, one of the most desirable features of the PSM is that it 

forces the researcher to design the evaluation framework and check the data 

before looking at the outcomes. They dominate other stra

n on observables, like regressions, because they involve a more 

convincing and direct comparison between treated and control subjects. 

 

 

2.4 Estimating causal effects under a latent regular assig

 

So fa we have dealt with the problem of self selection where selection in the 

nt status depends only on observed covariates. We now m

c

specifically, we may suspect the presence of some unobserved covariates that 

influence our outcome and are associated with the selection into treatment. A 

classic example of such a violation is found in the labour economics literature, 

whereby the interest lies in estimating the returns to schooling on wages. Here a 

common problem is introduced by the fact that ability, which is unobserved to 

the analyst, may influence the outcome of interest, namely individuals’ wages. In 

our case, where the interest lies in estimating the effect of childbearing on 
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economic wellbeing, we might also encounter unobserved characteristics that 

will influence the outcome of interest. To better understand why, it is important 

to bear in mind that consumption expenditures are determined, mainly, by 

individuals’ labour income. As is well known, fertility decisions are, often, 

endogenous with respect to work decisions, and therefore household income 

which in turn drives expenditure. This is especially the case for women (Kim and 

Aassve 2006). Again unobserved ability may enter the picture. On one hand, 

women’s earnings ability will influence their work decisions, which in turn will 

influence expenditure levels. Unobserved ability, in a general meaning, may also 

be correlated with contraceptive use and it is likely to influence the outcome of 

interest.  

 These situations are known in the econometric literature as selection on 

unobservable and refers to the source of endogeneity driven by omission of 

relevant variables. We briefly start by recalling the concept of endogeneity in 

 causes: (see for e.g. Wooldridge, 2002; pp. 50-51):  

 

 outcome, are 

correlated with one or more covariates. Unobserved variables are 

- 

. This situation may or may 

- 

determined simultaneously along with the outcome, Y. If, say X is 

econometrics to create a parallel set-up with respect to the potential outcomes 

framework.  

In a regression framework, a given explanatory variable is said to be 

endogenous if it is correlated with the error term. This correlation can arise from 

the following

- Relevant omitted variables: This problem arises when one or more 

unobserved variables, which have an influence on the

included in the error term, giving rise to the correlation between 

endogenous covariates and the error term.   

Measurement error: Let suppose that only an imperfect measure of a 

given covariate X is available, say X*. If this is the case, we necessarily 

put a measurement error into the error term

not give rise to correlation between X and the error, depending on how X 

and X* are related.  

Simultaneity: It arises when at least one of the explanatory variables is 
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determined partly as function of Y, then X and the error are generally 

correlated.   

 

he sequel we will focus on the first situation, as it appears to be the most 

 source of endogeneity in our application. In the potential outcome 

In t

serious

framework developed before we can think to this situation as the case in which 

even af r conditioning on observed covariates, X, there remains a certain degree 

of d

n method used by 

conometricians to estimate causal effects in the presence of endogeneity. This 

available. A valid instrument is a variable that is correlated with the endogenous 

variabl

UNC.  

te

ependence among potential outcomes and treatment assignment. Only if we 

could also condition on unobservables, U, will this dependency disappear. In 

other words, assumption (2.31) has to be relaxed so that: 

 

 Yi1, Yi0 ⊥ Di |Xi ,Ui (2.51) 

 

Instrumental variable analysis is a commo

e

method can be used when one or more variables, termed instruments, are 

e but is uncorrelated with the outcome, given the endogenous variable. In 

other words, it affects the outcome only through its effect on the endogenous 

variable. This situation is represented in the figure 2.1, where it is represented a 

causal link between D and Y. However, this relationship is confounded by the 

variable U. Since U is unobserved, we cannot use methods like regressions and 

PSM, which rely on UNC, to estimate the causal effect of D on U. A solution is 

to use the fact that a variable Z exists so that it influences only D. A change in Z 

generates an exogenous variation in X, allowing the identification of the causal 

D-Y relationship.  

In many practical applications, however, it becomes hard to find good 

instruments. Nevertheless, as we will see in chapter 5, we propose two different 

instruments for the identification of the causal effect of fertility on poverty, 

without relying on 
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Figure 2.1 – A situation where the effect of D on Y is confounded by an 

unobservable variable (U) and an instrument (Z) is available. 
 

 

 

  
 

 
 

 

In the sequel of the section, we illustrate the identification and estimation 

of causal effects using IV methods, in a general framework. We consider the 

simplest case, where only one binary exogenous instrument is available. This is a 

commo

tion, some subjects 

assigne

t itself (D). In this case the 

instrum

n situation in many randomised trials when it is not possible to randomise 

the treatment, but it is possible to randomise the assignment to the treatment. In 

other words, when there is a certain rate of noncompliance.  

Noncompliance occurs when the actual treatment that subjects receive 

differ from their nominal assignment. Here we assume all-or-none 

noncompliance (as in Angrist et al, 1996): after randomiza

d to the treatment will not take it, but effectively take the control, whereas 

some units assigned to the control receive the treatment. In this situation an 

instrumental variable is represented by the assignment indicator, Z, which is 

different from the treatment indicator, D. This is because the assignment to 

treatment influences the probability to take the treatment and has no direct 

impact on the outcome, because of randomisation. 

This situation can be viewed also as a randomised encouragement design 

when the analyst randomises the encouragement to receive the treatment (Z = 

encouragement indicator) instead of the treatmen

ent is represented by the encouragement assignment (Z=1 for units 

encouraged to take the treatment; Z=0 for other units).  
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In an observational study, like ours, we can use this scheme when the 

instrumental variable can be considered as exogenous, that is not determined 

itself b

 to relate the statistical literature on potential outcomes to the 

econom

.4.1 Randomized instruments 

 this section we treat the case in which the instrument can be thought as 

ndom and hence it is not confused with the 

where a continuous outcome is 

regress

(2.52) 

(2.53)

 

 

ii
obs

i

vZD

eDY

++=

y the variables that influence the selection in the treatment and the 

outcome. 

Angrist, Imbens and Rubin (1996) (in the following AIR) use this 

framework

etrical literature on IV. In this paper the authors make explicit the 

assumptions needed to identify a causal effect using an IV analysis under 

relatively weak assumptions. Next section builds heavily on this paper.   

 

 

2

In

exogenous, that is, it is assigned at ra

treatment D or the outcome, Y. We indicate with Zi the assignment received by 

unit i, which for simplicity will be considered as a binary variable. We indicate 

with Di(Z) the binary treatment indicator for unit i, which depends on the 

assignment variable, Z.  Similarly, the potential outcomes for unit i are indicated 

as Yi(Z, D). We now give a formal definition of an instrument, both in the  

econometric and potential outcomes framework.  

Let us refer to the dummy endogenous variable model, well known in 

econometrics (see, for example, Maddala, 1983), 

ed on a binary endogenous variable, D. Using a latent index formulation, 

D takes the value 1 if the underlying continuous variable D*, which is modeled 

as a linear function of a variable Z, overcome a threshold, conventionally fixed at 

0, and D is equal to 0 otherwise. This model can be formulated in the following 

way: 

 

iii

++=

10
*
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(2.54) 

 

 

It is interesting to note formulation corresponds to 

e idea that compliance is a “choice” that decision makers formulate comparing 

expecte

E(Z*e) = 0 , E(Z *v) =0 (2.55) 

cov(D, Z) ≠ 0. (2.56) 

an variables, the first con

.55) imposes zero-correlation among Z and the error terms. The requirement 

(Durbin, 1954): 

.                                    (2.57) 

 

Under assumptions (2.55) and ator (2.57) consistently estimates 

1, while OLS is biased and inconsistent (Carneiro et al, 2005). In fact, under 

these assumptions: 

⎩
⎨
⎧

≤
>

=
0  if         0
0  if         1

*

*

i

i
i D

D
D

that this latent index 

th

d utility deriving from the two alternative treatment statuses. In this 

model the dummy variable D is potentially correlated with the error term, e, 

implying that it is endogenous, in econometric terminology. In other words, the 

receiving treatment is not ignorable (Rubin, 1978). In order for Z to be an 

instrument, econometric theory postulates that it must respect the following 

conditions: 

 

 

 

 

Since the error terms are assumed to be zero me dition 

(2

that E(Z*e) = 0 and the absence of Z  in equation (2.52) implies that any effect of 

Z on Y must be through its effect on D. Condition (2.56) is equivalent to the 

requirement that α1 in the (2.53) is different from 0. These two conditions are 

well known in econometrics as, respectively, the validity and the relevance of the 

instrument. 

 In this simple case, the IV estimator is defined as the ratio of two sample 

covariances 

 

),cov(
),cov(

1 ZD
ZYIV =β

 

 (2.56), the estim

β
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When both 

in (2.57) simplif
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Z and D are binary variables the ratio of the two covariances 

y to: 

]0|[]1|[ =−=
]0|[]1|[ =−=

=
ZYEZYEIVβ ,                              (2.59) 

which is often called the Wald estimator, since it first app

Wald (1940) on errors-in-variables problems. The (2.59) can be easily estimated 

y: 

 

(2.60) 

 

where #{Z=z} indicates the sam Z=z.  

The (2.60) is sim ference of the sample 

verages of Y (numerator) and D (denominator) calculated on subpopulations 

cover a consistent estimate of β1. On the other hand, if 

the cor

ZDEZDE
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ple dimension of the group with 

ply the ratio between the dif

a

defined by the Z values. 

In econometrics, an instrument that does not respect condition (2.55) is 

said to be invalid. In this case cov(Z, e) is not 0 and from the last term in (2.58) 

we see that we cannot re

relation between Z and D is low the instrument is said weak. In the 

econometric literature, it is well known the problem of the sensitivity of the IV 

methods when the instrument is weak (e.g., Klepinger et al., 1995). Intuitively, 
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we can see from the last term in (2.58) that the problem arise since cov(Z, D), 

which is found at the denominator, is near zero.  

It is important to note that condition (2.58) is untestable. When more than 

one instrument is available this assumption can be indirectly tested through the 

so-calle

 authors use the potential outcomes 

mew

ssumption AIR.1 - Stable Unit Treatment Value Assumption (SUTVA)  

 this context SUTVA requires that the potential outcomes for each unit do not 

 

Z, D) = Yi(Z’, D’). 

SUTVA

 

i, Di) and Di(Z) = Di(Zi). 

 

 

d overidentifying restriction test (ORT, see Hwang, 1980). Recently, 

Small (2007) have proposed a sensitivity analysis to assess uncertainty about the 

validity of instruments when more than one instrument is available. A sensitivity 

analysis approach with respect to the strength of the instrument is, instead, 

proposed in Small and Rosenbaum (2007).  

 In the sequel we adopt the setting used by AIR to give a causal 

interpretation to the estimator in (2.57). The

fra ork under which they are allowed to state the identifying assumptions in 

a transparent manner. In order to do so, AIR substitute the assumptions (2.55) 

and (2.56), made in terms of disturbances, to the following assumptions cast in 

term of intrinsically meaningful and potentially observable variables. AIR define 

an IV as a variable that respect the following conditions: 

 

 

A

In

depend on assignment and treatment status for the other units. Formally: 

 

If Zi = Z’i, then Di (Z) = Di(Z’) 

If Zi = Z’i, and Di = D’i, then Yi(

 

 implies that  

Yi(Z, D) = Yi(Z
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Assumption AIR.2 - Random Assignment 

he treatment assignment Zi  is random: 

for all c T c’, where ι is the N- dimensional column vector 

ith all elements equal to one.  

ssumption AIR.3 - Exclusion Restriction 

he treatment assignment Z impacts on Y only through D:  

for all Z

assumption AIR.3, we can define potential outcomes Y (Z, 

) as a function of D alone: Y (Z ,D) = Y(D). By assumption AIR.1, we can also 

write Y

ssumption AIR.4 - Nonzero Average Causal Effect of Z on D 

he average causal effect of Z on D, E[D1i – D0i] is different from 0. This 

n (2.56) states 

ssumption AIR.5 - Monotonicity 

 

T

 

Pr(Z = c) = Pr(Z’ = c’) 

 

 and c’ such that ιT c = ι

w

 

 

A

T

 

Y (Z ,D) = Y(Z’,D) 

 

, Z’ and D.  

 

By virtue of 

D

i(Di) instead of Yi(D). This assumption corresponds to the validity 

assumption of econometricians. 

 

 

A

T

assumption states in terms of average causal effect what assumptio

in terms of covariance. 

 

 

A

D1i ≥ D0i   
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for all i .  

 

arify assumption AIR.5 we need to distinguish four groups 

f individuals that react in different ways to the assignment to the treatment. The 

first gro

Table 2.1 - Type of units by observed variables 

Di

 = 1, … , N

In order to cl

o

up is given by individuals that are induced to take the treatment (control) 

by the assignment to the treatment (control). For these individuals, which are 

called compliers, D1i – D0i = 1 and the causal effect of Z on Y is Y1i – Y0i. Other 

individuals do not change the treatment status with the assignment. These 

individuals can be always-takers, if D1i = D0i = 1, or never-takers, if D1i = D0i = 

0. In both cases the causal effect of Z on Y is zero by virtue of the exclusion 

restriction. Finally, individuals that do the opposite of their assignment status are 

called defiers. For these individuals D1i – D0i = – 1 and the causal effect of Z on 

Y is – (Y1i – Y0i). The four types of units are represented in table 2.1 as the 

product of the cross tabulation of the observed variables Z and D. As we can see, 

in each cell we have mixtures of units that we cannot disentangle 

 

 

Zi
0 1 

0 
Never-takers 

Com

Always-takers 

Defiers pliers 

1 
Never-takers 

Defiers 

Always-takers 

C  ompliers

 

 

onotonicity assumption implies that there are no defiers. This assumption is 

ot sufficient to identify the type of a unit by the observed data. In fact, even if in 

 

M

n

table 2.1 we drop the defiers, mixtures remains in the diagonal cells. However, it 

is possible to estimate the proportion of units belonging to the group of 
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compliers. To this end we need to use the randomization assumption which 

implies that D0i, D1i ⊥ Zi and can be written also as:  

 

 Pr(τi = t | Zi =0) = Pr(τi = t | Zi =1), (2.61) 

or XSuppxacnt ∈∀∈  and where τ indicates the unit type and n, c and a 

stand, respectively, for neve

 τa = Pr(D = 1| Z =0) = E [D | Z=0] , (2.62) 

 τn = Pr(D = 0| Z =1) = 1 - E [D | Z=1] . (2.63) 

 

onsequently, the proportion of compliers is 

τc = 1 –  ( τa + τn) = Pr(D = 1| Z =1) – Pr(D = 1| Z =0)  

 

                       = E [D | Z=1] – E [D | Z=0]. (2.64) 

y using (2.61), (2.62) and (2.63) we can estimate the proportions of 

always

al assumption for identification since, otherwise, 

the trea

 

{ } )(, ,,f

r-takers, compliers and always-takers. The last 

condition is called by Frolich (2007) unconfounded type, and means that the 

instrument does not affect the relative size of the subpopulations of never-takers, 

compliers and always-takers. Therefore the population share of always-takers 

and never-takers can be written as follows: 

 

 

C

 

  

 

B

-takers, never-takers and compliers even if units belonging to these groups 

are not identifiable. From (2.63) we can see that the proportion of compliers 

coincides with the causal effect of Z on D, which can be seen as the difference 

between the probabilities of taking the treatment for the two groups defined by 

the Z-values. Moreover, by virtue of assumption AIR.4, the proportion of 

compliers is different from 0.  

Monotonicity is a cruci

tment effects for those who shift from nonparticipation to participation 
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when Z shift from 0 to 1 can be cancelled out by the treatment effect of those 

who shift from participation to nonparticipation (Imbens and Angrist, 1994)6.  

It is straightforward to note that monotonicity is automatically satisfied in 

model (2.52)-(2.54) due to the (implicit) imposition of the constant treatment 

effect assumption. In fact, in this model if Zi = 0, then Di* = α0 + vi and if Zi = 1, 

then Di* = α0 + α1 + vi. Hence, D1i* > D0i* since α1 is positive. In fact, α1, by 

assumption is different from 0, and since Z is binary it is always possible to 

redefine it in order to have a positive sign for α1, that is in order to make units 

with Zi = 1 more likely to participate to the program (and this is coherent with 

the view of Z as the assignment indicator). From D1i* > D0i* easily follows, D1i ≥  

D0i.   

Monotoniticy assumption is untestable and its validity has to be discussed 

in the context of a given application. Also exclusion restriction is not informed 

by the data. On the contrary, we can assess if an instrument is weak. In this 

setting we have a weak instrument if the proportion of complier (that coincides 

with the causal effect of Z on D) is low. AIR show that the sensitivity of IV to 

violations of the exclusion restriction and monotonicity assumptions is stronger 

as long as the group of compliers is small.  

AIR demonstrate that given SUTVA and random assignment 

assumptions we can obtain unbiased estimators for the average intention-to-treat 

effects: the average causal effect of Z on Y (that we indicate ITTZY) and the 

average causal effect of Z on D (ITTZD). The ratio between the two intention-to-

treat effects coincides with the conventional instrumental variable estimator 

(2.57):  

 

                                               
ZD

ZYIV

ITT
ITT

=1 β .                                        (2.65) 

 
 
However, in order to give to (2.65) a causal interpretation we also need the other 

assumptions, under which AIR demonstrate that   
                                                   
6 Assumptions alternative to monotonicity can be stated. For example, traditional IV methods 
rely on the constant treatment effect assumption or the assumption that for a given value of Z the 
probability of participation is 0. 
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By using equation (2.65) we interpret the IV estimand as the average 

causal effect calculated on the sub-population of units with D1i – D0i = 1, that is 

for compliers. The effect is what Angrist and Imbens (1994) call the Local 

Average Treatment Effect (LATE) and is referred to also as CATE (compliers 

average causal effect). This is, in general, different from the ATE. A serious 

drawback of the IV estimand given by (2.66) is that it refers to a subpopulation 

(compliers) that is not identifiable by the data. The interest of the researcher 

could be, on the contrary, in the estimation of the ATE (or ATT) but this 

parameter is not identifiable, unless, as noticed by Moffit (1996), we are willing 

to make additional strong assumptions. For example, Angrist and Imbens (1991) 

assume that D0i = 0 for each unit. This happens in some clinical randomized 

trials where patients are allocated into two groups by a random mechanism. 

Patients in the first group receive standard treatment (control); those in the 

second group are asked if they will accept the experimental therapy (treatment 

under study). If they decline (do not comply), they receive the standard 

treatment. Similarly, when D1i = 1 for everyone, LATE coincides with the ATU. 

If these two conditions are simultaneously satisfied, implying that there are only 

compliers in the population (perfect compliance), LATE banally coincides with 

ATE. Another situation in which ATE coincide with LATE is in the case of 

homogeneous treatment effects.  

We have to note, moreover, that the effect identified by the (2.65) 

depends on the instrument we used. So, if several instruments are available the 

LATE calculated using one instrument is, in presence of heterogeneous effects, 

different from LATE calculated with another one. This is because each 

instrument identifies a different sub-population of compliers.  

For the previous reasons LATE has been criticized to be a parameter of 

questionable policy value (Heckman, 1996). However, AIR makes clear that 

LATE is the parameter that can be identified for the largest subpopulation for 
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which data are directly informative. In the instrumental variable setting, 

extensions to groups other than compliers can only be by extrapolation.  

In some particular applications the LATE can be a parameter of specific 

policy interest. This is the case if the policy we want to evaluate coincide exactly 

with the instrumental variable we use (Carneiro et al, 2005). We provide an 

example in chapter 5.  

Before going ahead with the discussion of IV methods with covariates, 

we notice that recently Frangakis and Rubin (2002) introduced the principal 

stratification approach, which is a general framework for comparing treatments 

adjusting for post-treatment variables. Principal stratification with respect to a 

post-treatment variable is a cross-classification of subjects defined by the joint 

potential values of that post-treatment variable under each of the treatments 

being compared. Principal effects are causal effects within a principal stratum. 

The key property of principal strata is that they are not affected by treatment 

assignment, and therefore, can be used just as any pre-treatment covariate. In so 

far, the principal stratification approach overcomes the problems inside the 

traditional approach to adjust for post-treatment variable. Frangakis and Rubin 

(2002) argue that this approach allows to address possible complications in a 

study, such as the censoring by death, the presence of missing outcomes and 

treatment noncompliance. In this last respect AIR’s approach to adjusting for 

noncompliance is a special case of the principal stratification framework, where 

the compliers are a stratum in the principal stratification with respect to the post-

treatment variable “compliance behaviour”. 

 

 

2.4.2 Conditionally randomized instruments 

In the previous section we relied on the hypothesis that the assignment to 

treatment, Z, was randomized or, in other words, the instrument is exogenous. 

However, in many applications Z itself is confounded with D and/or Y. For 

example, parental education is often used as an instrument in labor economics to 

identify the returns to schooling. But this variable is likely to be correlated with 

parent’s profession, family income and wealth, which may directly affect the 
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wage of their offspring. The ability to control for covariates in such situations is 

important because instruments require conditioning on a set of covariates to be 

valid.  

The conventional approach to accommodate covariates X in IV 

estimation consists of parametric or semi-parametric methods (2SLS is the most 

commonly used method of estimation), relying on delicate functional form 

assumptions (e.g. Angrist and Imbens, 1995; Hirano et al, 2000).  

Recently, completely nonparametric identification and estimation in IV 

models has received a lot of interest. Frolich (2007) pointed out that many 

nonparametric IV models including covariates also rely on strong assumptions, 

which could be untenable in most applications. For example, several proposal 

use additive separability in the error term, that amounts to assume a constant 

treatment effect, which is also one of the most dangerous assumption of the 

traditional 2SLS (see e.g., Newey et al, 1999; Das, 2005). In non-separable 

models identification often require that the instrument is sufficiently powerful to 

move the value of Di for every unit i over the entire support of D (e.g., Blundell 

and Powell, 2003; Florens et al 2002). However, it is hard to assume, in many 

applications, that such an instrument exists. On the contrary, only a sub-

population reacts to the instruments and, as pointed out in the previous section, 

only on this sub-population we can identify an average causal effect (LATE).  

In order to identify non parametrically the LATE accommodating for 

covariates we can think, intuitively, to impose the assumptions used by AIR in 

cells defined by the covariates. This is, basically, the approach taken by Abadie 

(2003) and Frolich (2007). In particular, Frolich (2007) suggests a conditional 

LATE estimator, which is a completely nonparametric procedure. Another 

important aspect is that it does not rely on separability. Therefore, this estimator 

overcomes the pitfall of the previous approaches that we have remembered 

before.  

On the basis of some assumptions, which are basically the conditional 

version of AIR’s assumptions, Frolich identifies the conditional LATE as:  
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Then, the author demonstrates that the marginal LATE can be calculated as 

follows7: 
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 .    (2.68) 

 

 

We note that formula (2.67) is similar to (2.59) but with both numerator 

and denominator conditional on X, confirming the intuition that the conditional 

LATE can be obtained similarly to the marginal version calculated in cells 

defined by the X-values. In principle, any nonparametric technique could be used 

to estimate the (2.68). However, when the number of covariates included in the 

set X is high, or include continuous variables, nonparametric estimation becomes 

difficult, especially in small samples. An alternative, in these situations, is to 

make use of the balancing property of the propensity score that allows us to 

substitute the high dimensional set X in (2.68) by a univariate variable. In fact, 

since adjusting for the distribution of X is equivalent to adjusting for the 

distribution of the propensity score, π(x) = P(Z=1|X=x), we can write  

 

 

 

  

(2.69) 
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7 It is important to note that a common support assumption is needed as stated by Frolich: 
Supp(X/Z=1) = Supp(X/Z=0). 
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where fπ(x) is the density function of π(x) in the population. 

An estimator of (2.69) can be obtained as the ratio of two propensity 

score matching estimators, measuring, respectively the two intentions to treat 

effects of Z on Y (numerator) and of Z on D (denominator). Hence, to estimate 

the numerator (ITTZY) we consider the variable Z as it would be the treatment and 

Y as the outcome. For the denominator (ITTZD) Z is still considered the 

“treatment” and D the outcome: 

 

ZD

ZY

ITT

ITTLATE ^

^^
=

 

.                                  (2.70)              

 

 
Obviously, the difference between (2.70) and (2.64) is that here we are 

controlling for covariates, both in ITTZY and ITTZD. 
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Chapter 3 

Causal inference in a multilevel setting 

 

 

 
Introduction 
 

In this chapter we investigate the methodological modifications needed to the 

potential outcome framework developed in chapter 2 when we are interested in 

the estimation of causal effects in a multilevel setting. The chapter is organized 

as follows. Section 3.1 introduces the basic terminology and the motivations 

underlying the need for particular care when our data set shows a multilevel 

structure. Section 3.2 characterizes the most important aspects to be faced when 

causal inference is implemented in a multilevel setting. Section 3.3 briefly 

introduces the linear multilevel model. Section 3.4 originally analyses multilevel 

models in the light of the potential outcomes framework with the goal of 

emphasize some pitfalls of these models in recovering causal effects. Finally, 

section 3.5 extends the potential outcomes framework in a multilevel setting 

keeping into account the critical aspects introduced in section 3.2. 

 

 

3.1 Motivating multilevel reasoning and multilevel analysis 
 

In many fields, including the social, medical and biological sciences, multilevel 

structured populations are the norm. Typically these structures are naturally 

occurring ones. Education provides a prototype example. Pupils or students are 

grouped in classes; classes are nested within schools; and schools may be 

administered within local authorities or school boards. The units in such a system 
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lie at four different levels of a hierarchy. Pupils are assigned to level 1, classes to 

level 2, schools to level 3 and authorities or boards to level 4. Units at one level 

are recognized as being grouped or nested within units at higher levels. Such 

hierarchies are often described in terms of clusters of level 1 units within each 

level 2 unit etc, and the term clustered population is used. In a two-level data 

structure, to indicate the units at the first level, the terms elementary, level-1 or 

micro-level units are employed. The first level is also termed micro level. The 

units at the second level are referred to as secondary units, level-2 units, macro-

level units or clusters. The second level is also termed macro level. 

Other examples of hierarchical populations are people within households, 

within areas; animals within herds, within farms. In other cases the multilevel 

structure may result from research designs, as in multi-centre clinical trials 

where patients are nested within clinics. In yet other cases, the data may not 

obviously seem to be nested, but viewing it as such may yield new insights or 

more efficient analysis techniques. Examples are repeated measures designs, 

where measurements are “nested” within individual subjects and multivariate 

response data where measurements are “nested” within individuals. 

 Why multilevel structures have captured the interest of many authors in 

different disciplines? The motivations of what we can label as multilevel 

reasoning are several. In a multilevel structure it is of interest to analyse the 

interrelationship existing between the different levels and take into account the 

variability associated with each level of the nesting. To be more concrete, if we 

refer to the framework of the social analyses, it is often interesting to explore the 

impact of the context on individual level outcomes8. The notion of context is 

quite general and can include spatial contexts (e.g. countries, states, and 

communities), temporal contexts (i.e. history), organizational contexts 

(classrooms, schools, firms) and socio-economic contexts (ethnic groups, social 

classes, economic sectors). The idea that individual responds to their context is a 

defining claim of the sociological discipline, which dates back at least to Marx’s 

work on political economy (Marx, 1846), to Durkheim’s studies of the impact of 
                                                   
8 The study of the impact of micro level variables on macro level variable can be appropriately 
studied only obtaining an aggregate measure of the micro-level variable. Otherwise, we would 
force the macro variable, which varies only at the macro level to vary also at the micro level.   
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community characteristics on suicide (Durkheim, 1897) and to Weber’s research 

on how religious communities shape economic behaviour (Weber, 1905). 

However, the relationship between individuals and the society is not 

unidirectional. In fact, the interactions among individuals and the groups to 

which they belong consist not only of impacts that groups have on individuals 

but also of influences that individuals make on groups.  

More recently the influence of groups on individual outcomes has been 

investigated in many fields. For example, Roberts (1999), Macintyre (2000) and 

Subramanian et al (2001) investigated the impact of the socio-economic context 

on health. In Demography, Casterline (1985) studied the effect of community 

characteristics on the reproductive behavior of women in developing countries; 

Entwisle et al. (1989) analyzed the role of village context in the use of 

contraceptives; Hirschman and Guest (1990), investigated the impact of 

contextual variables on fertility in Asia. Many poverty analyses considered, in 

very different ways, the role of the context on the individual or household living 

standards. Among them, Van de Walle (1996), Glewwe et al (2002) and Ali and 

Pernia (2003) stressed the importance of infrastructures (macro level 

characteristics) in the process of poverty reduction. Mukherjee and Benson 

(2003) and Justino and Litchfield (2004), studied both individual and community 

determinants of poverty9.  

All the previous studies recognise the importance of hierarchical 

structures and have as a common goal to study the interactions that exist between 

the different levels of these. We refer to such type of analyses as multilevel 

research. In this kind of research, variables can be defined at each level of the 

hierarchy. For example, in a two level structure, consisting of household 

clustered in communities, we can have variables measured at household and 

community level. A detailed characterisation of the different types of variables is 

outside the scope of this work. We refer instead to the discussion in Hox (1995). 

However, we find useful to distinguish between two types of macro variables 

when we analyse data at the individual level. The first type of variables, which 

                                                   
9 To the best of my knowledge, up to now poverty analyses have not used multilevel modelling 
techniques.  
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are usually termed contextual variables, consists of variables that represent a 

feature of the macro unit (cluster) with no corresponding micro level measure. 

The presence of a road, or other infrastructures, in a community is an example of 

such a variable. These variables are included into the analysis at the individual 

level by a process that is called disaggregation, because data on higher level 

units are disaggregated into data on lower level units. The resulting variable is 

called contextual, because it refers to the higher level context of the units we are 

investigating. Other variables, named compositional, are macro indicators 

obtained through aggregation of micro level measures. An example is the 

average size of households residing in the community. These variables are 

constructed by aggregation of data on lower level units into data on higher level 

units. The term compositional refers to the fact that these variables are a 

summary measure of characteristics of lower level units that compose clusters. 

The previous distinction is linked to the common observation found in 

multilevel socio-economic research on the importance to distinguish between 

two sources of variation in the outcome at cluster level: contextual (relating to 

differences in specific areas’ characteristics) and compositional (relating to 

characteristics of the households or individuals living in different places). That 

is, if we ask why clusters are different, the answer has to be considered both in 

their proper features and in the characteristics of units that belong to them. In the 

context of our application we could ask: what explains the geographic variation 

in poverty rates? Is it composition - clustering of households with high poverty 

propensities in certain geographic locations, for instance? Or is it context -

something about the socio-economic or institutional setting in those areas - that 

yields worst wellbeing in some areas than others? A question more closely 

related to the aim of the thesis would be: what explains the geographic variation 

in the impact of fertility on poverty? Is it composition - clustering of households 

with high negative treatment effect in certain geographic locations? Or is it 

context - something about the socioeconomic or institutional setting in those 

areas - that makes more difficult to face childbearing events in some areas than 

others? 
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 For the purpose of applying multilevel models, it is usually not necessary 

to have well clear in mind at which level each variable is measured. This is 

important from a conceptual point of view. Historically, multilevel problems 

have led to approaches that move all variables to one level by disaggregation or 

aggregation, following by a standard analysis method like an ordinary multiple 

regression. These kinds of analyses imply statistical and conceptual problems. 

When we aggregate the micro-level data to the macro-level (for example, we run 

a regression of the cluster mean of the dependent variables on the cluster means 

of the covariates) the result is that different data values for many level-1 units are 

combined into fewer values for level-2 units. As a result, information is lost and 

statistical analyses loose power. Another statistical problem is that the reliability 

of an aggregate variable depends, among others, on the number of micro-level 

units on which is calculated, and thus will be larger for the larger clusters than 

for the smaller ones. Aggregating analysis can lead also to conceptual errors. The 

first potential error is the “shift of meaning problem”: a variable that is 

aggregated to the macro level refers properly to the macro-units, not to the 

micro-units. These variables cannot be used to investigate micro-level 

relationships. A second potential error is the well known “ecological fallacy” 

(Robinson, 1950). It consists of failing to recognize that a relationship found 

between variables at macro level cannot be used to draw conclusions at the micro 

level. Another problem with aggregated data is that we cannot study potentially 

interesting cross-level interaction effects between a macro and a micro variable.  

 On the other hand, if data are disaggregated and variables measured at the 

macro level are present, we have as a consequence what Snijders and Bosker 

(1999) call the “miraculous multiplication of the number of units”. This refers to 

the fact that the correct sample size for the cluster level variables is the number 

of clusters and not the total number of units in the sample, which results if we 

use a mere disaggregated analysis. The implication is, of course, that 

significance tests reject the null hypothesis more often than the nominal alpha 

level indicates. In other words, we can find more spurious significant effect for 

the macro level variables. Another important statistical problem is in action even 

if no macro variable is included into the analysis. We have to note, in fact, that 
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units belonging to the same cluster are likely to be more similar than units 

belonging to different clusters. This is in line with the presumption that clusters 

have, in a broad sense, an effect on micro units. For example, in social contexts, 

people living in the same community share the same socio-economic, cultural 

and institutional environment. Therefore, there is dependency among units 

within communities; this violates the independence hypothesis made in standard 

statistical models. As a result, standard errors will be biased. In particular, they 

are often underestimated leading, again, to possible spurious effects.  

Finally, a potential error similar to the ecological fallacy can be made. 

This is termed “atomistic fallacy” and consists of drawing conclusions based on 

macro level relationship from associations found on micro level variables.  

 Some of the previous issues can be addressed by using care or correction 

methods. For example, the violation of the independence assumption can be 

addressed by using certain methods for correcting the standard errors, such as the 

Huber-White robust standard errors estimation (Wooldridge, 2002).  

However, when the multilevel structure is not a mere nuisance factor but 

a feature of the population of research interest, we need adequate modeling 

techniques, such as multilevel models. These models allow to bring together, 

simultaneously, variables at different levels of a hierarchical structure in the 

same model. Multilevel analysis allows the simultaneous examination of the 

effects of macro level and micro level variables on micro level outcomes while 

accounting for the non-independence of observations within groups. Multilevel 

analysis also allows the examination of both between group and within group 

variability as well as how group level and individual level variables are related to 

variability at both levels.  

One of the main attractions of multilevel models, as we will see in the 

next section, is that they allow regression coefficients to vary by clusters. This is 

obtained by modeling these coefficients as random variables, whose variances 

has to be estimated, indicating to what extent the relationship varies by groups. 

An alternative method is given by fixed effects models where the coefficients for 

each group are treated as fixed unknown parameters to be estimated. Fixed 

effects models have several disadvantages. First of all, when groups are many, 
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fixed effect models are not parsimonious, because they involve the estimation of 

one parameter for each cluster (minus one). By using such models, it becomes 

unfeasible to include group level variables, because they would be redundant 

given the fixed group effect. From a conceptual point of view, we can say that 

fixed effects already explain all the between-group variability and, therefore, 

there are no residual differences between the groups that can be explained by 

group level variables. In other words, the between first level unit model is 

saturated. 

 Another crucial point against fixed effects models is that they are 

conceptually meaningless, if the clusters we have in the data are a sample from a 

larger population of clusters and researcher whishes to draw conclusions 

pertaining this population. In fixed effects models groups are regarded as unique 

entities. In multilevel analyses, groups or contexts are not treated as unrelated 

but are conceived as coming from a larger population of groups about which 

inferences want to be made. The use of fixed effect models is, on the contrary, 

correct if we have surveyed data on all the macro level units or we are only 

interested in the clusters we observed. However, multilevel models treating 

group-varying coefficients as random variables have the disadvantage of 

imposing that they follow a probability distribution, usually assumed normal. 

Normality assumption is not dangerous if the number of clusters is not small 

(Maas and Hox, 2004). 

From the previous discussion we can get many motivations for using a 

multilevel approach in our work. In the context of our application, that is the 

study of the causal impact of fertility on poverty using data from the VLSMS, we 

clearly have a multilevel data structure: household are clustered into 

communities and communities are grouped into regions. Another level of 

clustering concerns the waves: we have two measures nested within each 

household. The multilevel dimension of the data we use was highlighted in 

section 1.5 where we have described the VLSMS. The fundamental structure we 

handle consists of two levels: households within communities. The clusters 

(communities) we observe are a sample drawn from the population of 

Vietnamese communities (this is literally true because of the two-stages 
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sampling design of the VLSMS which at the first stage extract a sample of 

communities). However, we are not specifically interested in the communities 

surveyed but we wish to do inference about the whole population of 

communities and hence a random effects approach has to be preferred to a fixed 

effects one. Moreover, we have important community level variables that we 

want to include in our analyses.   

Also conceptual reasons motivate our choice. Household residing in the 

same community share the same infrastructures (roads, markets, hospitals, etc.), 

the same institutions, and the same cultural and physical environment. In so far, 

there is within-community dependency that we want to keep into account to 

avoid problems that we discussed before.  

Communities can differ in the overall level of poverty and fertility 

(justifying, as we will see better in the next section, the inclusion of a random 

intercept). More interestingly, the main relationship of interest in our work, that 

is the effect of fertility on poverty, could vary by community (requiring the 

inclusion of a random slope). In other words, it could there be some community 

“effect”, in a broad sense, which can lead the impact of childbearing events on 

poverty to be different according to the place the household resides.  

 

 

3.2 Why keeping into account the multilevel dimension in the 

estimation of causal effects? 
 

Let suppose to have a two-level population. For example, in our case we have 

households (first level units) grouped in communities (second level units or 

clusters). If we are interested in the estimation of causal effects in such a 

population it could be important, from a methodological point of view, and 

interesting, from a substantive point of view, to keep explicitly into account this 

multilevel data structure. The motivations can be characterized, in general terms, 

as follows:  

 

1. Cluster-heterogeneity of the treatment effect, 
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2. The multilevel nature of the selection process, 

3. Potential violation of the SUTVA.  

 

The first aspect refers to the fact that the effect of the treatment can vary 

substantially according to the cluster to which units belong. In the context of our 

application the causal effect of childbearing events on poverty can vary 

considerably according to the community where households live. This can be 

due to interactions among childbearing events and certain community 

characteristics (observed or unobserved).  

The second issue is that the selection process itself can be multilevel, in 

the sense that it depends on (observed and/or unobserved) characteristics of 

clusters that could impact on the cluster average probability of being treated 

and/or on the effect that same covariates have on this probability. The statistical 

implication is that controlling (or balancing in the context of matching methods) 

only for the observed covariates could not be sufficient. 

The third issue relates to the potential invalidity of the SUTVA in a 

multilevel setting. The reasons that make us suspect about the validity this 

assumption, in a multilevel setting, can be several and depend on the specific 

studied context and phenomenon. In general, we can suspect that sharing of and 

competition for resources generates interference among units belonging to the 

same cluster, while the interference among units in different clusters is absent or 

negligible.   

These three aspects are often confused or at least not distinguished in the 

literature but from a conceptual point of view it is important to do so. Each of 

these implies, in fact, different methodological challenges and specific 

substantive points of interest. These aspects will be minutely discussed and 

developed in section 3.5. However, we found useful introducing them at this 

point in order to keep in mind in the following discussion what are the main 

motivations that push us to explicitly consider the multilevel dimension in a 

causal inference study. In the next section, we introduce the traditional multilevel 

model without explicitly consider any issue about causal inference. Then, in 

section 3.4 we will ask if multilevel models are suitable to answer the specific 
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methodological and substantive concerns that causal inference poses in a 

multilevel setting. We will show that the three issues we have introduced in this 

section are not fully faced by multilevel models. In section 3.5 we propose some 

combinations of multilevel models and matching methods to better analyse 

causal effects in a multilevel setting. 

 

 

3.3 The traditional multilevel linear model 
 

In this section we present a brief overview of the linear multilevel modelling 

building on the affirmed literature existing on the subject (for example 

Goldstein, 1995; Hox, 1995; Snijders and Bosker, 1999; Skrondal, and Rabe-

Hesketh, 2004). This is also helpful to introduce the notation we will use in the 

following.  

Multilevel models are used to appropriately analyse clustered data 

structures we introduced in the section 3.1. Here, to simplify the discussion, we 

consider a two-levels data structure in which N micro units at the first level, 

indexed by i (i = 1, 2, ... , nj), are nested in J macro units at the second level, 

indexed by j (j = 1, 2, ..., J). We allow for an unbalanced data structure. That is, 

the number of elementary units belonging to a cluster (nj) is not fixed but change 

with the cluster. 

In order to see the benefits of using a multilevel model, let start 

specifying a standard linear regression model considering for simplicity one 

single covariate: 

                             

              (3.1) 

 

ijijij XY εββ ++= 10

 One of the assumptions underlying the regression model in (3.1) is the 

independence among the observations. The errors εij are assumed identically and 

independently distributed (iid). In particular, they are assumed to be normal with 

zero mean and a standard deviation equal for each observation 

(omoschedasticity). But as we discussed in the previous section, if observations 

86 
 



 
 

are clustered the independence condition is violated. Multilevel models face this 

within-cluster dependency by decomposing the error term into two additive 

components, each defined at one of the two levels:  

 

jijij ue 0  +=ε  

 

where eij represents level-1 residual terms and differs between units and clusters, 

u0j represents the level-2 residual and varies between clusters but is the same for 

all the units belonging to the same cluster. The second level error, models the 

combined effect of omitted second level variables, in other words, the 

unobserved heterogeneity at that level. It can be viewed as a latent variable 

shared by all units belonging to the same cluster inducing positive intra-class 

correlation. The reason motivating the subscript 0 for u0j will became clear soon. 

Our regression model now looks like: 

 

( )jijijij ueXY 010 +++= ββ                    (3.2) 

 

that could be rearranged as: 

 

( ) ijijjij eXuY +++= 100 ββ                              (3.3) 

 

that makes clear that adding a cluster specific random error allow us to have a 

random intercept. In model (3.3) β0 represents the average intercept, while u0j 

represents the deviation of cluster j’s intercept from the mean intercept. It is 

important to note that, the cluster effect u0j is not a parameter but the realisation 

of random variable usually assumed normally distributed with zero mean and 

variance  which is estimated together with the variance of the first level error 

term, which we indicate with 

00Ψ

θ . The fundamental assumptions are resumed as 

follows: 

 

( ),θNXe ijij 0~|  
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( ) i'ieeCov jiij ≠=    ,0, '  

                                                 ( )000 0~| Ψ,NXu ijj                                         (3.4) 

( ) 0, '0 =jij euCov  

( ) j'jjj uuCov ≠=    ,0, '00  

 

The first and third assumptions imply, respectively, that the error terms at 

the first and second level are uncorrelated with the covariate. The second 

assumption corresponds to the usual hypothesis of independence among 

individual error terms while the fifth implies that clusters are independent10. The 

fourth imposes no correlation between the errors terms defined at the different 

levels. 

 The variance of the error component is now decomposed into two 

additive components: the between cluster variance ( ) and the within cluster 

variance (

00Ψ

θ ) 

 

( ) ( ) ( ) 000varvarvar Ψθ  u   e  ε jijij +=+=  

 

 A summary measure of the importance of clusters is the proportion of the 

between cluster variance out of the total variance: 

 

 

θ
τ

+
=

00

00

Ψ
Ψ

(3.5) 

 

which is called the variance partition coefficient (VPC). In this simple case of a 

two-level random intercept model, the VPC is equal to the intra-class 

correlation coefficient (ICC) which is usually found with the use of the symbol 

ρ. This coefficient measures the correlation between two first level units 

belonging to the same cluster and can be viewed as an indicator of the 

“closeness” of observations belonging to the same cluster relative to the 

                                                   
10 Note that having assumed normality, uncorrelation implies independence. 
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“closeness” of observations belonging to different clusters. The higher is ρ the 

most important is the clusterisation. It is important to note that in models 

including covariates as (3.3), ρ is better termed residual intra-class correlation 

coefficient because it represents the correlation between the Y-values of two 

randomly drawn units belonging to the same cluster after controlling for 

covariates11. 

In the model (3.3) we have parallel regression lines for the different 

clusters. Hence, the underlying hypothesis is that in all clusters the effect of the 

covariate X on the outcome Y is the same. But this may not be realistic in some 

applications and moreover it would be an interesting to study the interaction 

between cluster and the X effect. In other words researchers could be interested 

in testing if the influence of X on Y changes by cluster. Figure 3.1 gives a visual 

comparison of three ways of modelling the relationship between X and Y: a 

simple regression model with a unique (fixed) intercept and a unique (fixed) 

slope supposed valid for all units in all clusters; a random intercept model with a 

unique (fixed) slope supposed valid for all clusters while the intercept is allowed 

to vary around the average represented by a bold line; a random coefficients 

model, in general the most realistic, that allows both the intercept and the slope 

to vary cluster by cluster.   

It is important to stress the fact that with a multilevel model we do not 

estimate separate regressions in each cluster. Multilevel models allow us to 

estimate cluster-specific coefficient regressions but at the same time they allow 

us to recognise the existence of common factors that make clusters linked each 

other and make inadequate an analysis that consider clusters independently. In 

multilevel models, each cluster has each proper regression but these are linked to 

each other by the fact that they come from a common super-distribution. This 

amount to assume that the groups we have in the data are a sample of a 

population of groups.  

 

 
                                                   
11 Intra-class correlation coefficients can be defined also for more complicated data structures 
involving more than two levels. However, in those cases we can define several types of intra-
class correlation coefficients.  
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Figure 3.1 – A graphical comparison between 3 three ways of modelling a 
relationship.  
 

 
 

 

The approach that estimates separate regressions for each cluster, 

furthermore, suffers of another drawback: if in a clusters there are few 

observations then the sample size for the estimation of the regression in that 

cluster is small. Multilevel models, instead, can allow data structures containing 

even one single unit in some clusters.  

In multilevel models the estimates for cluster with small size are 

consolidated by taking information by the other groups, through the mechanism 

known as “borrowing strength” (Kreft and De Leeuw, 1998). Let see from an 

algebraic point of view how our model changes when we want to allow for an 

interaction between the effect of the covariate Xij and the cluster effect. This is 

obtained by including in the model (3.3) an interaction between Xij and a latent 

variable at the cluster level: 

 
( )ijjjijijij XuueXY  1010 ++++= ββ                                (3.6a) 

( ) ( ) ijijjj eXuu ++++=  1100 ββ                          (3.6b) 

 

 In the first equation (3.6a), it is emphasized how the error component has 

became more complex and in the rearranged second equation (3.6b), it is made 

evident that adding the interaction between the random variable u1j and X is 

equivalent to specify a random slope for this covariate. Likewise u0j also u1j is 

assumed to be a random normal variable with zero mean and variance to be 11Ψ
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estimated. The new model is based on the previous assumptions (3.4) plus the 

following 

 

( )qqijj ,NXu Ψ0~|1  

( ) 0, '1 =jij euCov  (3.7) 

 

 

( ) j'jjj uuCov ≠=    ,0, '11

The variance-covariance structure at the second level could be specified 

in several ways. It is usual to allow for correlated random effects defined at the 

same level. Hence, the variance-covariance matrix for the random effects at the 

second level could be written as 

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
=≡

11

0100
10 ,

Ψ
ΨΨ

uuCOV jjΨ  

 

where Ψ00 and Ψ11 represent the variances of the two random variables, 

respectively u0j and u1j, and Ψ01 represents the covariance between them. 

 A very useful way to represent multilevel models is the so-called multi-

stage specification. This consists in specifying a model for the first level (micro 

model) and separate equations for each random effect at higher levels (macro 

models):  

 

jj

jj

ijijjjij

u

u

eXY

111

000

10

 

 

+=

+=

++=

ββ

ββ

ββ

 

 

 If we replace the two second level models into the first level model we 

obtain the so-called reduced form, which in this case looks exactly as the 

equation (3.6b). 

 An interesting feature of multilevel models is that we can “explain” a 

random effect at higher levels by including higher level variables. In our case, 
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we can regress the random intercept and the random slope on a cluster covariate 

Cj: 

 

jjj

jjj

ijijjjij

uC

uC

eXY

11_10_11

01_00_00

10

++=

++=

++=

βββ

βββ

ββ

 

 

 The reduced form will be: 

 

( ) ( )ijjjijjijjijij XuueCXCXY 101_11_00_10_0 ++++++= ββββ     (3.8) 

 

 It is easy to see that adding a cluster level covariate in the random 

intercept model is equivalent to include this variable as covariate in the reduced 

form model. It is also evident that adding a covariate in the random slope model 

implies to consider a cross level interaction (XijCj). In this model the only further 

assumptions needed concern the independence of Cj and the error terms likewise 

stated for Xij in (3.4) and (3.7). 

It is important to see that now the residual is heteroskedastic since its 

variance depend on the values of the covariate X 

 

 

  (3.9)         

 

( ) ( ) ( ) ( ) ( )

ijij

ijjjijjjijij

XΨΨXΨθ
            

X,uuCovXuue ξ

0100
2

00

1010

2             

2varvarvarvar

+++=

+++=

From equation (3.9) we can see that the total residual variance is no 

longer constant, but is a quadratic function of X. As a consequence the VPC is a 

function of Xij

 

θ
τ

+++

++
=

ij000ij00

ij000ij00

XΨΨXΨ
XΨΨXΨ

1
2

1
2

2 
2                       (3.10) 
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Importantly, in this case the VPC is not equal to the ICC (Goldstein et al, 

2002). For random slopes models, it is usual to calculate the VPC as a measure 

of the importance of clustering for several values of the covariate Xij It could be 

of specific interest to see how the importance of clustering varies with the X-

values.  

This model could be generalised with several covariates at the first level, 

more than two levels and with several covariates at each level, which could be 

also not necessarily the same. It is usual to insert a random intercept at each 

level, while it is unusual to consider all the possible random slopes and cross 

level interactions even if this is theoretically possible. The number of parameters 

to be estimated raise fast with the number of levels, covariates and random 

effects included and also the interpretation of parameters could became difficult 

(Hox, 1995; p. 19). As Di Prete and Forristal (1994) note, we must be aware that 

our imagination “can easily outrun the capacity of the data, the computer, and 

current optimization techniques to provide robust estimates”. 

 Researchers that use a multilevel model will include those random slopes 

and those cross level interactions that seem to be important to insert from a 

theoretical point of view. We can also test if the inclusion of a random 

coefficient improves the model fit or not.  To test if a model including a random 

intercept, or a random slope, has to be preferred to a model without it we can 

employ, when a maximum likelihood estimator is used, a deviance test, or 

likelihood ratio test (LR test). We have to note, however, that in this kind of 

situations we are, basically, testing if the variance of the random effect, to be 

included or not, is significantly different from zero. Since variances are always 

positive, the null hypothesis falls on the boundary of the parameter space. As a 

consequence, the limiting distribution of the LR test statistic is not the usual chi-

square with 1 degree of freedom, but is instead a 50:50 mixture of such a 

distribution and a point mass at 0 (Self and Liang, 1987). To keep this 

complication into account, Snijders and Bosker (1999) suggest halving the p-

value we get using a standard LR test. 

 From the discussion we made in this section we have seen that multilevel 

models are very flexible tools that allow exploiting the richness of the 
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information hidden in a multilevel data structure. We have not posed yet any 

focus on the estimation of causal effects. In section 3.3.2 we discuss the issue of 

endogeneity in multilevel linear regression models which is a potential obstacle 

to causal inference. In the next section, instead, we briefly analyse the role of 

latent variables in multilevel models and how assign values to the random 

intercepts and slopes for individual units. 

 

 

3.3.1 The nature of the latent variables used in multilevel models and how 

we can obtain their predictions 

Latent variables are, in broad terms, unit characteristics which are not directly 

observed, but are rather inferred from other variables that are surveyed and 

directly measured. The use of latent variables is common in many fields, such 

those of social sciences, economics, psychometrics. Skrondal and Rabe-Hesket 

(2004) note that latent variables are used to represent several phenomena, 

including true variables measured with error, hypothetical construct, missing 

data, unobserved heterogeneity.  

It is interesting to note that latent variables can be used also to model 

particular missing data: the counterfactuals. We have already said, in chapter 2, 

that causal inference can be seen as a missing data problem. In this context, 

latent variables represent particular missing values, that is, values that would 

have been realized under counterfactual circumstances, for instance if a treated 

unit was exposed to control. A particular area where latent variable modelling 

has been increasingly adopted for causal inference is represented by randomised 

experiments with noncompliance. For example, Muthén (2002) propose to use 

latent class models for the estimation of the Complier Average Causal Effect 

(CACE). We have discussed IV methods for the estimation of CACE, we 

referred to as Local Average Treatment Effect, in chapter 2. 

In the context of multilevel models, latent variables are usually referred 

to as random effects, and they represent the effect of unobserved covariates not 

included in the model. It is important to note that unobserved heterogeneity is 

not a hypothetical construct since it merely represents the combined effect of all 
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unobserved variables at a given level of the structure. We not give to latent 

variables in multilevel models any meaning beyond this.  

After a multilevel model has been estimated, it is often of interest to 

assign values to the random effects. The assignment of values to latent variables 

is referred to as latent scoring (for continuous latent variables) or as 

classification (for discrete latent variables). Sometimes, scoring and 

classification are the main aims of latent variable modelling. Examples include 

disease mapping, small area estimation and assessment of institutional 

performance. The last approach has been employed to rank organisations (for 

example schools) as more or less effective according to their random effects 

scores (see e.g. Aitkin and Longford, 1986). We adopt this approach in chapter 4 

in order to compare communities’ effectiveness in favouring households to 

escape poverty. Another important statistical application of latent scoring is in 

model diagnostics to study the assumptions underlying the model.  

There are two main statistical approaches to assign values to the random 

effects. To formalise this ideas, let us refer to the simple random intercept model 

in (3.2). In this model we have only one random effect, in particular the random 

intercept uoj. The first approach is a Maximum Likelihood (ML) procedure, 

where parameter estimates for the fixed part are assumed as if they were the true 

parameter values. The ML estimate for uoj are simply obtained as the values that 

maximize the likelihood of the observed responses Yij  

 

( )ojjnjjnj uXXYYLikelihood
jj
, , ,.. | , ,..  11 .  

 

The second approach is based on Empirical Bayes (EB) predictions. In 

contrast to the ML approach, EB uses information about the prior distribution of 

the random effects, in addition to the observed responses. In this case the random 

effects are treated as proper random variables hence the term prediction is used 

in contraposition to ML estimates.  

The prior distribution of uoj in model (3.2) is just the normal distribution 

with zero mean and estimated variance plugged in. It represents what we know 
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about uoj before seeing the data. Once we have observed the responses, the 

posterior of uoj update our knowledge regarding uoj after seeing the data for 

cluster j, combining the prior and the likelihood. The EB prediction of uoj is just 

the mean of the posterior distribution 

 

( )
( ),, , ,.. | , ,..     )rior(

 , ,.. , , ,.. | 

11

11

ojjnjjnjoj

jnjjnjoj

uXXYYLikelihooduP

XXYYuPosterior

jj

jj

×∝
 

  

where  means proportional to. In a linear model with normal error terms, the 

posterior is normal and then mean is thus equal to the mode. Since the posterior 

distribution is a compromise between the prior distribution and the likelihood the 

EB lies between the ML estimates and the mean of the prior. In linear random 

intercept model the following simple formula relates the EB prediction to ML 

estimates: 

∝

ML
ojj

EB
oj uRu ˆ ˆˆ =  

 

where                              
j

j n
R

/ˆˆ
ˆˆ

00

00

θψ
ψ
+

=                               . 

 

jR̂  is called the shrinkage factor because it assume values between 0 and 1, so 

that the EB prediction is shrunken toward 0, that is, the mean of the prior. 

 

 

3.3.2 Second level endogeneity in the multilevel linear model 

Let suppose that our interest lies in the estimation of β1 in the model (3.2). For 

example, the covariate Xij in that model could represent a treatment of interest. In 

the previous section we stated that in model (3.2) we assume (see assumptions 

(3.4)) that E(u0j|Xij) = 0 and that E(eij|Xij) = 0 which imply, respectively, that 

Cov(u0j,Xij) = 0 and that Cov(eij,Xij) = 0. In order to consistently estimate β1 we 

require that Xij is uncorrelated with both the error terms eij and u0j. If this 
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assumption does not hold we speak about endogeneity likewise in the traditional 

regression model. 

In the two levels models we distinguish between two kinds of 

endogeneity. If a covariate correlates with the error term at the first level we 

speak about first level endogeneity. On the other side if X correlates with the 

random effects u0 we speak about second level endogeneity. This distinction is 

not a scholar one but it is important since the two forms of endogeneity can be 

faced in very different ways. In fact the independence assumption concerning the 

random effects is not as stringent as it may appear. In fact, as noted for example 

by Skrondal and Rabe-Hesketh (2004) if the random effects are correlated with a 

first level variable, such correlation is removed as soon as the cluster mean of 

such variable is introduced as a further covariate.  On the contrary, first level 

endogeneity, likewise the endogeneity problem in the standard regression model, 

cannot be solved in a similar easy way but requires the use of specific methods 

like instrumental variables, simultaneous equation models or others as we 

discussed in Chapter 212.  

Here we focus on the problem of the dependency between random effects 

and a first level covariate. This topic has been investigated in the recent literature 

(Snijders and Bosker, 1999; Rice et al., 2002;Ebbes et al., 2004; Fielding, 2004; 

Wooldridge, 2002; Grilli and Rampichini, 2006; Snijders and Berkhof, 2007).   

As we mentioned in section 2.3 endogeneity in a regression model often 

arise due to the omission of relevant variables. Suppose that in our two level 

linear model (3.2) a covariate that is associated both with the outcome and with 

the regressor X is excluded then it will be included in the error term which is thus 

correlated with X implying inconsistent estimation of β1. The omission of a 

relevant level-2 covariate will imply, in particular, the second level endogeneity 

problem.  Let explore this issue in more detail. Let suppose that we specify the 

model 

 

                                                   
12 Some authors have implemented specific IV estimators for multilevel models. For example, 
Spencer and Fielding (2000) extend the Iterative Generalized Least Square estimation procedure 
to cases where endogeneity is suspected and instrumental variables are available.  
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                         (3.11) 

 

*
010  

jijijij ueXY +++= ββ

whereas the correct model is 

 

                      (3.12) jijjijij ueCXY 01_010   ++++= βββ

 

 In the model (3.11) we omitted the variable C, a cluster-level variable 

implying that the error terms  can be written as *
0u

 

  (3.13) jjj uCu 01_0
*
0 += β

 

If the omitted variable C is correlated with X then the error term  will 

be correlated with X in the (3.11) yielding to inconsistent estimate of the effect of 

interest, β

*
0u

1. In econometrics, and in particular in the setting of panel data with 

unobservable individual heterogeneity, starting from Mundlak (1978), it is usual 

to model  as a linear function of the cluster mean of X)|( *
0 ijj XuE ij, that we 

indicate with jX . Viewed in another way, we can express the dependency 

between C and X with the following regression 

 

                        (3.14) jjj XC ωαα ++= 10

 

We can note that the regression of Cj on jX instead that on Xij is justified 

by the fact that Xij = )( jij XX − + jX and the regression coefficient of Cj on 

)( jij XX −  is 0, since Cj varies only between clusters while )( jij XX − varies 

only within clusters. The implication of this reasoning is that including in the 

model (3.11) the cluster mean jX  as a separate covariate will eliminate the 

dependency between the covariate X and the error term. The model that include 

both the covariate Xij and its cluster mean jX , which can be written as 
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jijjijij ueXXY 01_010  ++++= βββ                 (3.15)  

 

has received specific interest in the literature because jX can represent an 

important contextual variable and its inclusion allow to separate the so-called 

between and within clusters effects of the covariate X, as was proposed already 

by Davis et al. (1961). We find useful to deepen this topic.  

 Distinguishing within and between-group relations is very important in 

many applied work. In fact, the relationship between a covariate X and a 

dependent variable Y within clusters can be completely different from the 

relationship we can observe between clusters because the processes at work in 

the two dimensions can be very different. We already mentioned this issue when 

we discussed in section 3.1 ecological and atomistic fallacy problems. In the 

model (3.3) we keep into account the multilevel data structure but the parameter 

β1 mixes up the between and the within effects of Xij on Yij. In order to obtain 

purely between-clusters effects of the explanatory variable we have to average in 

(3.3) the response and the covariate for each second level unit  j over first level 

units i and perform the regression using the resulting cluster means 

  

jjj
B

j ueXY 00 +++= ββ                      (3.16) 

 

where βB indicates the between regression coefficient. If, on the other hand, we 

want purely within-group effects we could subtract the above between-group 

regression (3.16) from the original model (3.3) to obtain the within model  

 
( ) jijjij

W
jij eeXXYY −+−=− β    (3.17) 

 

where βW indicates the within regression coefficient, the regression coefficient 

within each group, here assumed to be the same in each group. The model (3.17) 

is equivalent to the fixed effect model whose characteristics we discussed in 

section 3.1, where we stressed the differences between this model and the 

random effect model. The fixed effect model can be obtained by replacing the 
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random intercept u0j for each cluster in the original model (3.3) by a fixed 

intercept αj. As we already mentioned, this model hamper the inclusion of 

contextual variables because all group-specific effects are accommodated by αj, 

leaving only within-group effects to be explained by covariates. On the other 

hand, we have to note that this model allows αj to be arbitrarily correlated with 

covariates, or said in other words it permits the existence of omitted group-level 

variables that can be correlated with the observed covariates.   

 If we sum models (3.16) and (3.17) we get the following multilevel 

model which allows to study between and within relationships at the same time 

 
( ) jijjij

W
j

B
ij ueXXXY 00 ++−++= βββ                    (3.18) 

 

which can be re-written as 

 
( ) jijij

W
j

WB
ij ueXXY 00 +++−+= ββββ      (3.19) 

 

 Model (3.19) is just a re-parameterization of model (3.18) but some 

differences exist between these two models. Model (3.18) could be preferred 

because the covariates jX and jij XX − are uncorrelated. Another difference 

between the two models is conceptual. The use of group-mean centred covariate, 

likewise in model (3.18), should be motivated, as noted by Snijders and Bosker 

(1999), “by a clear theory (or an empirical clue) that not in the first place the 

absolute score Xij but rather the relative score jij XX −  is related to Yij”. These 

considerations are really important only if we consider random slope models 

because in this case the model including Xij and jX and the model including 

jij XX − and jX are not equivalent (Kreft et al, 1995).  

Coming back to the second level endogeneity problem, we note that 

model (3.19) is exactly the same of model (3.15). It is sufficient to recognize that 

in model (3.15) the coefficient of X is actually the difference between βB and βW, 

while the coefficient of the cluster mean, jX , is equal to the between coefficient, 
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βW. Only if the between and within relationships are the same, that is βB = βW, 

then model (3.19) collapse to model (3.3). Hence, we can interpret the second 

level endogeneity problem as due to model misspecification driven by the 

erroneous assumption that the between and within regression coefficients are 

equals. This assumption underlies the basic model (3.3) and, as we have seen, 

can be avoided simply by including the cluster mean jX  as an additional 

covariate.  

In order to test if second level endogeneity exists in a model like (3.3), 

that is if the second level random effect u0j correlates with Xij, we can use the 

Hausman specification test (Hausman, 1978), which offers a general procedure 

to test potential regression model misspecifications. The Hausman test can be 

used to compare two estimators which are both consistent under the null 

hypothesis we are testing, in our case the zero correlation between u0j and Xij, 

while only one of them is still consistent under the alternative hypothesis. 

Following the general procedure we can use a fixed effects estimator which is 

consistent under both hypotheses and a random effects estimator which is 

consistent only under the null. The Hausman test has been criticised (Skrondal 

and Rabe-Hesketh, 2004) because the rejection of the null hypothesis could be 

due to model misspecifications different from that we are testing. 

A simpler solution in multilevel models consist to test if the within 

regression coefficient is equal to the between regression coefficient, that could 

be easily implemented as a Wald test on the coefficient of jX in model (3.19), as 

suggested by Mundlack (1978). Baltagi (2001) showed that this test is 

numerically equivalent to the Hausman test. 

 In this section we considered a simple case of a random intercept 

multilevel model with a single regressor. However, the resolution of the second 

level endogeneity problem through the inclusion of cluster-mean covariates 

applies, mutatis mutandis, also in more complicated models, with many 

endogenous covariates and random slopes (Snijders and Berkhof, 2007).  

 A complication we have not taken into account up to now, however, is 

related to the fact that the cluster-mean jX  is a sample mean used as a 
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measurement of a population mean and hence the model including jX  is 

affected by measurement errors. This issue has been studied by Grilli and 

Rampichini (2006) who show that the consequences of measurement errors are 

that neither model (3.18) and (3.19) consistently estimate βB and the variance at 

the second level. However, they suggest simple corrections that overcome the 

problem. 

 In this section we have not posed any specific attention on the estimation 

of causal effects but our interest was in presenting the main features of the linear 

multilevel models. Many authors have found these models very useful for 

detecting causal effects in observational and randomized. The main attraction of 

these models is that they allow, as we have seen, to keep into account 

unobserved cluster effects that impact on the phenomenon under study. In the 

next section we analyse multilevel linear models under the potential outcome 

framework in order to see how and if they face the issues introduced in section 

3.2.   

 

 

3.4 Causal inference with traditional multilevel models studied 

under the potential outcome framework 
 

In the previous section we have seen the principal benefits of using multilevel 

models. Since our goal in this thesis is to estimate a causal effect, and 

specifically the causal effect of childbearing events on consumption growth, we 

find useful to stress the advantages of using multilevel models instead traditional 

regressions from the prospective of recovering causal effects. Therefore, here we 

briefly adapt the potential outcome framework meticulously presented in section 

2.1 to a multilevel setting.  

 

 

 

 

102 
 



 
 

3.4.1 Adapting the basic notation and definitions 

Suppose the population under study is a two-level population consisting of N 

micro units at the first level, indexed by i (i = 1, 2, ... , nj) nested in J macro units 

at the second level, indexed by j (j = 1, 2, ... , J). We are interested in the causal 

effect of a binary variable, D, on a continuous outcome, Y13. Under SUTVA, 

each unit, ij, has two potential outcomes depending only on its assignment to the 

treatment levels: Y1ij if Dij = 1 and Y0ij if Dij = 0. As we have seen in section 2.1, 

SUTVA implies that the potential outcomes for any unit do not vary with the 

treatments assigned to any other unit. In particular, in a multilevel setting, 

SUTVA implies that potential outcomes for unit ij are not influenced by 

treatments received by units belonging to other clusters and even belonging to 

the same cluster j. We discuss the potential violation of SUTVA and some 

weaker assumptions we can formulate in a multilevel setting in the following 

section 3.5. Traditional multilevel models implicitly assume SUTVA. Hence, in 

the remaining of this section we maintain this assumption.  

Similarly to what we did in section 2.1.2, we define the causal parameters 

ATE, ATT and ATU: 

 

 ATE = E(Yij1-Yij0) (3.20a) 

 ATT = E(Yij1-Yij0 | Dij = 1) (3.20b) 

 ATU = E(Yij1-Yij0 | Dij = 0) (3.20c) 

 

where the expectations are taken, respectively, on the whole population, on the 

population of treated and on the population of untreated without keeping into 

account that units are nested in clusters.  

In multilevel models it is usual to employ variables measured at each 

level of the hierarchy as covariates. We indicate with X a covariate measured at 

the first level and with C those measured at the second level (contextual 

variables). The first level covariates are included in the set X, while the 

contextual covariates are included in the set C. Multilevel models can also 
                                                   
13 The hypotheses that the hierarchy is two-level, treatment is binary and outcome is continuous 
are maintained for simplicity in all the discussion but can be removed to allow for a more general 
context.   
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include, as aforementioned, cluster mean averages of variable measured at the 

first level, both to control for second level endogeneity and to study potentially 

interesting compositional effects.  

 

 

3.4.2 Studying some multilevel models 

We can derive a simple two-level random intercept model in the following way. 

Likewise we made in section 2.3.1 let’s specify two multilevel models for each 

potential outcome: 
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jijjijij
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                        (3.21) 

 

Then the model for the observed outcome is 
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(3.22)                                                             
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In the previous model is assumed that the effect of the treatment is constant, that 

is it does not vary between units. In this case ATE = ATT. Importantly, the 

fundamental identifying hypothesis underlying the previous model is a modified 

version of unconfoundedness: 

 

 Y1, Y0 ⊥ D | X, C, u0 (3.23) 

 

The previous assumption, that we can call “multilevel 

unconfoundedness” assumes that if we simply condition on observed covariates 

X and C some dependency among potential outcome still remains and it is 

caused by unobserved factors at the cluster levels, which we represent by a latent 

variable u0
14. Hence, controlling also for u0 this dependency is cancelled out. 

                                                   
14 We have to note that the latent variables we use in multilevel models have a particular nature, 
as happens for all latent variables. They are not simply unobserved variables. They are assumed 
to be zero mean variables, uncorrelated with covariates and, in a sense, include the effect of the 
unobserved variables. In fact, we have not a coefficient for those variables in the model.  
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This is a weaker assumption with respect to the unconfoundedness assumption 

stated in section 2.3 (see assumption 2.31).  

As we said in the section 2.3.1 we can simply overcome the constant 

treatment effect assumption allowing the treatment effect to change with respect 

to all covariates obtaining a Fully Interacted Linear Model. This is obtained 

allowing the coefficient of covariates to be different in the two models for 

potential outcomes: 
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(3.25)                                       
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where the matrixes  IX and IC includes, respectively, all the interactions among X 

and D and among C and D. The vectors Φ and φ collect, respectively, the 

coefficients of variables included in IX and IC. They coincide with the difference 

between the correspondent vectors of coefficients in the model for the two 

potential outcomes (3.24): Φ  = β1 - β and φ = θ1 - θ. In this case ATE and ATT 

are, in general, different. We also note that in this case the parameter ∆ does not 

represent the ATE as in model (3.22) but it represents the effect of D when the 

variables interacting with it are all equal to zero. The ATE and ATT in this 

model are, respectively, given by 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ∆+′−+′−=

∆+′−+′−=

== CEXEATT

CEXEATE

TT 1
1

1
1

11

θθββ

θθββ  

 

 

However, the inclusion of all the interactions in a multilevel model is 

uncommon. On the contrary, the usual way used in multilevel modeling to allow 

the effect of a variable to vary is to include a random slope. In our context this 
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implies that the effect of the treatment differs by second-level clusters. We can 

derive a random slope model in the following way 
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Hence, we can obtain a random slope model by allowing the error terms in the 

two models to have a different structure. Each unit ij is subject to cluster effects 

depending on the cluster j to which it belongs and represented by latent variable 

shared by each unit in the cluster. However, two latent variables at the cluster 

level are in action: one, u0, influences both potential outcomes and hence 

influences the baseline level of Yobs. This latent variable represents all combined 

effect of unobserved community level variables that influence the level of the 

outcome but do not impact on the effect of the treatment. The other latent 

variable, u1, instead, influences only potential outcomes of the treated units, 

representing unobserved factors that modify the effect of the treatment. In fact, 

the effect of the treatment for units belonging to the cluster j is Y1 - Y0 = ∆ + u1. 

As a consequence, we have an interaction between u1 and D in the model for the 

observed outcome, Yobs (see the 3.27). In this setting the ATE and ATT are in 

general different because we could have more treated in communities where 

treatment has a higher effect or vice versa. In this model ATE and ATT are given 

by 
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Since, by construction, u1 is a random variable with zero mean, ATE 

coincides with the parameter ∆ in the model (3.27). ATT is different from ATE 

if ET=1(u1) is different from 0.  

Conditioning to one specific cluster ATE and ATT coincide. It could be 

of interest to calculate conditional ATEs: 

 

 ATE(j) = E(Y1-Y0|j) (3.28) 

 

The parameter in (3.28) is the causal effect of the treatment for units 

belonging to the specific cluster j. It can be estimated using a “fixed effects” 

approach implementing separate regressions in each cluster or including 

dummies for cluster. Following a random effects approach, proper of multilevel 

models, we can estimate (3.28) by first estimating parameter ∆ and then adding 

the a-posteriori prediction of the error term u1j, using multilevel model (3.27). In 

this way parameter (3.28) coincides with the following parameter: 

 

 ATE(u1) = E(Y1-Y0|u1)=  ∆ + u1 (3.29) 

 

In (3.29) it is made clear that, as in the traditional way to approach 

multilevel models, we are basically interested in the variance of the random 

variable u1 and not in the cluster-specific estimates. If this variance is significant, 

then the causal effect of the treatment changes considerably by cluster. In this 

way we can generalise results to the population of clusters, of which observed 

clusters represent a sub-sample: clusters with similar values of u1 have similar 

values also for the causal effect. 

In the previous models we assumed that D is exogenous. If we assume 

that only first-level exogeneity holds but D is correlated with the error term at 

the second level, giving rise to the second level endogeneity, we have to modify 

the unconfoundedness assumption. In other words, we could suspect that some 

relevant covariate at community level is unobserved and hence UNC would hold 

only conditional also on this covariate C*:  

 

107 
 



 
 

 Y1, Y0 ⊥ D | X, C, C*, u0 (3.29) 

 

Obviously, we cannot condition on C* but we can think to substitute it with jD , 

the cluster mean of Dij as done in the traditional multilevel model (and explained 

before in section 3.2). The UNC could be expressed as 

 

 Y1, Y0 ⊥ D | X, C, D , u0 (3.30) 

 

and the model becomes: 
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where jD is the cluster mean of ∆ and represents the proportion of treated in the 

cluster. The (3.32) is the traditional multilevel model where we control for 

second level endogeneity by including the cluster means of the endogenous 

regressor. In this case, as in model (3.22), ATE is equal to ATT and coincides 

with the parameter ∆. 

However, the parameter ∆ in model (3.32) is, in general, expected to be 

different from ∆ in model (3.22). This is because now the coefficient of D 

estimates the within-cluster effect of the treatment while in model (3.22) it mixes 

up the within and the between effects. Model (3.31) highlights an interesting 

fact: in order to disentangle the within and the between effects in the model for 

observed outcome (3.32), or, equivalently, in order to control for second level 

endogeneity of D, we had to include the cluster mean jD  in the models for 

potential outcomes. This clearly violates the SUTVA because we are writing the 

potential outcomes for unit ij as depending on the proportion of treated in the 
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cluster j, to which it belongs. Interestingly, we note that in multilevel settings the 

traditional consideration about the need of disentangling within and between 

effects is closely related to the potential violation of the standard SUTVA 

assumption.  

Summarizing, in this section we analyzed the traditional multilevel 

models under the standard potential outcome framework clarifying that we can 

use these models to recover causal effects under specific assumptions. Basically, 

the identifying assumptions used in this section correspond to modified versions 

of unconfoundedness which are weaker with respect to the version presented in 

section 2.3 (assumption 2.31). However, we noted that sometimes the parameters 

of multilevel models are not directly corresponding to the standard parameters of 

interest in causal inference (ATE and ATT). 

Moreover, if we suspect the within and between effects to be different, 

and this is the most likely situation in general, we have to specify a more 

sophisticated model which keeps into account the violation of SUTVA and 

hence, needs to recognize that more potential outcomes are in action (see the 

third point in section 3.2). This is not only a methodological complication but 

gives also us the opportunity to discover further potentially interesting causal 

parameter. Another issue, we have not posed in this section, is related to the 

second point presented in section 3.2. We face these topics in the next section.  

 

 

3.5 Causal inference under the potential outcomes framework 

in a multilevel setting 
 

In this section we discuss the issues outlined in section 3.2. First, we briefly 

discuss the literature about the topic. The literature about causal inference in 

observational multilevel settings, traditionally, has focused on the use of the 

multilevel models to estimate causal effects in the considerations of the benefits 

of this kind of models. However, in this part of the literature no care has been put 

on complications that arise in multilevel models, such as the violation of 

SUTVA. Only using an appropriate conceptual framework to study causal 
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analysis, such as the potential outcomes one, we can appropriately address such 

problems of causal inference.  

The literature on causal inference under the potential outcome framework 

extended to a multilevel setting is quite limited. Moreover, some of these works 

relate on the estimation of cluster effects (Sobel, 2006; Oakes, 2004; 

Subramanian, 2004; Diez-Roux, 2004; Gitelman, 2005; Harding, 2003; Stuart, 

2007). Only few works address the problem of estimate the causal effect of 

treatment received by units clustered in macro units: Kim and Seltzer (2007), 

Hong (2003), Hong and Raudenbush (2005 and 2006). This literature is lacking 

to address simultaneously the three issues outlined in section 3.2. Kim and 

Seltzer (2007) explicitly consider the cluster-specificity of the selection process 

(the second point in section 3.2), while Hong and Raudenbush (2005 and 2006) 

address the problem of the violation of the SUTVA. 

For clarity we re-write the three issues outlined in section 3.2 here: 

 

1. Cluster-heterogeneity of the treatment effect, 

2. The multilevel nature of the selection process, 

3. Potential violation of the SUTVA.  

 

 

3.5.1 Cluster-heterogeneity of the treatment effect 

Actually, the first issue is not a statistical one but it is driven from a research 

question about the heterogeneity of the treatment effect. Moreover, it is not 

specific to multilevel settings. In all studies of causal inference we could be 

interested in the treatment effect heterogeneity. For example, in our case we 

would like to know if the effect of childbearing events is different for farmers 

and non-farmers; for kinh versus non-kinh households; for households with 

different educational levels and so on. In a multilevel setting, to these aspects we 

sum another that is specific to this kind of context, consisting on the fact that the 

heterogeneity can be driven by the characteristics of the cluster to which units 

belong. In our case, it could be due to the place where households live.    

110 
 



 
 

As we mentioned in section 3.2, the issue we want to analyse at the first 

point refers to the fact that the effect of the treatment can be higher in some 

clusters and lower in others. Then, we could be interested in the estimation of 

cluster specific causal effects like parameter (3.28). If we suspect that the 

cluster-heterogeneity is due to the interaction between the treatment and a 

specific and observed cluster variable we could estimate causal effects 

conditional on different values of this variable, C: E(Y1 -Y0 |C=c). For example, in 

our case C could represent the presence of a specific infrastructure that in some 

way helps households with children (health care centres, family planning centres, 

etc.). In this case we would estimate the effect of childbearing events in 

communities with and without the infrastructure. This is important for policy 

making. In fact, if the effect of childbearing events is negative in all kind of 

communities but has a lower magnitude in communities with the infrastructure, 

this is a clear indication that expanding the presence of this facility can 

ameliorate the conditions of households having children. If we do not have a 

clear theoretical indication of which community variable C is expected to 

interact to the treatment indicator, or if this variable is unobserved, then we could 

be interested in the estimation of parameter (3.29). Actually, we are interested in 

the variance of u1. If it is significative, we can argue that some unobserved 

community characteristics make the treatment to have a stronger effect in some 

communities and a weaker one in others. A qualitative analysis, then, could help 

to understand which characteristics drive this heterogeneity. 

  From a methodological point of view, to address the study of the cluster-

heterogeneity in the treatment effect we could employ a multilevel model with a 

random slope for the treatment indicator such as model (3.27). Likewise single 

level regression models, the model (3.27) impose a linear relationship between 

the outcome and the treatment. Moreover, we cannot control the balancing 

process as we do when we use matching methods (see chapter 2). As a result, we 

think that a better strategy is to first implement a matching method. Then, if the 

estimated effect is significant, we could run a multilevel model like (3.27) on the 

matched sample to study cluster-heterogeneity in the treatment effect. Actually, 

if we run this model on the matched sample we can avoid the inclusion of 
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additional control covariates. However, these can be replaced by the estimated 

propensity score in order to further control for observed covariates that could be 

not perfectly balanced in the treated and control groups.   

 

 

3.5.2 The multilevel nature of the selection process 

When we implement the propensity score matching in a multilevel setting, we 

should recognise that, not only the outcome model, but also the selection process 

can have a multilevel structure. This is the case when the probability of being 

treated changes substantially by cluster and the effect of some covariate on this 

probability varies by cluster. The first aspect requires the inclusion of a random 

intercept in the model of the propensity score, while the second one asks for the 

inclusion of random slopes. In other words, the statistical implication of the 

multilevel structure of the selection process is that including only observed 

covariates in the model for the propensity score, and hence balancing only for 

them, could not be sufficient. Some unobserved cluster level characteristic could 

be related to both the treatment and the outcome, generating bias in the 

estimation of causal effects. Therefore, we propose to use a methodology 

ensuring a balancing between treated and controls also for the unobserved 

clusters factors.  

Kim and Seltzer (2007) proposes to use a multilevel model for the 

estimation of the propensity score and then to implement the matching algorithm 

within each cluster. If we impose that treated and matched controls must belong 

to the same cluster, then we achieve automatically a perfect balancing in all the 

observed and unobserved cluster characteristics. However, using a multilevel 

model for the propensity score have some advantages as described in Kim and 

Seltzer (2007). This strategy is not feasible in those situations, constituting the 

norm in social observational studies, where we have few units within each 

cluster. In these cases, in fact, is likely that in several clusters is difficult to found 

for each treated a good matched control. This is also our situation since in our 

application the number of households in a community ranges from 7 to 21.  

 We propose an alternative procedure consisting of these two stages: 
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1. Estimate a multilevel model for the propensity score and obtain 

prediction of the random effects, 

2. Estimate a single level model for the propensity score including as 

additional covariates the predictions of the random effects obtained at 

the previous stage.  

 

In the first stage we estimate a propensity score model which includes a 

random intercept, as well as some random slopes. This model has the following 

form: 

 

( ) UXuCXg ijjjijij +++= 0θβπ  (3.33) 

 

where g represents the link function, usually the probit or logit function, π is the 

probability of receiving the treatment and U is a K x 1 column vector containing 

the random variables u1, ..., uk, representing the random slopes. Obviously, the 

employed multilevel model will contain only a limited number of random slopes. 

In this case, some elements of U are set to zero. After estimating this model we 

can obtain empirical bayes predictions of the random effects, as the mean of their 

respective posterior distributions. These are included as additional covariates in 

the estimation of a single level propensity score model: 

 

( ) ϑγθβπ jjjijij UuCXg ˆˆ0 +++= (3.34) 

 

Probabilities estimated through model (3.34) will be employed in the 

matching procedure. Matching on a model like (3.34) can ensures the balancing 

of all observed covariates at the first and second level, as well as the balancing of 

random effects. Since random effects capture unobserved cluster characteristics 

this strategy allows us to balance also these. This aspect can be very important 

especially in those situations where no information is available at the cluster 

level. It is interesting to note that also the inclusion of random slopes in model 

(3.33), and hence their empirical bayes predictions in model (3.34), can be 

important, in particular, for those confounders whose effects vary substantially 
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by cluster. By matching on a model like (3.34) we not only balance the 

covariates but also the effects of covariates with random slopes. We investigate 

these issues in the application will be presented in chapter 6.  

We note that the two-stage procedure here outlined could be inefficient 

with respect to obtaining directly from model (3.33) the predictions of 

probabilities plugging in the predictions of the random intercept: 

 

( )UXuCXg ijjjijij
ˆˆˆˆˆ 0

1 +++= − θβπ                (3.35) 

 

However, since the focus here is on the balancing we can achieve with the 

different strategies, this loss of efficiency is not matter of concern. Anyway, 

predicted probabilities in (3.35) should be similar to those obtained from the 

two-stage procedure. However, we argue that the two-stage procedure it is 

appealing since it can be seen as a procedure similar to a sensitivity analysis we 

carry on in chapter 5. This is a sensitivity analysis to violation of the UNC 

which, basically, consists to simulate an unobserved confounder and put it into 

the propensity score procedure. Then, the estimates obtained matching only on 

the original covariates and on covariates plus the simulated confounder are 

compared, to assess their sensitivity. Our two-stage method mimics this 

procedure, in the fact that here we compare the estimate we get matching on 

probabilities estimated through (3.34) and the estimate we obtain by using 

probabilities estimated with a single level model. If the estimates are similar we 

can conclude that the PSM is not dramatically sensitive to departure from the 

UNC due to unobserved cluster effects. Moreover, we suspect that the two-stage 

procedure is more robust to miss-specification of model (3.33). For example, a 

second level endogeneity problem in model (3.33), concerning one or more first 

level covariates, can be faced, as explained in section 3.3.2 by including the 

cluster mean of the endogenous covariates. However, the two-stage procedure 

could relax this problem. Also this issue is material for future research. 

It is important to note that the probabilities estimated through the (3.35) 

are, in general, different from the predicted probabilities which are commonly 
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obtained in multilevel analysis. These are the so-called empirical bayes predicted 

probabilities and can be obtained as: 

 

( ) ( ) ojjnjojijjjij
EB
ij duYYuPosteriorUXuCXg

j
,...,|ˆˆˆˆˆ 10

1 ×+++= ∫ − θβπ (3.36) 

 

We reserve to future work a more formal comparison among these three different 

ways to obtain the propensity score estimates (through the (3.35), the (3.36) or 

the two-stage procedure). In particular, we are planning to implement a 

simulation study to verify under which condition the three procedures are 

expected to give sensibly different estimated probabilities and dissimilar balance 

in covariates and random effects in the treated and control groups.  

 

 

3.5.3 A weaker version of the SUTVA 

The third problem relates to the potential invalidity of the SUTVA in a 

multilevel setting. The reasons that make us suspect this assumption is untenable 

in a multilevel setting can be several and depend on the specific studied context 

and phenomenon. In general this assumption is problematic when sharing and 

competition for resources generates interference among units (at least) belonging 

to the same cluster. We will discuss some source of violation of SUTVA in our 

context when presenting the application in chapter 6.  

 If we do not use the SUTVA as done up to now, each unit ij has not 

simply two potential outcomes because these depend also on the treatments 

received by the other units. In general, without SUTVA potential outcomes for 

each units ij depend on the entire N x 1 vector of treatments indicator, D. 

Therefore, each unit has 2N potential outcomes depending on which treatment it 

receives and on which treatments receive the remaining N-1 units in the 

population: Yij(D) = Yij(Dij, D-ij); where D-ij represent the treatments received by 

all units in the population except ij. Any contrast between two of the 2N potential 

outcomes define a causal parameter.  

 In a multilevel framework it is usual to assume that SUTVA holds at the 

cluster level even if it is violated within cluster. In fact, a way to overcome the 
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potential violation of SUTVA is to choice the minimum aggregate level for 

which we can reasonably state this assumption. This is the traditional way to 

handle the problem (see e.g. Stuart, 2007). However, the consequence is that the 

analysis should be conducted at an aggregate level and we cannot refer our 

results to the individual level. Otherwise we could make an ecological fallacy 

error, as discussed in section 3.1. Since in our application, as it is often the case 

in multilevel analyses, we are interested in drawing inference at the unit level we 

need a weaker version of SUTVA that allow us to continue to run the study at 

the first level.  

If we assume no interference among clusters, that is that SUTVA holds at 

the cluster level, we already obtain a sensible reduction in the potential 

outcomes. In fact, in this way the potential outcomes for each unit ij depend only 

on the units belonging to the same cluster j: Yij(D) = Yij(Dij, ); where  

represents the treatments received by all units in the cluster j except the unit ij. 

Consequently, the potential outcomes for each individual ij belonging to the 

cluster j are ; where n

)( j
ij−D )( j

ij−D

jn2 j is the number of units belonging to the cluster j. 

Anyway, also in this case the potential outcomes are too much and implementing 

a study of causal inference is difficult. For example, with clusters all of size 

equal to 10 the potential outcomes are 210 = 1024 and they fast increase with the 

cluster size. Moreover, if the clusters, as usual, have different size the number of 

potential outcomes differs by cluster. This situation makes difficult the definition 

and interpretation of causal effects requiring to conveniently summarize the 

vector .  )( j
ij−D

In most situations potential outcomes for a given unit can be thought as 

influenced by how much units in the clusters receive the treatment while is not 

important who these units are. As a consequence, the relevant information 

contained in the vector  is summarized by the proportion of treated units in 

the cluster (calculated excluding the unit ij) that we indicate with . 

Therefore, potential outcomes for unit ij can be written as a function of the 

)( j
ij−D

)( j
ijP −
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treatment the unit receive and the proportion of the other units treated in the 

cluster: Yij(D) = Yij(Dij, ).  )( j
ijP −

For further simplifying the discussion and make inference treatable, we 

can split the range of in a limited number of intervals and assume that 

interference among units belonging to the same cluster is fully captured by these 

intervals. The information contained in will be summarised by a scalar 

function, f, taking s values: 

)( j
ijP −

)( j
ijP −
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where s is a positive integer; t1, t2, ..., ts-1 are real numbers satisfying: 0 < t1 < t2 < 

... < ts-1 < 1. In this way, potential outcomes can be written know as Yij(T) = 

Yij(Tij, f( )). )( j
ijP −

It is convenient for practical reasons to substitute with the proportion 

of treated in the cluster (calculated including unit ij), indicated by P

)( j
ijP −

j. This is not 

problematic if we can assume that the treatment received by a single unit cannot 

significantly modify the proportion of treated in the cluster.  

The simplest situation, with the minimum number of potential outcomes, 

is obtained when we fix k at two. In this case, we divide the clusters in those with 

a “high” proportion of treated and those with a “low” proportion of treated. Let 

represent with Lj the binary indicator taking value 1 if the proportion of treated in 

cluster j is “high” and 0 otherwise. In this case, the potential outcomes for unit ij 

are: Yij(D) = Yij(Dij,Lj). Hence, we have only 4 potential outcomes according to 

the treatment the unit receive and to the level of proportion of treated in the 

cluster:  

Y11  if Dij = 1 and Lj = 1 

Y10  if Dij = 1 and Lj = 0 

Y01  if Dij = 0 and Lj = 1 

 Y00  if Dij = 0 and Lj = 0. 
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These 4 potential outcomes are defined under a weaker version of the 

SUTVA, with respect to the standard one, that we can summarize as follows: 

 

(A weaker version of SUTVA) 

 

 Yij(D) = Yij(Dij,Lj);      (3.37) 

 

in words, this amounts to assume that there is no interference 

among units belonging to different clusters, while the within-

cluster interference is fully captured by the level of the proportion 

of treated (high versus low).  

 

Each contrast between two of the 4 potential outcomes define a causal parameter 

of potential interest. We can conveniently think to this context as we had two 

treatments: one, D, working at the first level and the other, L, working at the 

second level.  

A first group of causal parameters of potential interest is given by: 

 

(3.38) ) | L-YE (YATE DD
D
L 1011 | == ===

) | L-YE (YATE DD
D
L 0010 | == === (3.39) 

 

(3.40) )L | D-YE (YATT DD
D
L 1 ,1011 | === ===

                                                                                                    (3.41) )L | D-YE (YATT D 01DDL  ,010 | === ===

 

 The parameters (3.38) and (3.39) measure, respectively, the average 

causal effect of the treatment D in clusters with high proportion of treated (L = 1) 

and with low proportion of treated (L = 0). The parameters (3.40) and (3.41) are 

the correspondent versions of parameters (3.38) and (3.39) calculated 

conditioning on the sub-group of units with D = 1. We can obtain the marginal 

version of these two parameters as a weighted average of the conditional 

parameters: 
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 ,  (3.42) )0*1*   ()( 0L|1L| =+== PATEPATEATE == LL DDD

 .  (3.43) )1|0*1*  =()1|( 0L| 1L| =+=== DPATTDPATTATT DDD
== LL

 

 From the analysis of these parameters we see that the problem of the 

violation of SUTVA conducts us to consider some interesting new causal 

estimands. Under the weaker version of SUTVA that we have introduced, we are 

naturally asked to answer if the effect of treatment is different in cluster where 

the proportion of treated is low with respect to clusters where this proportion is 

high. This can be a very interesting comparison, useful for policy making. 

Moreover, we have to note that parameters (3.41) and (3.42) obtained under this 

weaker version of SUTVA are not, in general, equivalent to the corresponding 

parameters calculated under its standard version, as parameters defined in 

chapter 2. In fact, in general, ATE and ATT defined under SUTVA will confuse 

the effect of D with the effect of L. This consideration is similar to the reasoning 

we made in section 3.3 about the need for disentangle within and between effects 

in multilevel models. Interestingly, in section 3.4 we have already noted that 

violation of SUTVA and the within/between effects difference are closely related 

issues. 

  Parameters (3.38)-(3.43) estimate the effects of the treatment D. In an 

analogous way we can define similar parameters estimating the effect of the 

treatment L. For example, the corresponding versions of the parameters (3.42) 

and (3.43) are: 

 

 , (3.44) )0*1*   ()( 0D|1D| =+== PATEPATEATE L
== DDLL

 . (3.45) )1|0*1* =()|1(  0D| 1D| =+=== LPATTLPATTATT LLL
== DD

 

 At this point we have to clarify under which assumption we can identify 

the parameters we have here introduced and which estimating method we can 

use. As we have already said, we can treat this situation as the case in which we 

have two different treatments. Imbens (2000), Lechner (2001) and Cuong (2007) 

analyze the case of causal inference in the presence of multiple treatments under 
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the potential outcome framework. Building on Cuong (2007), we can state the 

identifying assumptions for our case as follows: 

 

 (Y11 , Y10 , Y01 ,Y00 ) ⊥ (D , L )| X, C; (3.45) 

 0 < P(D=1|X, C, L) < 1 ;  0 < P(L=1|X, C, D) < 1. (3.46) 

  

Assumptions (3.45) and (3.46) are, basically, a generalization of assumptions 

(2.31) and (2.32) we have seen in chapter 2 for the case of one single treatment. 

If we are not interested in all the parameters (3.38)-(3.45) we can use weaker 

versions of assumptions (3.45) and (3.46). For example, if our interested lies 

in D
LATE 1 | = , then we need only that (Y11, Y01) ⊥ D | X, C and 0 < P(D=1|X, C, 

L=1) < 1. 

 In order to estimate causal parameters (3.38)-(3.45) we can use a PSM 

procedure. For the estimation of parameters (3.38)-(3.43) we need first to 

estimate two propensity score models: P(D=1|X, C, L=1) and  P(D=1|X, C, L=0). 

The former will be employed in the matching algorithm for the estimation of 

parameter (3.38) or (3.40). The latter, will be employed for the estimation of 

parameters (3.39) or (3.41). Parameters (3.41) and (3.43) will be estimated 

through their conditional versions. The previous discussion about the need of 

considering the multilevel nature of the selection process is still valid. Therefore, 

the two propensity score models can be estimated using the two-stage strategy 

discussed before. 
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Chapter 5 

Estimation results of the causal effect of 

fertility on poverty in Vietnam 

 

 

 
Introduction 
 

The estimation of the effects of demographic events on households’ living 

standards introduces a range of statistical issues. In this chapter we analyze this 

topic, considering our observational study as a quasi-experiment, in which the 

treatment is expressed by childbearing events between two time points (the two 

waves of the VLSMS) and the outcome is the change in the equivalized 

household consumption expenditures.  

The chapter is organised as follows. Section 5.1 briefly recalls the basic 

motivations underlying the current application, and presents some simple 

descriptive statistics showing a clear negative association between consumption 

expenditure and the number of children. In Section 5.2 we assume that the 

unknown assignment mechanism in our observational study is regular. Therefore 

we present and discuss results from the estimation of methods relying on the 

UNC assumption. In section 5.3, we assess the robustness of the PSM. In the 

section 5.4 we propose two instruments for the identification of the causal effect 

of interest, avoiding the UNC assumption. In this case a latent regular 

assignment mechanism is assumed. Results from the estimation of IV methods 

are presented and discussed in section 5.5. Section 5.6 concludes. 
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5.1 Motivations 
 

In chapter 1, we extensively, described the background and motivations of the 

application we show in the present chapter. Our main question concerns the 

estimation of the causal effects of fertility on households’ economic wellbeing. 

Fertility is measured by childbearing events, which are generally believed to be 

endogenous with respect to consumption expenditure, which is the most common 

way to measure a households’ economic wellbeing. Economic wellbeing is 

measured in terms of the change in consumption expenditure between the two 

waves. As discussed in chapter 1, the relationship between fertility and poverty 

is country-specific. In fact, previous work found mixed results, but the common 

observation in many LDC is that households with more children show worse 

living standards. Table 5.1 seems to confirm this negative relationship between 

fertility and economic wellbeing also for Vietnam.  

From table 5.1 we can see that the higher was the number of new children 

born in the household between the two waves he lower was the consumption 

expenditure growth in the same period. Of course, simple descriptive statistics 

like those presented in Table 5.1 do not say anything about causality. Rather, 

they merely show a negative association between number of children and 

consumption expenditure growth. In order to draw causal conclusions, we have 

to consider that households with more children are different from households 

with fewer children with respect to a range of factors. In other words, there is 

self-selection in the level of childbearing events, which depend on characteristics 

that are likely to be associated also to consumption, and hence confound the 

fertility-poverty relationship. Therefore, we cannot simply compare the 

consumption expenditure growth for households with different level of 

childbearing events. We need to use adequate methods for causal inference, such 

those discussed in chapter 2. 
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Table 5.1: Average equivalized household consumption expenditures at the 
two waves and its growth by number of children born between the two 
waves.   

N. of children 
born between 
the two waves 

Observations
Average 

consumption    
in 1992 

Average 
consumption 

in 1997 

Average 
consumption 

growth in 
1992-1997 

0 0968 970 2436 1466 

1 0407 856 1892 1036 

2 0138 790 1755 0965 

3 0024 571 1154 0583 

At least 1 0569 832 1835 1004 

Total 1537 916 2201 1285 
Notes: We consider the number of children of all household members born between the two 
waves. All consumption measures are valued in dongs and rescaled using prices in 1992. The 
1537 households represented in the table are selected taking only households with at least one 
married woman aged between 15 and 40 in the first wave. Consumption is expressed in 
thousands of dongs. 
 

 

Let’s formalise the structure of our quasi-experiment. We have a sample of 

households under study indexed by i = 1, 2, ... N, a treatment indicator D that 

assumes the value 1 for treated units (in our case, for households in which was 

born at least one child between the two waves) and 0 for untreated or the controls 

(that is, households not having new children) and an outcome variable, which is 

the growth in household equivalized consumption between the two waves, 

indicated by Y.  

Our sample is restricted to households where in the first wave there was 

at least one married woman aged between 15 and 40 years. This selection could 

be thought as a part of the whole matching strategy. In this way, in fact, we avoid 

to compare households who would not be eligible for the treatment (that is, not a 

risk to have children), because they had no woman in fecund age. Obviously 

different selection strategies are possible15.  

                                                   
15 We tried the following alternative selection criteria: 1) households with at least one married 
woman aged 15-35 in the first wave; 2) households whose head or its spouse is a married woman 
aged 15-40 in the first wave; 3) households whose head or its spouse is a married woman aged 
15-35 in the first wave. However, results are very similar to those presented here.  
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In the sequel we contrast methods relying on the Unconfoundedness 

Assumption (UNC), such as regressions and propensity score matching, with 

methods allowing for selection on unobservables, such as the Instrumental 

Variable (IV) estimators. We already stressed the fact that these methods are not 

equivalent in what they estimate. With Regressions and Propensity Score 

Matching (PSM) we can identify and estimate the Average Treatment Effect 

(ATE) and the Average Treatment effect on the Treated (ATT), while IV 

methods give the Local Average Treatment Effect (LATE), unless we are willing 

to impose additional strong assumptions.  

Since LATE is the average causal effect of the treatment on the sub-

group of compliers, it is generally different from ATE and ATT. Moreover, 

different instruments identify the effect on different groups of compliers giving 

different estimates of the LATE. A problem for policy making is that the 

compliers are, in general, an unobserved sub-group. However, IV methods 

estimate relevant policy parameter if the instrument itself is a potential policy 

variable. We explore these issues with an application on data derived from the 

VLSMS. 

 

 

5.2 Regression and propensity score matching results 
 

Using the terminology introduced in chapter 2, we assume in this section that the 

unknown assignment mechanism in action in our observational study is a regular 

one. That is, we assume that all the relevant variable that influence both the 

selection in the treatment and the outcome are observed. Therefore, in this 

section we present the results of the estimation of the causal effect of 

childbearing on consumption expenditures obtained by using multiple regression 

models and the propensity score matching procedure, both relying on the UNC 

assumption. Matching is based on the nearest neighbor method with replacement 

using the nnmatch module in STATA (Abadie et al, 2004)16.  

                                                   
16 This software implements the estimators suggested by (Abadie and Imbens, 2002), allowing to 
obtain analytical standard errors which are robust to potential heteroschedasticity. We preferred 
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Our choice of covariates is based mainly on dimensions which are 

important for both households’ standard of living and fertility behaviour, and 

hence these variables are potentially confounders that have to be included in the 

conditioning set to make the UNC more plausible. More specifically, we think 

that all these variables can theoretically have an impact both on consumption 

expenditures growth and on the decision of have children. In the selection of 

these variables we took into account the literature on the relationship between 

fertility and poverty, which we discussed in section 1.4. 

The covariates we use are all measured at the first wave and hence can be 

viewed properly as pre-treatment variables. This is an important aspect, ensuring 

that their values are not influenced by the treatment17. Therefore, the availability 

of data on two time points allowed us to implement properly a pre-post treatment 

study. Moreover, since the outcome is the difference between the consumption 

expenditures in the second wave (post-treatment value) and the corresponding 

value at the first wave (pre-treatment) we are able to control for that part of 

unobserved heterogeneity which is time-constant. In other words, we combine 

methods relying on the UNC with a difference-in-difference estimator. As 

mentioned in section 2.3, this strategy is expected to increase the robustness of 

estimates to potential unobserved confounders. 

Among the covariates we included demographic characteristics of the 

household, such the sex and the age of the household head, the household size 

and the presence of children. The effect of children is distinguished by their age 

distribution, and expressed as a ratio of the total number of household members. 

Other covariates are the ratio of male and female members aged 15-45, the ratio 

of male and female working members aged 15-45 out of the respective groups, 

                                                                                                                                         
analytical to bootstrapped standard error because Abadie and Imbens (2004) have showed that 
bootstrap fails with nearest neighbor matching. This matching method, on the other hand, should 
be preferred since, ensuring the “best” matches, it reduces the bias with respect to other methods. 
We compare this matching method with alternative ones in the section 5.3.3.  
17 Variables measured at the first wave could be still influenced by the treatment through some 
kind of “anticipation effect”. For example, if a couple plans to have a child and suspects that this 
choice will affect negatively its wellbeing they could choose, for example, to increase their 
labour supply, or other behavioural parameters. It follows that the vector of covariates can also 
include lagged outcomes. In our application we include in the conditioning set consumption 
expenditure measured at the first wave. This reflects the households’ level of living standard 
prior to treatment, and is likely to be of relevance.  
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an educational index, the level of equivalized consumption at the first wave and 

regional dummies. Importantly, we included two binary variables indicating, 

respectively, if the household is farmer or not and if the household head belong 

to the majority ethnic group (the Kinh) or not. As mentioned in section 1.5, the 

data also includes rich information on the characteristics of the community 

where the household resides. We control for community differences through 

three indexes: 1) an index of economic development, 2) health facilities and 3) 

educational infrastructures. The exact definition of these indexes, as well as that 

of the other variables in explained in the appendix to this chapter. 

The results are presented in Table 5.2. We also report the results of the 

estimation of a simple regression of Y on D without any covariates. This is 

equivalent to use the naïve estimator (2.26) defined in chapter 2 and can be 

obtained also from the Table 5.1. In fact, this estimate (-462) is equal to the 

difference in the consumption expenditure growth between households with at 

least one new child (1004) and with no new child (1466; see table 5.1). 

This would be an acceptable estimate of the ATE under the 

randomization of D. It is clear that selection is present and the estimate of 

fertility on expenditure is reduced by around 10% in the multiple regression. The 

other methods used maintain the assumption that the treatment can be thought of 

as randomized after having controlled for covariates (UNC). What differ are the 

assumptions imposed for estimation. The standard multiple regression implicitly 

assumes that the effect of childbearing on poverty is constant, while FILM, 

including all interactions among D and covariates, allows it to change with 

covariate values. As a consequence, multiple regression does not distinguish 

between ATE and ATT since they coincide under a constant treatment effect. In 

contrast, FILM does, and ATE and ATT will in general differ. FILM was 

implemented with and without conditioning on the common support. Since 

results are very similar we show only FILM on the common support. FILM in 

this case requires a first stage estimation of the propensity score and the common 

support18.  

                                                   
18 We used a logit specification including some interaction terms to achieve balancing. We 
discuss the assessment of balancing quality in section 5.3.1. 
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Table 5.2 - Estimates from methods based on the Uncounfoundedness 
Assumption (robust standard error in parentheses) 
 

REGRESSIONS 
FILM  
(conditioned on CS) 

PROPENSITY 
SCORE 
MATCHING 

SIMPLE 
 
 
(ATE=ATT) 

MULTIPLE  
WITH NO 
INTERACTIONS
(ATE=ATT) ATE ATT ATE ATT 

-462 
 (56) 

      -414 
       (62) 

-421 
 (60) 

-432 
 (59) 

-411 
 (87) 

-356 
(116) 

Notes: CS = common support. Figures are in thousands of dongs. Standard errors for regressions 
are robust to heteroschedasticity and within community dependency. PSM standard errors are 
robust to heteroschedasticity. The matching method used is the nearest neighbor with 
replacement. 
 

 

With FILM, multiple regression model is made as similar to PSM as possible. 

The difference of course, is that PSM does not impose any functional form for 

the relationship between poverty and fertility. Regression, in contrast imposes 

linearity.  

As we can see from Table 5.2 the estimate for ATE is similar in all these 

methods, while ATT is estimated lower in the PSM. Thus, relaxing linearity 

matters and the PSM is to be preferred. Moreover, PSM permits us to assess, in a 

simple way, the underlying process of comparison between treated and control 

units. We assess the balancing achieved in the covariates by using the PSM in 

section 5.3.1. 

In general, ATT and ATE differ if the distribution of covariates in the 

two groups of treated and control are different (this is expected due to likely 

potential self selection into treatment) and if the treatment interacts with 

covariates (treatment effect heterogeneity). Hence, we found evidence for the 

presence of some form of selection that covariates control for. However, if the 

selection was also on unobservables this biased our estimates. We address this 

issue in the section 5.3.4 through a sensitivity analysis. 

In order to assess the magnitude of the estimate on consumption 

expenditure, we compare, in table 5.3, the effect of the treatment variable D with 

those of the other covariates included in the multiple regression model. 
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Table 5.3 – Parameter estimates of the linear model for consumption 
growth, Y, and the logit model for selection into treatment.  

 

Outcome equation 
(linear regression) 

Selection equation 
(logistic regression) Variables 

Coef. Robust 
Std. Err. 

ey/ex 
(elasticity) Coef. Robust 

Std. Err. 
ey/ex 

(elasticity)
D -413.58 66.07 -0.12   
Sexhhh 96.83 91.40 -0.06 -0.02 0.18 -0.01
Kinh 173.39 61.71 -0.11 -0.03 0.19 -0.02
perkids_04 -2.61 3.64 -0.03 0.01 0.01 0.14
perkids_59 -1.25 2.87 -0.02 -0.02 0.01 -0.28
perkids_1014 -8.45 2.95 -0.08 -0.03 0.02 -0.28
permale_1545 -0.73 3.74 -0.01 0.02 0.01 0.25
perfema~1545 -1.97 4.33 -0.04 0.02 0.01 0.28
Farm -35.95 64.44 -0.02 0.11 0.13 0.05
Edu 10.00 1.63 -0.42 -0.02 0.01 -0.62
rlpcex1 -0.12 0.08 -0.11 0.00 0.01 -0.01
region1 45.44 98.58 -0.01 -0.03 0.24 0.00
region2 26.95 102.00 -0.01 -0.49 0.25 -0.08
region3 -50.55 109.75 -0.01 0.56 0.25 0.05
region4 208.02 104.51 -0.02 0.64 0.24 0.04
region5 400.58 147.09 -0.01 1.61 0.37 0.04
region6 1163.51 198.20 -0.07 0.30 0.27 0.01
Agehhh 4.22 4.22 -0.13 0.00 0.01 -0.13
Hhsize -0.65 16.13 -0.00 -0.09 0.04 -0.35
peractm_1545 4.32 1.50 -0.31 0.01 0.02 0.31
peractf_1545 0.55 1.42 -0.04 0.00 0.01 0.22
IEI 12.81 15.22 -0.05 -0.06 0.03 -0.20
EDI -64.92 52.35 -0.14 0.14 0.13 0.27
HFI 22.52 18.80 -0.11 -0.06 0.04 -0.23
Constant 1079.89 522.43    0.13 1.00  

 

The treatment variable D has, out of the various covariates, the third strongest 

elasticity. Moreover, given that the average consumption growth between the 

two waves amounts to 1285 thousand dongs, the estimates ranging from -356 to -

432 thousand dongs, as presented in Table 5.2, are clearly substantial. In 

addition, the food poverty line in 1992 was estimated to 750 thousands of dongs 

(corresponding to 68 US$ in year 1992), which is another indication that the 
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effects associated with childbearing events are important for households’ 

economic wellbeing19.  

Finally, we can compare the magnitude of the estimated effects with the 

cost of a fundamental good for Vietnamese: the rice. In 1992, the amount needed 

for buying a quantity of rice giving 1000 calories (about 300 gr.) each day for 

one year was equal to 215 thousand of dongs20. From these figures, we conclude 

that the estimated causal effect is not only statistically significant, but also 

economically relevant. 

 An interesting, but not unexpected, result is that education seems to be 

the most important confounder in the relationship between fertility and poverty. 

In fact, it has the strongest effect in both models. This result is in line with the 

theoretical literature we discussed in chapter 1. 

It is interesting to note that the consumption level measured in 1992 has 

little impact on the probability of childbearing events taking place between the 

two waves, and suggest that the issue of reversed causality seems to be not 

relevant in our application21. 

 The previous estimate of the ATT refers to the whole population of 

treated. However, for policy makers it would be of interest to assess if, and how, 

the treatment has different effects according to the specific characteristics of the 

treated households. Therefore, we implemented an analysis of the treatment 

effect heterogeneity, which is presented in Table 5.4. Bearing in mind that the 

overall ATT is -356 with a standard error of 116, it is clear that there is 

substantial variation in the treatment effect for different groups22. First of all, we 

note huge variations by regions. However, in some regions we have very few 

matched units hampering reliable causal effect estimation.  

                                                   
19 For insights on the goods composing the Vietnamese food basket and for details about the 
construction of the Vietnamese food poverty line see Tung (2004). 
20 These figures are derived by Molini (2006). 
21 In a preliminary phase, we deepened the issue of reverse causality by using a simultaneous 
equations approach. We estimated simultaneously two equations: one for fertility and one for 
consumption. In the fertility equation we found a non-significant effect of the consumption 
measured at the first wave, confirming the result in table 5.3. 
22 This is confirmed by the FILM model. After we ran it, we tested for the presence of 
heterogeneous effects of the treatment, that is, we tested the joint significance of all the 
interactions between D and covariates. The null hypothesis of no significant interaction was 
rejected (F =   1.94;  Prob>F = 0.0120). 
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Table 5.4 – Treatment effect heterogeneity  

Treated units Untreated units Sub-sample 
MA UN TOT MA UN TOT 

TOT 
units ATT 

Regional variability 
Region1 90 29 119 146 43 189 308 -433 (168) 
Region2 54 31 85 230 54 284 369 -52 (232) 
Region3 61 39 100 79 34 113 213 -512 (362) 
Region4 45 28 73 44 41 85 158 -1093 (381) 
Region5 2 35 37 1 18 19 56 -292 (na) 
Region6 11 34 45 17 53 70 115 -2239 (1384) 
Region7 90 17 107 186 22 208 315 -464 (212) 

Farmer / non farmer 
Farmer 372 22 394 500 37 537 931 -720 (152) 
Non Farmer 153 22 175 387 44 431 606 -339 (204) 

Kinh / non kinh 
Kinh 409 33 442 796 24 820 1262 -328 (138) 
Non Kinh 96 31 127 87 61 148 275 -407 (192) 

Household Education Index 
EDU – L 228 9 237 257 16 273 510 -355 (167) 
EDU – M 145 33 178 301 26 327 505 -334 (145) 
EDU – H 125 29 154 323 45 368 522 -497 (257) 

Consumption in 1992 
Consumption in W1 – L 158 33 191 258 63 321 512 -278 (122) 
Consumption in W1 – M 174 16 190 307 16 323 513 -317 (158) 
Consumption in W1 – H 164 24 188 276 48 324 512 -451 (286) 

Household size 
Household size – L 189 63 252 184 49 233 485 -408(164) 
Household size – M 160 25 185 426 36 462 647 -333(175) 
Household size – H 108 24 132 240 33 273 405 -377 (234) 

% of kids in 1992 
% kids in wave 1 – L 138 21 159 389 64 453 612 -365 (172) 
% kids in wave 1 – M 116 27 143 266 29 295 438 -368 (198) 
% kids in wave 1 – H 215 52 267 193 27 220 487 -364 (223) 

Age of household head 
Household head age  – L 181 58 239 203 35 238 477 -169 (162) 
Household head age  – M 125 13 138 402 20 422 560 -294(205) 
Household head age  – H 188 4 192 253 55 308 500 -445(284) 
Notes: Estimates of the ATT are based on the PSM method (using the nearest neighbor with 
replacement) implemented on different sub-samples. Standard errors are in parentheses. EDU 
is an educational index aggregating years of schooling for all household members and 
keeping into account the age; L, M, H attached to same variables means “low”, “medium” and 
“high” groups obtained by splitting the sample in three parts of equal size; MA = matched 
observations; UN = unmatched observations; na = cannot be estimated; W1 = first wave. 
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Interestingly, the distinction between farmers and non-farmer households 

give rise to clear heterogeneity. In particular, farmer households with an 

additional child are substantially more disadvantaged than non-farmers. This is 

also the case for non kinh versus kinh households but here the heterogeneity is 

smaller. The heterogeneity by education confirms the well known pattern. More 

highly educated individuals suffer more from a childbearing event, mainly due to 

differences in opportunity cost. That is, more highly educated women earn more 

and, consequently, suffer more from retracting from the labor market due to 

childbearing.  

We also find that households headed by older individuals suffer more 

from childbearing events. Interestingly, the percentage of children in the first 

wave seems less important, indicating that economies of scale are likely to be not 

so relevant. Finally, the effect of the household size forms an U-shape: the 

(negative) effect of childbearing is stronger for small and large households while 

medium sized households show a somewhat lower effect.  

The rather strong heterogeneity in the treatment effects suggests, of 

course, that care is needed when implementing policy interventions. Clearly, 

policies related to fertility and economic wellbeing will have very different 

effects for different groups. Moreover, as Crump et al (2006) notice, if there is 

strong evidence in favor of heterogeneous effects, one may be more reluctant to 

recommend extending the program to populations with different distributions of 

the covariates. This confirm the idea that the fertility-poverty relationship is 

country-specific and should be assessed case by case, without any possibility of 

generalize the results found in a specific country. 

 

 

5.3     Assessing the PSM procedure 
 

In this section we try to assess the robustness of the estimates we get with the 

PSM procedure, which rely on several assumptions and technical choices. As 

discussed in chapter 2, the fundamental identifying assumption is the 

unconfoundedness, which is not directly informed by the data. We already 
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noticed that the reasonability of this assumption should be evaluated by the 

scientist’s knowledge about the studied phenomena. However, even if UNC is 

not formally testable, we can assess the consequence of its violation through a 

sensitivity analysis. Some indirect tests were also proposed in the literature.   

 Another aspect of the PSM procedure is that its implementation requires 

several choices, including the matching method to use and the way to determine 

the Common Support (CS). After the matching algorithm has been employed, we 

have to evaluate the quality of balancing we get in the covariates. We explore 

these issues in the sequel of the section. We will also address the robustness of 

PSM estimates to the specification of equivalence scale. This last aspect is more 

concerned with the specificity of the application at end than with the PSM 

procedure per se. 

 

 

5.3.1     Covariate balancing after matching 

Since we do not condition on all covariates but on the propensity score, it has to 

be checked if the matching procedure is able to balance the distribution of the 

relevant variables in both the control and treatment group. Several procedures to 

do so are available (see for details Caliendo and Kopeining, 2005). These 

procedures can also help in determining which interactions and higher order 

terms to include in the propensity score specification for a given set of 

covariates. The basic idea of all approaches is to compare the situation before 

and after matching and check if there remain any differences after conditioning 

on the propensity score. If there are differences, matching was not (completely) 

successful and remedial measures have to be done, e.g. by including interaction-

terms in the estimation of the propensity score. A helpful theorem in this context 

was presented in chapter 2. We referred to it as the balancing property of the 

propensity score (theorem 2.1, pag. 53). We remember that this theorem means 

that after conditioning on the propensity score, additional conditioning on 

covariates should not provide new information about the treatment decision. 

Hence, if after conditioning on the propensity score there is still dependence on 

X, this suggests either mis-specification in the model used to estimate P(D = 1|X) 
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(Smith and Todd, 2005) or a fundamental lack of comparability between both 

groups (Blundell et al, 2005). In our work, we used two methods to assess the 

balancing property: the stratification test and the comparison between 

standardised absolute bias before and after matching.  

The stratification test was proposed by Dehejia and Wahba (1999), and 

starts by splitting observations into strata based on the estimated propensity 

score, such that no statistically significant difference between the mean of the 

estimated propensity score in both treatment and control group remain. Then, 

they propose to use t-tests within each stratum to test if the distribution of 

covariates is the same between both groups. If there are remaining differences, 

they suggest to add higher-order and interaction terms in the propensity score 

specification, until such differences no longer emerge. This procedure is 

implemented by the pscore procedure in STATA (Becker and Ichino, 2002).  

We used this procedure as a support in our model building, since it 

suggests the interactions and higher order terms to be included in the propensity 

score to improve the balancing. Following this procedure we added some 

interaction terms (7) but no higher order terms23.  The final number of strata was 

10, ensuring that the mean propensity score was not different for treated and 

controls within each stratum. Moreover, the final specification balanced the 

covariates within these blocks. However, as remarked by Lee (2006) balancing 

tests have to be specific to the matching method used since each method conduct 

to a different control group. Therefore, the stratification method is a valid 

balancing test procedure only when we use stratification also as the matching 

method. For the other matching methods that we used we assessed the balancing 

quality by calculating the absolute standardized bias (ASB), before and after 

matching.  

The ASB, suggested by Rosenbaum and Rubin (1985), is defined as the 

absolute difference of sample means in the treated and matched control 

                                                   
23 We avoided the inclusion of higher order terms because, as demonstrated by Zhao (2005) their 
inclusion could have some biasing effect (while he found that the inclusion of interactions has 
not this drawback). Note that, given the purpose of balancing relevant observed covariates, the 
estimation of the propensity scores does not need a behavioral interpretation. 
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subsamples as a percentage of the square root of the average of sample variances 

in both groups. In formula, the ASB is given by: 
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w  TX  and CX  are the sample means, respectively, in the 

d

.5 we present, for each covariate included in the final 

treated and control group and 2
Ts  an 2

Cs  are the corresponding sample variances. 

One possible problem with the standardised bias approach is that one does not 

have a clear indication for the success of the matching procedure, even though in 

most empirical studies a standardised bias below 3% or 5% after matching is 

seen as sufficient. 

 In table 5

 

specification of the propensity score, the ASB before and after matching. We 

note that exists considerable initial bias between households who experience at 

least one childbearing event and households who did not. For instance, ten 

covariates have initial standardized differences larger than 20%. Particularly, 

high are the standardized biases shown by several demographic characteristics of 

the household (e.g., the percentage of kids, in all the three groups of age, show 

bias larger than 50%). From table 5.5 we note that matching performed well in 

reducing the bias of background variables. For instance, the initial absolute 

standardized bias for “Edu” (the educational index) was initially 36.54% and the 

matching reduces it to 3.50%. Importantly, matching reduced the standardized 

bias for each covariate, with the irrelevant exception of “peractf_1545” 

(percentage of female members aged 15-45). For this variable, the bias after 

matching is, however, 5.06%.  
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Table 5.5 – Absolute standardised bias before and after matching for each 

covariate included in the propensity score specification. 

Variable Sample Treated Control ASB (%)
Sexhhh 0.845 0.880 9.75Before 
 0.847 0.857 2.93After 
Kinh 0.777 0.847 18.18Before 
 0.776 0.779 0.93After 
perkids_04 19.981 12.492 50.05Before 
 19.926 19.841 0.06After 
perkids_59 11.538 19.871 54.30 Before 
 11.663 11.827 1.12After 
perkids_1014 7.464 15.573 60.31Before 
 7.542  7.550 0.10After 
permale_1545 25.484 21.254 41.04Before 
 25.119 24.985 1.03After 
perfema~1545 26.127 23.057 34.04Before 
 25.766 25.697 0.08After 
farm 0.692 0.555 28.07Before 
 0.687 0.679 1.05After 
edu 49.030 57.568 36.54Before 
 49.001 49.824 3.50After 
rlpcex1 1065.025 1116.021 8.50Before 
 1067.094 1046.090 3.05After 
region1 0.209 0.195 3.05Before 
 0.217 0.209 1.08After 
region2 0.149Before 0.293 35.20
 After 0.154 0.137 4.05
region3 Before 0.175 0.116 16.07
 After 0.167  0.164  0.80
region4 Before 0.128 0.088 13.01
 After 0.131 0.126 1.08
region5 Before 0.070 0.019 24.06
 After 0.066 0.056 4.04
region6 Before 0.079 0.072 2.06
 After 0.080 0.078 0.07
agehhh Before 39.874 40.571 5.23
 After 39.718 40.227 2.82
hhsize Before 5.223 5.772 26.07
 After 5.278 5.311 2.54
peractm_1545 Before 95.357 91.253 17.08
 After 95.279 96.357 4.73
peractf_1545 Before 93.052 94.267 4.62
 After 93.103 94.414 5.07
IEI Before 5.182 5.674 20.84
 After 5.220 5.287 2.96
EDI Before 2.761 2.794 6.02
 After 2.765 2.792 0.92
HFI Before 6.080 6.301 11.76
 After 6.087 6.151 3.49
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These results suggest that the balancing property is satisfied, meaning 

that matched treated and control can be considered sufficiently similar (on 

average)24. If we refer to the bias decomposition discussed in section 2.3 (pag. 

45), we can say that the PSM procedure has virtually cancelled out the bias term 

B1. In the next sections we assess the potential relevance of the other two sources 

of bias. 

 

 
5.3.2     Evaluating the overlap  

In chapter 2 we highlighted that ATT and ATE are only defined in the region of 

common support. Heckman et al (1997) point out, that a violation of the common 

support condition is a potentially relevant source of evaluation bias. Comparing 

the incomparable must be avoided, i.e. only the subset of the comparison group 

that is comparable to the treatment group should be used in the analysis (Dehejia 

and Wahba, 1999). To this end, we remember that our previous analyses were 

implemented on the sub-sample of household with at least one married woman 

aged 15-40 in the first wave. As we already said, this selection is part of the 

whole matching strategy, since it allow to exclude from controls those 

households who are “ineligible” because of absence of fecund woman.   

However, an important step is to check the overlap and the region of common 

support between treatment and comparison group in the selected sub-sample. 

Several ways are suggested in the literature, where the most straightforward one 

is a visual analysis of the density distribution of the propensity score in both 

groups, as presented in Figure 5.1. This figure indicates an expected pattern, 

where in the left tail of the propensity score distribution there is a prevalence of 

untreated, while approaching the right tail untreated density becomes lower and 

lower. From figure 5.1 we get an indication that treated and controls overlap 

sufficiently. In fact, there are no large intervals where units of only one group are 

missing. 

 

                                                   
24 Similar good results were obtained also using different matching methods. 
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Figure 5.1 – Distribution of the propensity score in the treated and control 

group 
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However, several methods can be used to determine the region of 

common support more precisely25. The simplest is, essentially, based on 

comparing the minimum and maximum of the propensity score in both groups 

(min-max criterion). In our case, the estimated propensity score lies between 

0.00486 and 0.94315 for control and between 0.02061 and 0.95379 for treated. 

Hence, the common support, determined by the min-max criterion, is 0.02061, 

0.94315. As noticed by Becker and Ichino (2002), limiting estimates on the 

common support could improve matching quality, but this could not be the case 

when dropping observation out of the support we exclude some good match for 

                                                   
25 These methods are reviewed by Crump et al (2007). They also suggest that the limited overlap 
problem can be also addressed by changing the estimand of interest. This is a method to assess 
robustness with respect to possible common support failure. Lechner (2000) argues that either 
ignoring the common support problem and estimate causal effects only for subpopulation on the 
common support could be misleading. Ignoring the problem may result in bias due to non 
comparable control and treatment groups. Discarding observations out of the common support 
could give inconsistent estimates especially in the case of heterogeneous treatment effect. He 
suggests a method to bounding the treatment effects in case of failure of the CS condition. 
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observations that are close to the bounds of the support. However, in our case we 

have only 16 units (16/1537 = 1%) out of Common Support (10 controls (10/968 

=1%) and 6 (6/569 = 1%) treated). These 16 units are the only ones that we 

discard using some matching methods (kernel and nearest neighbour with 

replacement). As noticed by Bryson et al (2002), when the proportion of lost 

observations is small, discarding observations out of the common support poses 

few problems. Therefore CS seems not to be a problematic issue in our 

application.  

Nevertheless we note that the figure 5.1 shows, as usual, quite low 

densities in the tails of the propensity score distribution. Therefore, we explore 

an alternative method to determine the common support: the trimming 

procedure, suggested by Heckman et al (1997). 

The trimming method consists to drop observations which estimated 

propensity score density is below a certain threshold. We use three different 

thresholds: 2% (as used, for example, by Heckman et al, 1997; Smith and Todd, 

2005), 3%, 5%.  

In the table 5.6 we show a sensitivity analysis to different methods to determine 

the CS. The matching method is still the nearest neighbour with replacement. As 

we can see from the table, the estimated ATE and ATT are quite robust and the 

number of discarded units is limited both using the min-max criterion and 

trimming method. In the table we included also the estimate restricted to the so-

called “thick support”, which is a way to assess robustness of estimates with 

respect to subject in the tails (Black and Smith, 2004). The “thick support” is 

defined as the region so that 0.33<P(D=1|X)<0.67. From table 5.6 we can see 

that estimates based on the “thick support” are very similar to the baseline ones. 

This can be taken, as suggested by Black and Smith (2004) and Eren (2006), as 

evidence that measurement error and selection on unobservable have at most a 

modest effect on the estimated causal effect. However, imposing the “thick” 

support drastically reduces the sample size and, as a consequence, the ATT 

become statistically non-significant. 
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Table 5.6 – Sensitivity analysis to different ways to determine the common 

support (Standard error in parentheses). 

Treated Untreated Common 
support method M U TOT M U TOT 

ATT ATE 

None 554 0 569 964 0 968 -353 
(129) 

-411 
(86) 

Minima-maxima  549 20 569 957 11 968 -356 
(116) 

-411 
(87) 

Trimming 2% 544 25 569 946 22 968 -337 
(113) 

-397 
(84) 

Trimming 3% 540 29 569 934 34 968 -324 
(107) 

-383 
(76) 

Trimming 5% 540 29 569 915 53 968 -318 
(119) 

-371 
(79) 

Thick support 
(0.33 – 0.67) 

266 303 569 268 700 968 -355 
(209) 

-432 
(150) 

Note: M = matched; U = unmatched (discarded units). 
 

 

5.3.3     Sensitivity to the matching algorithm  

As briefly discussed in chapter 2, several methods can be used to match control 

and treated units. We already noted that, asymptotically, all PSM estimators 

should yield the same results, while in small samples the choice of the matching 

algorithm can be important, where usually a trade-off between bias and variance 

arises. It is, also, clear that there is no “winner” for all situations and that the 

choice of the estimator crucially depends on the situation at hand. 

 We explored this issue by comparing estimates from different methods. 

These are presented in table 5.7, along with the units discarded by the several 

procedures. Since the estimates are robust to the matching method, the choice is 

not crucial. We note that by using some methods (kernel methods and the nearest 

neighbour with replacement and without caliper) we discard only units out of the 

common support, which in the table 5.7 is determined by the min-max criterion. 

In the following analyses, likewise those presented in the previous sections, we 

use the nearest neighbour method with replacement (and without caliper).  
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Table 5.7 – Sensitivity to the matching method (standard errors in 

parentheses) 

Treated Untreated 
Method ATT ATE

M U TOT M U TOT
nn with replacement and 
caliper(0.01) 

-361
(118)

-414 
(83)

549 20 569 957 11 968

nn without replacement; 
with caliper (0.01) 

-429
(87)

-419 
(81)

397 172 569 405 563 968

nn with replacement 
(without caliper) 

-356
(116)

-411 
(87)

563 6 569 958 10 968

nn without replacement 
(without caliper) 

-414
(67)

-454 
(59)

563 6 569 563 405 968

radius matching (0.01) -406
(88)

-416 
(74)

549 20 569 957 11 968

gaussian kernel -426
(79)

-416 
(69)

563 6 569 958 10 968

epanechnikov kernel -446
(86)

-423 
(71)

563 6 569 958 10 968

Note: nn = nearest neighbour; M = matched; U = unmatched (discarded units); when a caliper is 
impose to the nn or the radius method is used the tolerance level was set to 0.01 (that is the 
propensity score for matched treated and control should differ at most for 0.01). 
 

 

5.3.4     Assessing the unconfoundedness assumption 

In the previous sections we assessed the matching quality, the overlap and the 

robustness of the PSM to the matching method. However, the most critical 

requirement of the PSM is that UNC holds, which is not directly testable by the 

data. It is therefore of interest to assess the extent parameter estimates might be 

affected by any violation of the UNC.  

Several approaches are proposed in the literature (see Ichino et al, 2007 

or Imbens, 2004 for an extended discussion). A first strategy is to focus on 

estimating the causal effect of a treatment that is known to have a zero effect, 

e.g. by relying on the presence of multiple control groups, as suggested by 

Rosenbaum (1987). If one has a group of eligible and ineligible non-participants, 

the treatment effect which is known to be zero can be estimated using only the 

two control groups (where the treatment indicator then has to be a dummy for 

belonging in one of the two groups). 
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Any non-zero effect implies that at least one of the control groups is 

invalid. In our application a second control group is given by the households 

with no woman in the fecund age at the first wave (“ineligible” to have children).  

Another idea is to estimate the causal effect of the treatment on variables 

known to be unaffected by it, typically because their values are determined prior 

to the treatment itself (Imbens, 2004). If this is not zero, this implies that the 

treated observations are distinct from the controls; otherwise it is more plausible 

that the unconfoundedness assumption holds. If the variables used in this proxy 

test are closely related to the outcome of interest, the test arguably has more 

power. In our context, we can think to measure the effect of the treatment D, as 

defined in section 5.1, on covariates measured at the first wave. We expect that 

having a child between 1992 and 1997 had no impact on variables measured in 

199226.  

We present a set of indirect tests of the UNC in the table 5.8. The 

estimated ATT are very small, as required, and in any case not significant. These 

indirect tests, however, are far from being definitive about the validity of the 

UNC.  

An alternative approach is to implement a sensitivity analysis in order to 

assess the effect on the estimates of a departure from the UNC. We adopt the 

simulation-based approach suggested by Ichino, Mealli and Nannicini (2007 – in 

the following IMN). The underlying hypothesis is that assignment to treatment 

may be confounded given only the set of observables covariates X (i.e. the UNC 

does not hold) but it is unconfounded given X and an unobservable covariate 

U27. Thus, Y0 ⊥ D | (X, U). By changing the assumptions about the distribution of 

U, we can assess the robustness of the ATT with respect to different hypotheses 

regarding the nature of the confounding factor. Moreover, we can verify whether 

there exist a set of plausible assumptions on U under which the estimated ATT is 

driven to zero, or very far away, by the inclusion of U in the matching set. 

                                                   
26 However, if the decision to have a child was taken prior to the first wave there could be some 
sort of “anticipation effects”. This is unlikely to hold in the context of our application. 
27 This assumption is used also in other works (e.g. Imbens, 2003), but the approach used here 
has the advantage of allowing to assess point estimates sensitivity without relying on parametric 
estimation of the outcome. 
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Table 5.8: Indirect tests of unconfoundedness  

Test ATT Standard error

Using a second control group 14.08 56.97

Using the following variables as outcome: 

Consumption in 1992 -32.95 42.60

Sex of household head in 1992 0.02 0.03

Age of household head in 1992 -1.51 0.95

Kinh indicator in 1992 -0.01 0.02

%kids (0-4) in 1992 -0.86 1.53

%kids (5-9) in 1992 -1.33 1.29

Farm indicator in 1992 0.05 0.04

Educational index in 1992 -1.49 2.07

Household size in 1992 -0.21 0.18
Note: the first test compares two control groups. The first is the one used in the previous 
analyses: households with at least one married woman aged [15-40] at the first wave and with 
no childbearing events between the two waves. The second is represented by household with no 
woman aged [15-45] at the first wave. The “treatment” in this case consist to belong to the first 
control group. The other tests, estimate the effect of childbearing events on the specified 
outcome. 
 

 

IMN assume in the simulation of the U-values that also the outcome is a binary 

variable. If the outcome is continuous, which is our case, a transformation is 

needed so that the outcome takes the value 1 if it is above a certain threshold (the 

median for example) and 0 otherwise, alternatively one could consider other 

outcome variables such as poverty status which essentially is a dichotomous 

transformation of consumption expenditure28. However, in the final step of the 

simulation we estimate the effect on the original specification of the outcome, 

which in our case is a continuous one. 

The potential confounder can be specified in different ways. One 

alternative is a “calibrated” version, where we make the distribution of U similar 

to the empirical distribution of important binary covariates in the set X. Another 
                                                   
28 For technical details on the simulations, see Ichino et al (2007) and Nannicini (2007) for 
details on the STATA module sensatt, which implements the sensitivity analysis. 
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alternative is to specify a “killer” confounder, where the values of U are 

specified so that its association with the outcome and the treatment is 

increasingly high. In this sensitivity analysis, we are particularly worried about 

the fact that the estimated ATT could become zero, or non significant, when 

including U. This is an interesting approach, because it gives us a measure of 

how large the association between U, Y0 and D has to be in order to cancel out 

the ATT. The distribution of U is specified by the following four key parameters:  

 

 pij = P (U=1|D= i, Y= j ) = P (U=1|D= i, Y= j , X)   i, j = 0,1  (5.2) 

 

In (5.2) the hypothesis (used in the simulation) that U is independent to X 

conditional to D and Y is made29. In order to choose the signs of the associations, 

IMN note that if d = p01 – p00 > 0, then U has a positive effect on Y0 

(conditioning on X) whereas if s = p1. – p0. > 0, where pi.= P(U=1|D=i),  then U 

has a positive effect on D. If we set pu = P(U=1) and d’ = p11 – p10, then the four 

parameters pij are univocally identified, specifying the values of d and s. Hence, 

we can fix the two quantities pu and d’, which will not affect the baseline 

estimate, and change the values of d and s to assess the sensitivity of the 

estimates.  

 Table 5.9 shows the sensitivity analysis to some calibrated confounders, 

while the results for the “killer” confounder are given in Tables 5.10a - 5.10d. In 

these tables, the quantities G and A are defined as: 

 

 

 , X) , U | D P(Y  , X) , U | D P(Y 
 , X) , U | D P(Y  , X) , U | D P(Y 

G
000  001
100  101

======
======

=      (5.3) 

 

 

and 

 

                                                   
29 The authors, in a previous version of the work (Ichino et al, 1996) assessed the relevance of the 
assumptions used in the simulation through Monte Carlo studies. They found that imposing a 
binary confounder, instead of a continuous one, and the independence of U and D do not sensibly 
affect the validity of the analyses. 
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The parameter G, in the (5.3), is the average odds ratio from the logit 

model of P(Y =1| D = 0, U, X) calculated over 1000 iterations. It is, in words, a 

measure of the effect of U on Y, and we refer to as the outcome effect. The 

parameter A, in the (5.4), refers to the average odds ratio from the logit model of 

P(D=1|U, X). This is a measure of the effect of U on D, and is therefore a 

measure of the selection effect. Therefore, these parameters are important in 

order to evaluate the magnitude of the associations that makes the ATT sensibly 

different from the baseline estimate.   

The first simulation in table 5.9 sets the distribution of U to be similar to 

the distribution of the household head sex. In this case, given that 82% of the 

households who were exposed to treatment (D=1) and showed a consumption 

growth higher than the median (Y=1) have a male head, by setting p11 = 0.82 we 

impose that an identical fraction of households are assigned a value of U|(T=1, 

Y=1) equal to 1. An analogous interpretation holds for the other probabilities pij. 

When controlling for observables, U has a slightly negative effect both on the 

outcome (G = 0.8 < 1) and on probability of being treated (A = 0.92 < 1). Under 

a deviation from the UNC with these characteristics, the ATT is estimated to be 

equal to -406. This estimate is qualitatively in line with the one obtained 

assuming no confounding effects, and remains statistically significant30. Similar 

results hold in the other simulations.  

 

 

 

 
 
                                                   
30 In order to compute a standard error of the ATT estimator when U is included in the set of 
matching variables, IMN considered the problem of the unobserved confounding factor as a 
problem of missing data that can be solved by multiply imputing the missing values of U. See 
Ichino et al (2006) for details. 
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Table 5.9 – Sensitivity analysis to “calibrated” unobserved confounders 
 

Fraction U = 1 
by treatment / outcome 

 

p11 p10 p01 p00

Outcome 
effect 
(G) 

Selection 
effect 
(A) 

ATT 

No unobserved 
confounders 

--- --- --- --- --- --- -356 
(111) 

Unobserved confounder similar to: 

Sex of hhh 0.82 0.86 0.85 0.87 0.80 0.92 -406 
(129) 

Kinh 0.86 0.73 0.79 0.78 2.46 0.64 -412 
(132) 

% children  0-4 0.65 0.53 0.41 0.41 1.16 2.58 -440 
(146) 

% women 15-45 0.70 0.58 0.45 0.41 1.15 2.15 -445 
(142) 

Farmer 0.64 0.72 0.55 0.56 0.99 1.83 -440 
(139) 

EDU 0.45 0.40 0.62 0.50 1.68 0.55 -421 
(135) 

Consumption W1 0.41 0.36 0.42 0.37 1.24 0.93 -419 
(135) 

Age of hhh 0.38 0.35 0.37 0.36 1.05 1.02 -413 
(134) 

Note: Estimates based on the nearest neighbour matching. Standard errors are analytical and each
reported ATT is the average over 1000 iterations. The parameters p11, p10, p01 and p00 characterise
the distribution of U and are defined in the formula (5.2). 
 

 

  

The key conclusion from table 5.9 is that for different simulated U, the 

resulting ATT is never substantially different from the ATT based on the UNC 

assumption (-356). Thus, even if an unobservable variable (with the same 

distribution as those listed) was excluded from the conditioning set in the PSM, 

the effect on the estimated ATT would be negligible. 

In tables 5.10a-5.10d we go a step further, imposing “killer” confounders. 

That is, we explore the robustness of the ATT by choosing the parameters d and 

s so that the outcome and selection effects are increasingly large. We implement 

four separates sensitivity analyses according to the signs of the association 

between U and D, U and the binary transformation of Y.  
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Table 5.10a – Sensitivity analysis to confounders so that G < 1 and A < 1 

 s = -0.1 s = -0.2 s = -0.3 s = -0.4 s = -0.5 

d= -0.1  
 

-442 
(143) 

G=0.73 
A=0.48 

-452 
(157) 

G=0.71 
A=0.29 

-457 
(172) 

G=0.67 
A=0.17 

-464 
(193) 

G=0.66 
A=0.09 

-460 
(217) 

G=0.62 
A=0.04 

d= -0.2 
 

-446 
(139) 

G=0.42 
A=0.56 

-456 
(150) 

G=0.39 
A=0.34 

-463 
(168) 

G=0.38 
A=0.20 

-466 
(179) 

G=0.35 
A=0.11 

-471 
(207) 

G=0.31 
A=0.04 

d= -0.3 -451 
(135) 

G=0.25 
A=0.64 

-446 
(146) 

G=0.22 
A=0.40 

-461 
(161) 

G=0.20 
A=0.23 

-472 
(173) 

G=0.18 
A=0.12 

-477 
(196) 

G=0.14 
A=0.05 

d= -0.4 -446 
(136) 

G=0.12 
A=0.74 

-441 
(142) 

G=0.12 
A=0.45 

-470 
(156) 

G=0.10 
A=0.26 

-469 
(169) 

G=0.07 
A=0.13 

-480 
(188) 

G=0.05 
A=0.04 

d= -0.5 -434 
(135) 

G=0.07 
A=0.86 

-446 
(140) 

G=0.05 
A=0.52 

-471 
(152) 

G=0.04 
A=0.29 

-468 
(161) 

G=0.03 
A=0.15 

n.a. 

Note: n.a. = combination resulting in inadmissible values of the parameters 
characterising the distribution of U. 

 

Table 5.10b – Sensitivity analysis to confounders so that G > 1 and A  < 1 

 s = -0.1 s = -0.2 s = -0.3 s = -0.4 s = -0.5 

d= +0.1  -445 
(150) 

G=2.03 
A=0.36 

-448 
(168) 

G=1.93 
A=0.22 

-449 
(195) 

G=2.08 
A=0.13 

-446 
(217) 

G=2.17 
A=0.07 

-435 
(251) 

G=2.14 
A=0.03 

d= +0.2 
 

-444 
(154) 

G=3.33 
A=0.31 

-445 
(177) 

G=3.27 
A=0.18 

-444 
(202) 

G=3.77 
A=0.11 

-433 
(238) 

G=3.79 
A=0.06 

-417 
(290) 

G=4.28 
A=0.02 

d= +0.3 
 

-443 
(163) 

G=5.99 
A=0.26 

-435 
(186) 

G=6.33 
A=0.15 

-437 
(216) 

G=6.53 
A=0.09 

-415 
(263) 

G=7.58 
A=0.04 

-402 
(324) 

G=9.84 
A=0.02 

d= +0.4 
 

-436 
(172) 

G=11.57 
A=0.21 

-417 
(197) 

G=13.01 
A=0.12 

-417 
(238) 

G=13.29 
A=0.07 

-383 
(308) 

G=18.17 
A=0.03 

-359 
(435) 

G=31.28 
A=0.01 

d= +0.5 
 

-420 
(184) 

G=36.02 
A=0.17 

-398 
(219) 

G=30.67 
A=0.09 

-369 
(271) 

G=51.94 
A=0.05 

-338 
(388) 

G=117.46 
A=0.02 

-238 
(639) 

G=2128.61 
A=0.01 
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Table 5. 10c – Sensitivity analysis to confounders so that G < 1 and A > 1 

 s = +0.1 s = +0.2 s = +0.3 s = +0.4 s = +0.5 

d= -0.1  -431 
(135) 

G=0.73 
A=1.19 

-440 
(137) 

G=0.73 
A=1.85 

-445 
(149) 

G=0.76 
A=2.94 

-448 
(171) 

G=0.74 
A=4.79 

-450 
(192) 

G=0.69 
A=8.43 

d= -0.2 
 

-445 
(135) 

G=0.45 
A=1.39 

-432 
(140) 

G=0.43 
A=2.16 

-448 
(156) 

G=0.43 
A=3.43 

-440 
(175) 

G=0.43 
A=5.69 

-436 
(200) 

G=0.38 
A=10.03 

d= -0.3 
 

-441 
(133) 

G=0.25 
A=1.62 

-436 
(147) 

G=0.26 
A=2.56 

-441 
(166) 

G=0.25 
A=4.10 

-437 
(189) 

G=0.24 
A=6.98 

-441 
(224) 

G=0.22 
A=12.47 

d= -0.4 
 

-432 
(136) 

G=0.14 
A=1.90 

-435 
(149) 

G=0.15 
A=3.05 

-431 
(172) 

G=0.14 
A=4.99 

-427 
(201) 

G=0.13 
A=8.73 

-415 
(247) 

G=0.11 
A=16.41 

d= -0.5 
 

-429 
(142) 

G=0.08 
A=2.27 

-430 
(163) 

G=0.08 
A=3.74 

-422 
(189) 

G=0.07 
A=6.39 

-402 
(222) 

G=0.06 
A=11.47 

-389 
(293) 

G=0.05 
A=23.49 

 

 

Table 5.10d– Sensitivity analysis to confounders so that G > 1 and A > 1 

 s = +0.1 s = +0.2 s = +0.3 s = +0.4 s = +0.5 

d= +0.1  
 

-428 
(136) 

G=2.12 
A=1.18 

-451 
(138) 

G=2.12 
A=1.38 

-441 
(143) 

G=2.16 
A=2.19 

-460 
(155) 

G=2.18 
A=3.54 

-459 
(173) 

G=2.40 
A=6.08 

d= +0.2 
 

-442 
(134) 

G=3.29 
A=1.16 

-434 
(137) 

G=3.85 
A=1.18 

-442 
(136) 

G=4.17 
A=1.88 

-456 
(150) 

G=4.49 
A=3.08 

-465 
(169) 

G=5.28 
A=5.33 

d= +0.3 
 

-441 
(135) 

G=6.32 
A=1.05 

-416 
(133) 

G=7.97 
A=1.03 

-447 
(135) 

G=7.78 
A=1.65 

-447 
(148) 

G=8.07 
A=2.67 

-461 
(163) 

G=10.59 
A=4.65 

d= +0.4 
 

-441 
(136) 

G=13.09 
A=1.05 

-424 
(134) 

G=15.94 
A=1.08 

-452 
(135) 

G=40.14 
A=1.41 

-449 
(145) 

G=24.41 
A=2.34 

-465 
(155) 

G=49.47 
A=4.14 

d= +0.5 
 

-433 
(142) 

G=40.72 
A=1.06 

-437 
(134) 

G=83.74 
A=1.05 

-435 
(137) 

G=232.02 
A=1.21 

-450 
(142) 

G=143.41 
A=2.04 

-465 
(152) 

G=172.65 
A=3.64 
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As we can see from Tables 5.10a-5.10d the estimated effect is always 

negative and in the majority of cases significant, as well as not dramatically 

different from the baseline estimate. In the first table, 5.10a, where both the 

outcome and selection effects are negative (odds ratios < 1) the estimates are 

always significant, even for very low values of G and A. The higher difference 

between the ATT in this table and the baseline estimate is obtained when d is set 

to -0.4 and s is set to -0.5. In this case the ATT is sensibly higher in absolute 

values (-480) than the baseline, but the outcome and selection effects are very 

strong (G = 0.05 ; A = 0.04). 

From the other tables we note that only if the associations of U with D 

and/or Y are very strong the ATT becomes lower (in absolute value) than the 

baseline and not significant. This happens in particular if the effects of U on D 

and on Y have opposite signs. It is interesting to note that a theoretical relevant 

omitted variable such as unobserved ability, has this characteristic since it is 

(potentially) positively associated with Y and negatively associated with D.  

For example, we get the weakest ATT (= -238) in the table 5.10b, 

corresponding to d = +0.5 and s = -0.5. However, in this case both the outcome 

and the selection effects are unreasonably strong (G = 2128.61; A = 0.01). A way 

to assess how strong the outcome and selection effects are (measured, 

respectively, by G and A) is to compare the odds ratios G and A with those 

presented in the Table 5.11, where we estimated two separate logit models, 

taking as outcomes D and the binary transformation of the outcome. For 

example, we can see from this table that very few covariates show odd ratios 

higher than 2 and lower than 0.7.  

The conclusions we get from this sensitivity analysis is that ATT 

estimated through PSM is rather robust to the presence of potentially omitted 

variables. Only if the effect of this unobserved confounder (measured by G and 

A) would be unreasonably strong (compared to the effects of observed 

covariates) the estimated effect becomes insignificant.  
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Table 5.11 – Estimated odds ratios in the logit models for the treatment (D) 
and the binary transformation of the outcome (Y). 
 

           Odds ratios Covariates 
          Y            D 

D 0.41 --- 
Sexhhh 0.95 0.98 
Kinh 1.71 0.97 
Perkids_04 0.78 1.31 
perkids_59 0.79 0.97 
perkids_1014 0.97 0.96 
permale_1545 0.99 1.02 
perfema~1545 0.97 1.02 
Farm 0.98 1.12 
Edu 3.02 0.68 
rlpcex1 0.99 0.99 
region1 0.90 0.97 
region2 0.85 0.61 
region3 0.70 1.75 
region4 1.43 1.89 
region5 1.34 4.99 
region6 5.65 1.35 
Agehhh 0.99 0.99 
Hhsize 0.97 0.91 
peractm_1545 0.99 1.01 
peractf_1545 0.99 1.00 
IEI 1.57 0.95 
EDI 0.91 1.16 
HFI 1.72 0.95 

 

 

5.3.5     Sensitivity to the equivalence scale 

In this section we evaluate if the estimated effect is robust to the imposed 

equivalence scale. Formally, the number of adult equivalent, Ne, in each 

household is given by: 

 
( ) θα  NcNaNe ×+= ,                               (5.5) 

 

where Na and Nc stand for the number of adult and children, respectively. The 

parameter α represents the adult-equivalence of a child, and the parameter θ, 

which is often referred to as “size elasticity”, reflects possible economies of 
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scale. Both parameters take a value between 0 and 1. How these parameters 

should be calculated is still subject to debate, and there is no consensus on the 

matter (World Bank, 2005). 

There are two possible solutions to this problem: either pick a scale that 

seems reasonable on the grounds that even a bad equivalence scale is better than 

none at all, or try to estimate a scale typically based on observed consumption 

behaviour from household surveys. However, there are so far no satisfactory 

methods for estimating the parameters of equivalence scale (Deaton and Zaidi, 

2002). Moreover, it is a common empirical finding that the effect of 

demographic variables, such as the household size or the number of children, is 

weakened when imposing equivalence scales that are different from per capita 

expenditure (White and Masset, 2003; Balisacan et al, 2003). 

As noted by Lanjouw and Ravallion (1995), it is always possible to 

impose the parameters of the equivalence scale so that the effect of demographic 

variables is cancelled out. 

In chapter 1, we said that the equivalence scale we use is quite simple, 

consisting to assuming no economies of scale (θ =1) and to imposing a weight for 

each child (α) equal to 0.65 an adult. Given the conceptual and empirical 

problems involved by the formulation of equivalence scale, it is important to 

carry out a sensitivity analysis. This is presented in table 5.12, where can see 

how the ATT change by imposing different values of the parameters α and �. 

From formula (5.5) is evident that the lower the values of α or � are, the higher 

the values of consumption expenditures are, in both waves. Since in this period 

consumption growth was positive, this fact implies an increasing mean (or 

median) equivalent consumption growth. The ATT follows this trend in the 

opposite direction: the higher the consumption growth is, the lower the effect of 

childbearing is. This result is intuitive. In fact, the lower is α, the lower is the 

child-weight, and hence the childbearing effects. On the other hand, the lower is 

� the higher is the size elasticity, and hence the lower is the effect of increase the 

household size. When these two effects are combined, we get a very weak effect 

of a new child entering the household. 
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Table 5.12 – Sensitivity analysis of the ATT estimated by PSM to different 

imposed equivalence scales (standard error in parenthesis).  

 

α � Median equivalent 
consumption growth ATT 

1.00 1.00 920.89 -459 
(106) 

0.80 1.00 1002.94 -408 
(97) 

0.65 1.00 1073.12 -356 
(116) 

0.50 1.00 1151.41 -298 
(117) 

0.35 1.00 1237.30 -262 
(119) 

    
0.65 0.80 1418.76 -306 

(160) 
0.65 0.70 1641.79 -256 

(124) 
0.65 0.60 1900.90 -186 

(153) 
0.65 0.50 2201.90 -92 

(256) 
    

1.00 0.50 2058.45 -227 
(228) 

0.50 0.50 2276.22 -140 
(258) 

 

 

We have to note, that in our sub-sample treated households have, on average, 

more members than controls and, as a consequence, the effect of imposing 

increasing economies of size is more pronounced for such households. This fact 

implies that consumption expenditures become more similar between treated and 

control households, and hence the ATT becomes lower.  

From our sensitivity analysis, however, we see that the estimated effect is 

quite robust to several specifications of the equivalence scale. Only with “very 

strong” equivalence scale the ATT becomes not significant. In particular, ATT is 

not significant as soon as the size elasticity is set to 0.5. 
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5.4 Two proposed instrumental variables for the identification 

of the causal effect of fertility on poverty 
 

All the previous analyses relied on the assumption that a regular assignment 

mechanism has regulated the selection into treatment. In this section we discuss 

the possibility that some unobserved confounders exist and the methods we used 

to face this eventuality. As we said in chapter 2, when we could not assume that 

unconfoundedness hold conditional only to observed covariates, but this 

assumption would be tenable only conditioning also on some unobservables, we 

term the assignment mechanism as latent regular. In other words, selection is 

present also on unobservables.  

In the context of our application, childbearing is in this case endogenous 

despite controlling for observed characteristics. There are several reasons why 

childbearing might be endogenous with respect to economic wellbeing. One 

obvious reason is that it is determined by adults’ labour earnings. Given 

unobserved ability levels, fertility decisions are endogenous with respect to 

women’s work decisions and therefore their earnings. Ability is an unobserved 

confounder inasmuch as it influences also take-up of modern contraception (Kim 

and Aassve, 2006). Also fecundity can represent an omitted variable in our 

application.  As noted by Kim et al (2005), more fecund women are at risk of 

low investment in human capital. As a consequence, they earn less. Obviously, 

on the other hand, fecundity sensibly influences fertility.  

The instrumental variable approach has been the workhorse in economics 

to handle the omitted variable problem, but relies of course on the fact that valid 

and relevant instruments are available. Whereas these are not always easy to 

come by we propose two alternatives in our setting.  

The first is a variable that takes value 1 if the household has no male 

children in the first wave - 0 otherwise. This kind of instrument is widely used 

(e.g., Angrist and Evans, 1998; Chun and Oh, 2002; Gupta and Dubey, 2003). 

The argument is that couples have certain gender preferences for their children - 

in particular they tend to have a preference for having at least one son. In other 

words, couples are more likely to have another child if the previous ones were 
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girls. In so far couples have a preference for boys, such a variable work well as 

an instrument since it is expected to have an impact on fertility but not a direct 

effect on poverty. Hence, the exclusion restriction seems to be reasonable. The 

strong preference for sons in Vietnam is confirmed by many studies (Haughton 

and Haughton, 1995; Johansson, 1996 and 1998; Belanger, 2002). Also 

monotonicity seems to be plausible with this instrument, since the presence of 

defiers is unlikely. In fact, the no-defiers assumption implies that households that 

would have (at least) one child between the two waves if they had one or more 

male children in the first wave (that is, no “encouraged” to have more children, Z 

= 0) would also have more children if they had no male children (“encouraged” 

to have more children, Z = 1). Moreover, the instrument can be thought of as 

being randomised, since households can clearly not choose the sex of their 

children31. To better highlight the preference for sons we selected only 

households that had at least 2 children in the first wave. Thus, having only girls 

in the first wave, can proxy an exogenous source for increased fertility between 

the waves.  

The second instrument is a variable equal to 1 if in the community where 

the couple reside no contraceptive method, between IUD and condom, is 

available and 0 otherwise32. Instruments based on geographical variation in 

availability of services are not new (see for example: McClellan et al., 1994; 

Card, 1995). The variable we propose works well as an instrument if households 

living in communities with no contraceptive facilities have higher risks of 

childbearing and if contraceptive availability in the community has no direct 

effect on consumption growth. However, it is not unlikely that community 

characteristics that impact on the availability of contraceptive can also have an 

effect on households’ poverty. Therefore, we cannot necessarily assume this 

instrument to be completely randomised as we do for the first one. 

Randomisation can only be assumed in so far we are also conditioning on a set of 

                                                   
31 This is not completely true in those countries were the selective abortion are a current practice. 
It was found that this is the case for example for India where amniocentesis diagnoses are 
available and used for sex-selective abortions (Gupta and Dubey, 2003).   
32 IUD and condom are the most available contraceptives method in Vietnam and the IUD is the 
most largely used (Anh and Thang, 2002). 
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background variables. Controlling for covariates is consequently important in 

this setting. Monotonicity seems plausible also in this case, as the presence of 

defiers seems unlikely. In this case, it would imply that households who would 

have (at least) one child between the waves if they live in a community with 

available contraception (that is, not “encouraged” to have more children, Zi = 0) 

would also have one child if they live in a community without contraception 

(“encouraged” to have more children, Zi = 1). 

 

 

5. 5   Instrumental variable methods results 

 
The fact that the first instrument is randomized means that we can apply the 

Wald estimator without covariates. The results, presented in table 5.13, indicate a 

strong and negative effect of new children on the consumption expenditure and 

comparing it with the Frolich estimate we can see that the results are similar, 

confirming that controlling for covariates does not make a huge difference33. 

This result can be seen as reinforcement of the fact that the instrument can be 

assumed as randomised.   

Two important considerations are in order here. First, since we selected 

households with at least 2 children these estimates refer properly only to this 

sub-population. Moreover, and more importantly, since IV estimates the LATE, 

these results are referred properly only to the latent sub-population of compliers, 

who are those choosing to have another child, because they did not already have 

a male child. The extent to which estimates can be compared with PSM 

estimates depends, in general, on the nature of the instrument. If we can assume 

that the average causal effect for “currently” non-compliers (always-takers and 

never-takers) is equal to the average causal effect for “currently” compliers (the 

LATE) then LATE and ATE coincide. This hypothesis is a-priori strong34. 

                                                   
33 The Frolich estimates have been obtained as the ratio of two matching estimators. We used 
kernel based matching. The final point estimates and standard errors were obtained bootstrapping 
over 1000 iterations. The covariate we use in the IV procedures are the same as those used in the 
analyses presented in section 5.2. 
34 This assumption is satisfied, for example, in case of homogeneous effects. 
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Table 5.13 – Local average treatment effect estimates through Instrumental 
Variables  
 

 

Instrumental variable 

Son preference 
Contraception 

availability in the 
community 

Estimates 

Wald      
estimator 

Frolich 
estimator 

Wald 
estimator 

Frolich 
estimator 

LATE (standard errors 
in parenthesis) 

-429 
(228) 

-490 
(630) 

-8822 
(8597) 

-785 
(1672) 

Proportions of compliers 0.28 0.16 0.09 0.01 
Notes: point estimates and standard errors for the Frolich’s method have been obtained by 
bootstrapping over 1000 iterations. The covariates used in the Frolich estimator are the same as 
those used in the analyses presented in section 5.2. 

 

However, in the case where we use the sex ratio of the children as the 

instrument, one may argue that LATE and ATE will indeed be quite similar. 

First, we note that the estimated proportion of compliers equals 0.2, which is a 

quite high compared to many other studies (see e.g. Angrist and Evans, 1998). 

This proportion of compliers is equal to the estimated causal effect of the 

instrument on the treatment variable D, E[D1i – D0i]. Hence, there is evidence to 

suggest this instrument being strong. Moreover, the fact that male preference is 

likely to be a nationwide phenomenon in Vietnam implies that the estimated 

effect on the sub-group of compliers could be referred to the whole population. 

This argument is of course supported by the fact that the LATE from the IV 

estimation (-429) is in this case almost equal to the ATE from the PSM 

estimation (-411)35. In this sense the IV can be viewed, in this special case, as a 

robustness check for the estimates resulting from the methods based on the UNC.  

Using the community level availability of contraception gives a very 

different picture. The first issue is that we cannot assume that this instrument is 

truly randomised, which means that controlling for other covariates is essential. 

As a confirmation of this fact we observe a huge difference between the Wald 

                                                   
35 We contrasted the LATE with the ATE instead than ATT because in the estimation of LATE 
we use either treated and untreated compliers, likewise in the calculation of ATE both treated and 
controls (in the whole population) are included. 
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and the Frolich estimates. Frolich estimates, which are more reliable, show a 

strong and negative effect for the sub-population of households that are 

“encouraged” to have a child by the lack of contraception in the community. 

This LATE is not comparable with the LATE estimated with the first instrument 

(i.e. using the sex ratio) since the sub-population of compliers are very different. 

The estimated proportion of compliers for the second instrument is 0.01, 

hence the sub-population of households that “reacts” to this instrument is small. 

One could argue that since in Vietnam contraception is quite diffused compliers 

are in this case likely to be a rather selected group of marginalised households. 

This also could contribute to explain the much stronger effect. The low 

proportion of compliers implies that this instrument is weak and hence care is 

needed in the interpretation of this result since, as noted by AIR, the sensitivity 

of IV estimator to violations of exclusion restriction and monotonicity is higher 

when the proportion of compliers is lower. We have to note that IV estimates are 

quite imprecise with high standard errors, especially for this second instrument. 

Whereas these considerations would favour the sex ratio as an instrument 

over and above the community level availability of contraception, it is important 

to bear in mind that the latter has a clear policy relevance. In fact, contraception 

availability in the communities is a variable on which policy makers could act. 

The Frolich estimates indicate that that the expected causal effect from a fertility 

reduction induced by raising contraception availability in the communities is 

quite high. However, the size of the sub-population reacting to this policy 

(compliers) is rather small. Obviously, policy makers should consider both 

aspects in order to calibrate efficient policies. In our case, the policy could have 

a huge effect on a very small group.  

The other estimates also indicate that fertility impact considerably on 

economic wellbeing, but the policy implications are less direct. If policy makers 

worry about large households with many children, then targeted tax reductions 

and other benefits could help. In this way the existing gap between households 

with different number of children will be reduced. This policy clearly does not 

act on poverty through a fertility reduction and instead could influence a raise in 

fertility. However, our estimates do not generally suggest that the level of 
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economic wellbeing will increase fertility levels (see Table 5.3). In particular, 

the expenditure levels as recorded in the first wave do not seem to have any 

strong income effect on childbearing decisions36.  

 

 

5.6 Concluding remarks 

 

Several approaches are available in order to estimate causal effects. The 

appropriateness and interpretations of these models depend on the application at 

hand, and importantly, the available instruments. In many cases, methods relying 

on the UNC assumption are chosen, simply because instruments are hard to 

come by. The various implications of these methodological choices are rarely 

considered in applied work, but, as we point out, the underlying assumptions are 

important, especially when there is interest in comparing estimates from different 

methods. We discuss these methods in light of an application where we consider 

the effect of fertility on changes in consumption expenditure. The issue is that 

childbearing events cannot be considered as an exogenous measure of fertility, 

especially when the outcome relates to economic wellbeing – in our case 

measured in terms of consumption expenditure.  However, the discussion of the 

methods is general and applies to many other applications.  

Using methods based on the UNC assumption, such as simple linear 

regression and propensity score matching, we find that those households having 

children between the recorded waves have considerably worse outcomes in terms 

of changes in consumption expenditure. The negative impact is, however, highly 

heterogeneous, and varies substantially with education, for instance. We then 

assess, through an extensively sensitivity analysis, the potential effect from 

omitting relevant, but unobserved, variables without actually implementing an 

Instrumental Variable approach. This is a very useful tool especially when 

instruments are not available. In our application the estimates are robust with 

                                                   
36 However, the effect of consumption in 1992 on the childbearing decision reported in table 5.3 
refers to the whole sub-sample and we cannot exclude that some heterogeneity effect is in order. 
For example, for some quintile of the consumption distribution the effect could be nonzero. 
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respect to the omission of unobserved omitted variables. We find that the 

estimated effect becomes non-significant only if the association between the 

omitted covariate, selection and the outcome is extremely (and unreasonable) 

large.  

Despite the robustness of the UNC, in our application we implement 

nevertheless the IV method using two different instruments. The first is a well-

used instrument that relates to couples’ preference for sons. In this case the 

instrument is a binary variable taking value 1 in those households that at the first 

wave had no male children and 0 otherwise. The IV estimation is implemented 

for sub-sample of households with at least two children in the first wave. Since 

the instrument is close to being randomised, a simple Wald estimator can be 

used. The second instrument takes value 1 for households residing in a 

community where none of the contraceptive methods IUD and condom was 

available at the first wave and 0 otherwise (at least one was available). This 

instrument is not randomized and, hence, requires controlling for covariates. 

Whereas both instruments are reasonable they provide, not unexpectedly, very 

different parameter estimates. The fact that the IV estimates the LATE, as 

opposed to the ATE and ATT, is the key reasons for these differences.  

The use of Instrumental Variable methods in our application illustrates 

that reasonable instruments can lead to estimates that differ from those of 

methods based on UNC but also differ among them. In fact, compliers for one 

instrument can be very different from compliers to another instrument and, 

consequently, if the treatment effect is heterogeneous the estimated LATE in the 

two cases will necessarily differ.  With the first instrument we estimated a 

negative impact of fertility on poverty with a magnitude not dramatically 

different from that obtained by method based on the UNC. This could be an 

effect of the fact that the preference for son is quite a general phenomenon in 

Vietnam not involving particular kinds of households. The estimated proportion 

of compliers in this case is actually quite high: 20%. The estimate with the 

second instrument, on the contrary, is much higher, in absolute value. The 

estimated proportion of compliers in this case is small: 1%. This small sub-

population of households reacting to the availability of contraceptives is likely to 
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be highly selected. These households live in areas where no contraceptives were 

available. Clearly their opportunity to control fertility through contraceptive 

practices is much reduced, as it is unlikely that compliers are able to get 

contraceptives from elsewhere. In this sense, these households have a higher 

exposure to undesired childbearing. These communities are also likely to be 

more disadvantaged compared to others.  

Whereas the estimates based on this instrument is very different 

compared to the one based on the sex preference, an advantage is that it does 

have direct policy relevance, simply because the instrument itself is a policy 

variable. The effect on this sub-population is high and importantly, much higher 

than what is estimated for the whole population through the ATT and ATE. 

However, the size of this sub-population is rather small, which is an equally 

important consideration for the policy maker.  
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Appendix to chapter 5 

 
Table A.1 – Description of the covariates used in the applications presented 

in this chapter (all measured in 1992) 

Label Description 

Household level covariates 

Sexhhh Sex of the household head: Male = 1; Female = 0 
 

Kinh Kinh (principal ethnic group)= 1; non-Kinh = 0 
 

perkids_04 Percentage of kids aged [0-4] out of total number household  
members 
 

perkids_59 Percentage of kids aged [5-9]  out of total number household  
members 
 

perkids_1014 Percentage of kids aged [10-14]  out of total number 
household  members 
 

permale_1545 Percentage of male aged [15-45]  out of total number 
household  members 
 

perfema~1545 Percentage of female aged [15-45]  out of total number 
household  members 
 

Farm Farmer households = 1; Non-farmers = 0 
 

Edu Educational index obtained as: 
 
∑ GCi / ∑ GPi
 
where  
 
GCi = n. of completed grades by the household member i 
GPi = n. of potential grades the member i could complete at a 
given age. This is given by: 
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Educational grades we considered are: 
Primary school (compulsory): grades 1-5 
Intermediate: grades 6-9 
High school: grades 10-12. 
Note that each grade corresponds to one year and primary 
school starts when children are 6 years old.  
 

rlpcex1 Equivalised household consumption expenditure 
 

Agehhh Age of the household head 
 

Hhsize Household size (total number of members) 
 

peractm_1545 Percentage of working male aged [15-45] out of the total 
number of males aged [15-45] in the household 
 

peractf_1545 Percentage of working female aged [15-45] out of the total 
number of females aged [15-45] in the household 
 

Community level covariates 

IEI Infrastructural Economic Index obtained as: 
     
      IEI=  road + elect + pipeb + cradio + post +  
                marketd + marketpdc + pubtrpass + bigent +  
                usefert+ agrext + tottrac 
 
where: 
 
road = 1 if a road is present; 0 otherwise 
elect = 1 if electricity is available;  0 otherwise 
pipeb = 1 if pipe born water is available;  0 otherwise 
radio = 1 if a radio station is present;  0 otherwise 
post = 1 if a post office is present;  0 otherwise 
marketd = 1 if a daily market is present;  0 otherwise 
marketp = 1 if a periodic market is present;  0 otherwise 
pubtras = 1 if public transport is available;  0 otherwise 
bigent = 1 if a big enterprise is present;  0 otherwise 
usefert = 1 if majority of famers use chemical fertiliser;  0   
               otherwise 
agrext = 1 if an agriculture extension centre is present;  0  
              otherwise 
tractors = 1 if at least one large tractor is available;  0  
                otherwise 
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EDI Educational Index obtained as:  
 
     EDI= prims + lowsecs + upsecs + clitprog. 
 
Where: 
 
prims = 1 if a primary school is present;  0 otherwise 
lowsecs = 1 if a lower secondary school is present;  0  
               otherwise 
upsec = 1 if a upper secondary school is present;  0 otherwise 
clitprog = 1 if a community literacy program was   
                implemented in the 5 years period before 1992; 0   
                otherwise 
 

HFI Health Facilities Index obtained as : 
 
     HFI = hosp + clinic + comcli + doct +  
                phar + phydoct+ nurse + pharma + tmidw. 
 
Where: 
 
hosp = 1 if an hospital is present; 0 otherwise 
clinic = 1 if a private clinic is present;  0 otherwise 
comcli = 1 if a communal clinic is present;  0 otherwise 
doct = 1 if at least one doctor is present;  0 otherwise 
phar = 1 if a pharmacist is present;  0 otherwise 
nurse = 1 if a nurse is present;  0 otherwise 
pharma = 1 if a pharmacy is present; 0 otherwise 
tmidw = 1 if a trained midwife is present;  0 otherwise        

Regional dummies 

region1 Northern Mountains 
region2 Red River delta 
region3 North Central Coast 
region4 South Central coast 
region5 Central Highlands 
region6 Southeast 
region7 
(reference 
category) 

Mekong river delta 
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Chapter 6 

The multilevel dimension in the estimation 

of the causal effect of fertility on poverty 

in Vietnam  

 

 

 
Introduction 
 

In this chapter we re-analyse the estimation of the causal effect of fertility on 

poverty, treated in the previous chapter, with the goal of keeping into account the 

multilevel dimension of the problem. The methodological framework to which 

we refer was developed in chapter 3, where we discussed the statistical aspects 

of causal inference in a multilevel setting. In chapter 1, we introduced the 

substantive motivations that push us to emphasize the multilevel data structure in 

our application. In the present chapter we report the results of our analyses. In 

section 6.1 we analyse the effect of fertility on poverty using multilevel models. 

In section 6.2 we adopt a different strategy consisting in a combination of 

multilevel models for the estimation of the propensity score and matching 

methods. In section 6.3 we address the complication due to the potential 

violation of the SUTVA in a multilevel setting. 
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6.1 Estimating the effect of fertility on poverty using multilevel 

models 
 

In order to study the effect of fertility on poverty keeping into account the 

clusterisation of households in communities we can use a two-level model. The 

outcome and the treatment of interest are defined as in the applications presented 

in the previous chapter; the same sub-sample selection criteria have been 

applied. Therefore, also in this chapter we use the sub-sample of households with 

at least one married female aged [15-40] in the first wave.     

We started by estimating a null model, that is, a model without 

covariates, in order to verify if there is a sufficient between-clusters variability to 

justify the use of a multilevel model. As we can see from table 6.1, the second 

level variability is highly significant in the null model. This is suggested by the 

Likelihood Ratio (LR) test on the random intercept of which we report the p-

value37. The other models in table 6.1 include covariates at both levels of the 

structure. We are mainly interested in the effect of a specific first level dummy 

covariate: D, representing, as in chapter 5, the occurrence of at least one 

childbearing event between the two waves in the household; the other covariates 

play the role of control variables. These covariates are the same as those used in 

the regressions and matching procedures presented in the chapter 5.  

In table 6.1 we resume results of four models. As far as the random part is 

concerned, models 1 and 2 include only a random intercept, while models 3 and 

4 specify also a random slope for D. This is interesting since it allows us to study 

the community heterogeneity in the treatment effect which is one of the point of 

interest in causal inference in a multilevel setting, as said in section 3.2. From the 

LR tests we can see that the variance of the random intercepts are always highly 

significant, while those of random slopes in models 3 and 4 are not.  

 

 

                                                   
37 We halved the p-values as suggested by Snijders and Bosker (1999) to keep into account the 
problem we discussed in section 3.3 (pag. 93). 
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Table 6.1 – Multilevel linear models for the estimation of the fertility effect 

on poverty 

The characteristics of the models 
Models D D  Covariates RI RS 

Null no no no yes no 
1 yes no yes yes no 
2 yes yes yes yes no 
3 yes no yes yes yes 
4 yes yes yes yes yes 

 
 
The estimates 

Fixed effects Random effects 
(Standard deviations ) Models 

D D RI RS

LR tests 
(p-values) BIC 

Null no no 489 
(45) no RI: 0.0000 25925 

1 -388 
(73) no 337

(33) no RI: 0.0000 24287 

2 -374 
(74) 

-366
  (302)

363
(41) no RI: 0.0000 24259 

3 -385 
(70) no 303

(34)
135 

(101)
RI: 0.0000 
RS:0.5231 24295 

4 -377 
(68) 

-375
(304)

358
(35)

141 
(97)

RI: 0.0000 
RS:0.6000 24288 

Notes: RI = random intercept; RS = random slope; BIC = Bayesian information criterion. 
Standard errors are in parentheses. 

 

 

Models 2 and 4 differ from models 1 and 3 because they include an additional 

covariate, D , which represents the cluster mean of D. As mentioned in section 

3.3, in this way we can distinguish the within and the between effects of the 

treatment of interest.  

Form table 6.1, we see that in this application the between and within 

effects are not significantly different. In fact, the estimates of the coefficient of D 

obtained using models 1 and 3, that mixes up the between and within effects, are 

very similar to those of models 2 and 4, which are pure between effects. We can 

see this more directly from the coefficient of D in models 2 and 4, which 

represent the difference in the between and within effects. This coefficient is not 

significantly different from zero.  
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Globally, from the estimates presented in table 6.1 we see that the 

negative, strong and significant effect of childbearing events on poverty that we 

found in the previous chapter is confirmed. As expected, the estimated effect is 

in line to the one obtained from the single level regressions. As in the analysis 

presented in chapter 4, the between-community variability in the consumption 

growth pattern is highly significant even after controlling for first and second 

level covariates. However, we found no evidence of a significant between-

community variability in the treatment effect as well as of a difference in the 

within and between effects. 

As noted in chapter 3, when we are interested in the study of causal 

effects in a multilevel setting, multilevel models can be very useful but, because 

of some pitfalls we have explained, we prefer to combine or substitute them with 

matching methods. One of these drawbacks is that multilevel models impose a 

functional form relating the outcome and the treatment. Moreover, in this section 

we have not posed two important issues we analyse in the following sections: the 

multilevel nature of the selection process and the potential violation of the 

SUTVA.  

 

 

6.2 Propensity score matching based causal inference: 
comparing different strategies 

 

In this section we explore the propensity score matching method for the 

estimation of causal effects in a multilevel setting. As extensively said in section 

3.5, when we use a PSM approach in a multilevel framework we have to 

explicitly consider the multilevel nature of the selection process. In this section 

we compare two strategies. The first consist to specify a multilevel model for the 

propensity score and to implement the matching on the estimated empirical 

bayes probabilities resulting from this model. The second consists in two stages: 

first we estimate a multilevel model for the probability of receiving the treatment 

and obtain the empirical bayes predictions of the random effects included in this 
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model; then, we include these predictions as additional covariates in the 

estimation of a single level propensity score model. 

 In the table 6.2 we describe the propensity score models we compare in 

the following. Models 1 and 2 are simple single level logit models. The 

difference between them is that the first model includes both household and 

community level covariates, while the second includes only covariates at the 

household level. The reason for considering also models without community 

covariates will be explained in the sequel.  

The second group of models (3-8) collects two-level logit models. They 

differ for the inclusion or exclusion of community covariates and for the 

specification of the random part; some of them include one random slope for 

very important covariates. The last group of models (9-12) includes single level 

logit models specified in accord to the two-stage procedure outlined before and 

discussed in chapter 3. They are basically single level logit models including 

some particular additional covariates: the empirical bayes predictions of random 

effects obtained after the estimation of the two-level logit models indicated in 

parentheses.  We are not primarily interested in the goodness of fit (reported in 

the table 6.3)38 of these models, but in the balancing they allow us to achieve. 

Likewise in chapter 5, as a measure of the balancing of the covariates we adopt 

the absolute standardised bias (ASB). As we can see from tables 6.3 and 6.4, a 

better fit, represented here by a lower BIC, not always correspond to a better 

balance, represented here by a lower ASB. We want to stress three types of 

comparisons among these models: 

 

1) Comparison among single level and two-level propensity score 

models; 

2) Comparison among the second and the third group of models; 

3) Comparison among models ignoring community level information. 

                                                   
38 In fact, the main purpose of the propensity score is not to predict participation in the treatment 
but balance all observed covariates in the matching procedure (Augurzky and Schmidt, 2001). 
Therefore, we are not interested in the goodness of fit of model specification but in balancing, 
that we assess through the ASB. Moreover, “perfect” prediction should be avoided, since if 
P(D=1|X)=1 or P(D=1|X)=0 for some value of X, we cannot match on these values of X as they 
are out of the common support. 

187 
 



 
 

Table 6.2 – Description of the propensity score specifications we compare 

PS Description 
I - Single level logit models 

1 With X and C  
2  With X, without C 

  
II - Two-level logit models 

3  With X and C; RI  
4  With X, without C; RI  
5  With X and C; RI; RS  for kinh (principal ethnic group)  
6  With X and C; RI; RS for farm (binary indicator for farmer households) 
7  With X and C; RI; RS for edu (index for educational level)  
8  With X, without C; RI; RS for edu  

 
III - Single level logit models with predicted random effects included as 
additional covariates 

9  With X,C and predictions of RI (obtained from model 3)  
10  With X,C and predictions of RI  and RS for edu (obtained from model 7)  
11  With X, without C and with predictions of RI (obtained from model 4)  
12  With X, without C and with predictions of RI and RS for edu (obtained from 

model 8)  
Notes: PS = propensity score specification; X = household level covariates; C = community level 
covariates; RI = random intercept; RS = random slope 
 

 

The first comparison is among single-level versus two-level logit specification 

for the propensity score model. The expected benefit from the second group of 

models (3-8) with respect to the first one (1-2) is that a multilevel specification 

allow us to keep into account the unobserved community characteristics.  

In the previous chapter we have seen that the single level specification we 

have adopted for the estimation of the propensity score ensured us a satisfactory 

balance in the first as well as second level covariates. This is confirmed in the 

table 6.4 where we see that the mean and median ASB for the first and second 

level covariates included in model 1 are quite low. Let compare model 1 versus 

models 3, 5, 6 and 7. As we can see from the table 6.4, multilevel propensity 

score models show worse balance in the first level covariates (X) with respect to 

the single level model 1. On the contrary, the balancing for the second level 

covariates is often better with the two-level models.  
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Table 6.3 – Some propensity score specifications: significance of random 
effects and goodness of fit (standard errors are in parentheses). 

Random effects  
(Standard deviations ) Models 

Random Intercept Random Slope

LR tests 
(p-values) BIC 

1 no no  1851 
2 no no  1810 
3 0.290 

(0.120) 
no RI:  0.0040 1830 

4 0.320 
(0.110) 

no RI:  0.0036 1813 

5 0.290 
(0.120) 

0.001 
(0.360) 

RI:  0.0037 
RS: 0.0004 

1837 

6 0.210 
(0.200) 

0.300 
(0.240) 

RI:  0.0030 
RS: 0.0004 

1837 

7 0.160 
(0.320) 

0.004 
(0.160) 

RI:  0.0028 
RS: 0.0005 

1839 

8 0.160 
(0.360) 

0.050 
(0.003) 

RI:  0.0015 
RS: 0.0600 

1821 

 
 
Table 6.4 – Comparison among different propensity score specifications: 
balancing and estimates. 

Absolute Standardised Bias after matching 
First level 
covariates 

Second level 
covariates 

Predicted 
random effects 

Estimates Propensity 
score 

Mean Median Mean Median RI RS ATE ATT 
I - Single level logit models  

1 3.7 2.9 4.5 4.7 no no -411 -356 
2 5.4 4.4 10.4 9.2 no no -421  -351 

  
II - Two-level logit models 

3 6.0 4.8 3.6 2.8 6.9 no -492 -431 
4 7.0 6.2 3.4 3.2 6.4 no -541 -470  
5 5.5 3.5 1.5 1.2 6.8 5.9 -434 -384 
6 5.7 3.9 4.2 3.8 8.5 7.6 -464 -514 
7 5.7 5.7 4.4 4.7 9.8 8.2 -450 -375 
8 6.3 5.3 6.8 3.8 7.5 8.7 -447 -407 

 
III - Single level logit models with predicted random effects included as 
additional covariates 

9 3.7 3.1 3.9 4.1 4.1 no -476 -401 
      10 3.1 2.9 3.7 4.0 3.6 4.0 -482 -429 
      11 3.6 2.7 3.7 3.4 2.0 no -467 -418 
      12 4.2 3.2 3.5 3.1 3.7 3.9 -454 -423 
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This comparison shows that using a multilevel model for the propensity score 

could represent a danger if we do not take carefully into account what happens to 

the balancing of observed covariates. We tried also other specifications, 

including some interactions, higher order terms, first level centred covariates, 

and so on. The results obtained are similar to the ones showed here.  

At this point we consider our proposed two-stage procedure (the third 

group of models in the table 6.2). As we can see from table 6.4, this strategy 

allow us to maintain a good balancing, on average, in both first and second level 

covariates. Moreover, in this way we balance also the predicted random effects 

well, while with models of the second group this is not the case. Since they 

capture unobserved community characteristics we can think that this strategy is 

the one to be preferred, because it allows to balance observed covariates and 

potentially important unobserved community variables. This seems to be 

confirmed by the last two models (11 and 12). These models, as well as model 2, 

4 and 8 ignore the community level information. The reason to consider these 

models is that we want to see what would be the balancing of the community 

characteristics using the different propensity score specifications, in case no 

community level variables were observed. We get an interesting result. Models 

11 and 12 allow to achieve a reasonably good balancing of community variables, 

even if these are not included in the matching set. Also results from models 4 

and 8 are good. On the contrary, a single level propensity score model that 

includes only first level covariates (model 2) does not guaranty an acceptable 

balance of second level covariates.  

Summarizing, we can say that the inclusion of predicted random effects 

in the single model for the propensity score, in our application, actually 

“substitute”, in a way, the inclusion of second level covariates. A similar 

reasoning hold for multilevel specifications of the propensity score with respect 

to a single level one. This result is potentially very important for those situations, 

not uncommon in social studies, where data available contains no, or 

insufficient, information at the cluster level. Concluding, model 10 seems to 

“dominate” all the others and is chosen as the “best” specification for the 

propensity score.  
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However, these results cannot be directly applied to other situations. As 

we already said in chapter 3, we reserve a formal investigation on the 

performances of the different strategies proposed to future work. It must be noted 

that, in general, the specification of the propensity score is an “art” that require a 

strong degree of adjustment to the situation at hand. For example, we noted that 

in order to achieve a good balancing in all observed covariates it is often needed 

to include some interactions and higher order terms. In the model specification 

we are essentially driven by the balancing we are able to obtain. In other words, 

we do not know a priori which interactions and higher order terms are to be 

included. In a similar way, it can be argued that, a priori, we cannot know if a 

single level or a multilevel specification for the propensity score has to be 

preferred in a given application. However, we think that a simulation study could 

reveal under which conditions a multilevel specification is expected to give 

better balancing. 

As the estimates are concerned, we can see from table 6.4, that ATT and 

the ATE obtained through a PSM procedure are not noticeably sensitive to the 

specification of the propensity score. Estimates based on the propensity score 10, 

which we choose as a reference, substantially confirm our previous results. The 

estimates, nevertheless, are a bit higher, in absolute value, than those obtained 

using a single-level propensity score model. This result is qualitatively in line 

with those obtained by the other models of the third and second group, indicating 

that controlling for potentially unobserved community level confounders, we get 

a slightly stronger estimated effect. 

In this respect, it is interesting to reconsider the sensitivity analysis to 

potential unobserved confounders we presented in section 5.3.4. This analysis 

has showed that our estimates are quite robust, but for several combinations of 

the association between the unobserved simulated confounder, the treatment 

indicator and the outcome, the estimated ATT is stronger than the baseline. 

Results obtained in the present section seem to agree with this trend, meaning 

that if some unobserved community confounders was in action this should likely 

imply a stronger estimated causal effect, leaving unchanged, qualitatively, 

previous results. Our proposed two-stage procedure, as we anticipated in chapter 
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3, can be seen as a variant of the sensitivity analysis we implemented in chapter 

5. Here, we are not simulating an unobserved confounder, but we are predicting 

random effects, which are expected to represent unobserved cluster level 

characteristics. Likewise we did in the sensitivity analysis for the simulated 

confounder, also the prediction of the random effects are included in the 

propensity score as additional covariates. We have seen that the estimates we 

get, by matching on the resulting propensity score, are not dramatically different 

from the reference (that is, those obtained using a single level propensity score). 

Therefore, we can conclude that the PSM procedure presented in section 5.2 

seems to be not sensitive to departures from UNC due to unobserved cluster 

level confounders. This is in line with the results of the sensitivity analysis 

carried on in section 5.3.4. 

  

 

6.3 Estimation results under a weaker version of the SUTVA 
 

In this section we compare the estimates obtained under the standard version of 

the SUTVA used in all the previous analyses with those we obtain under the 

weaker version outlined in the section 3.5. We briefly remember that this weaker 

version of SUTVA assumes no interference among households living in different 

communities. On the other hand, to keep into account potential interference 

among households belonging to the same community we introduce the binary 

indicator, L, taking value 1 for households living in communities with a “high” 

level of childbearing events (treated) and 0 otherwise. To go ahead in the 

analysis, we need to empirically distinguish between “high” and “low” level of 

treated community. We used the following criterion. We calculated the 

proportion of treated households in each community. Then, we assigned the 

value 1 (high) to communities whose estimated proportion is significantly (at 5% 

level) higher than the national average.  

 As declared in section 3.5, as soon as we weaken the SUTVA it is natural 

to consider more causal estimands of potential interest then under the standard 

version of this assumption. They refer to the effects of two treatments: D, 
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operating at the household level, and L, operating at community level. We are 

mainly interested in the treatment D in this application. The causal estimands 

referred to D can be defined as follows in our context: 

 
DATE : is the average causal effect of childbearing events calculated on   

the whole population, 

 
D
LATE 1 | = : is the average causal effect of childbearing events calculated 

only for households living in community with a “high” level of treated, 

 
D
LATE 0 | = : is the average causal effect of childbearing events calculated 

only for households living in community with a “low” level of treated. 

 

Obviously, we can consider also the ATT versions of these parameters, 

that is, the corresponding parameters calculated only on the sub-group of treated 

households. We are interested in the comparison between the effect of 

childbearing in community with high versus low fertility, as well as in the 

comparison between the estimated causal effect under the standard and the 

weaker version of the SUTVA.  

In order to estimate these parameters, we used a PSM method. We 

employed model 10 of table 6.2 as the specification of the propensity score. In 

order to calculate D
LATE 1 | =  and D

LATE 0 | = we separately estimated the propensity 

score models, respectively, for households residing in communities with a “high” 

and a “low” level of treated. The matching method employed was always the 

nearest neighbour matching. 

As we see from table 6.5, the estimated ATE and ATT for treatment D 

under the two versions of the SUTVA are quite similar. This confirms that, 

globally, the within and between effects are not significantly different, as already 

indicated from estimates of multilevel models presented in table 6.1. 
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Table 6.5 – Estimated causal effects of childbearing events under two 
versions of the SUTVA 

ATE ATT 
Estimates obtained under the standard version of the SUTVA 

DATE  -482  (92) DATT  -429  (99) 
 
Estimates obtained under the weaker version of the SUTVA 

D
LATE 1 | =  -420 (146) D

LATT 1 | =  -566 (176) 
D
LATE 0 | =  -447 (113) D

LATT 0 | =  -313 (107) 
        DATE  -4400 (90)       DATT  -425 (100) 
Notes: The estimates are all obtained using a PSM procedure following the specification used in 
model 10 (see table 6.2). The matching method employed is the nearest neighbour. 
 

 

The average causal effect of childbearing on poverty in communities with a 

“high” level of childbearing events is not radically different from the parameter 

calculated in the remaining communities. On the contrary, if we condition on 

households that had at least a child between the two waves the situation is 

different. In fact, the D
LATT 1 | = , the average causal effect of fertility on poverty for 

treated households living in high-fertility communities, is higher, in absolute 

value, than D
LATT 0 | = . This result can be due to the competition for and share of 

resources that is in action within communities. More explicitly, the facilities, 

services (e.g. provided by health care or family planning centres), benefits (e.g. 

maternity benefits), which are made available in a community for help 

households with children are subject to economic limits. In communities where 

the number of children is higher these constraints generate competition among 

households. It is likely that in communities with more childbearing events, some 

households cannot gain some benefits, or to obtain some services are forced to 

move to other communities or have to pay private providers. 

This result is very important for policy making. Despite the fact that the 

effect of childbearing is negative for both types of communities, its impact is 

stronger in high-fertility communities. This suggests that policy interventions are 

more pressing in that type of communities. For example, policy maker can be 
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encouraged by these results to improve those facilities and increase benefits in 

communities where the number of childbearing events is high. 

As far as the effect of the variable L per se, we estimated the LATE  to be 

equal to -101 with a standard error of 16239. Therefore, it seems that living in a 

community with a “high” level of fertility, here proxied by the childbearing 

events occurred between the two waves, or in a community with a “low” level of 

fertility is not different for the households’ living standard. This, obviously, after 

controlled for compositional and contextual differences existing among 

communities, captured by the control variables. Therefore, the negative 

association we often find between the fertility rate in the place of residence and 

living standards is likely to be due to the association among the level of fertility 

in a geographical area and other socio-economic characteristics (economic 

development, infrastructures,  culture, and so on). In other words, we found that 

at the individual level (household level, in our case) fertility has a negative 

causal effect on wellbeing, while at the aggregate level (community) there is a 

mere (spurious) association. 

 

 

6.4 Concluding remarks 
 

In this section we qualitatively confirm the main result obtained in chapter 5. 

The effect of childbearing events on poverty is confirmed to be negative, strong 

and significant also keeping explicitly into account the multilevel dimension of 

the problem.  

 Using multilevel linear models we found, likewise in chapter 4, that the 

households’ consumption growth shows a high degree of variation between 

communities confirming the importance of the multilevel dimension. On the 

contrary, there is no evidence for a significative between-communities variation 

in the childbearing effect. However, when we use a weaker version of the 

SUTVA allowing interference among households living in the same community, 

                                                   
39  We calculated also the conditional versions of this parameter, as well as the ATT version. 
Results confirm the non-significance of the effect of the variable L.   
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we found that the average causal effect is stronger in high-fertility communities 

then in low-fertility ones. On the other hand, we found no significative effect of 

living in a high-fertility community versus a low-level one. 

 From a methodological point of view, we found that our suggested 

strategy for the specification of the propensity score model, consisting in the 

inclusion of predicted random effects as additional covariates in a single level 

logit model, is the method to be preferred at least in this application. In fact, this 

strategy allowed to achieve a good balance in both first and second level 

observed covariates, as well as, in the predicted random effect capturing 

potentially important unobserved community level confounders. 

 An important result, useful in those situations where no cluster-level 

information is available, is that our strategy allowed to balance community-level 

variables even when these were not included in the matching set for the 

estimation of the propensity score model. This indicates that the predicted 

random effects “substitute” the cluster-level variables and, hence, achieving a 

good balance for the former ensures a good balance also for the latter. However, 

in future work we are planning to use simulation analysis to understand the 

conditions under which the results we found in our application can be 

generalised. 
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Final remarks 

 

 

 
In this work we re-analyzed the relationship between fertility and poverty, which 

is a long contested issue among demographers and economists. We tried to 

contribute to this literature by using a proper causal inference approach and 

adequate panel data concerning Vietnam.  

 We started the work by discussing the determinants of poverty and 

fertility, as they emerge in the theoretical and empirical literature on the topic. 

This discussion was very useful in the stage of the choice of the control variables 

to include in our analyses. From the literature, as well as from our analyses, the 

role of education emerges, prominently. We found, in accord to the literature, 

that households with educated members show, ceteris paribus, a higher fertility 

and a lower consumption expenditure. 

 In chapter 1, we motivated the two key perspectives we used in this 

research: causal and multilevel. A causal approach is needed in order to give 

sound policy advice. A multilevel approach is, on the other hand, adequate since 

we see as crucial to explicitly take into account that the characteristics of the 

place where households live sensibly influence both studied phenomena. 

Therefore, there is a two-level data structure – households clustered in 

communities – which has important statistical and substantive implications.  

We argued that the data we use, coming from the Vietnamese Living 

Standard Measurement Survey (VLSMS), are sufficiently reach to allow us to 

take into account both perspectives. In fact, the VLSMS, which is a panel 

consisting of two waves, includes rich information on variables that are 

important determinants for the households’ standard of living and fertility 

behaviour. For example, it collects data on education, employment, fertility and 

marital histories, together with detailed information on household income and 
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consumption expenditure. Moreover, a very interesting feature of the VLSMS is 

that it also provides, for the rural area, detailed community information from a 

separate community questionnaire. This allowed to include into the analyses 

important contextual information.  

The longitudinal dimension of the data available was crucially important 

to allow us to draw robust causal inference about the effect of interest. In fact, as 

we discussed, by using data on two time points we properly implemented a pre-

post treatment study which was vital for our study of causal inference. 

In chapter 2, we presented the potential outcomes framework, which is 

the approach to causal inference we adopt in this work. We reviewed several 

methods for causal inference, stressing their differences with respect to the 

underlying assumptions and data requirement. In particular, we contrasted 

methods relying on the Unconfoundedness Assumption (UNC), such as 

regressions and propensity score matching, with methods allowing for selection 

on unobservables, such as the Instrumental Variable (IV) estimators. We stressed 

the fact that these methods are not equivalent in what they estimate. With 

Regressions and Propensity Score Matching (PSM) we can identify and estimate 

the Average Treatment Effect (ATE) and the Average Treatment effect on the 

Treated (ATT), while IV methods give the Local Average Treatment Effect 

(LATE), unless we are willing to impose very stringent additional assumptions. 

Since LATE is the average causal effect of the treatment on the sub-group of 

compliers, it is generally different from ATE and ATT. Moreover, different 

instruments identify the effect on different groups of compliers giving different 

estimates of LATE. A problem for policy making is that the compliers are in 

general an unobserved sub-group. However, we argued that IV methods estimate 

relevant policy parameter if the instrument itself is a potential policy variable. 

This review includes, in particular, recent methodology for using instrumental 

variables with covariates avoiding traditional methods, which often rely on 

strong assumptions. We assessed the issues outlined in this chapter with an 

application concerning the estimation of the causal effect of childbearing events 

on consumption expenditures growth, presented in chapter 5. 
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In chapter 3, we presented the general motivations for a multilevel 

research and the basic features of a multilevel linear model. We reviewed, in 

particular, the second level endogeneity problem. Then, we originally re-

analysed the traditional multilevel models in the light of the potential outcomes 

approach, highlighting its pitfalls in the study of causal effects. Importantly, we 

discussed the main issues motivating the need to keep explicitly into account the 

multilevel dimension in a study of causal inference carried in a multilevel 

setting. The literature on this topic is very limited.  

Our first contribution concerned the unitary discussion of some topics, 

which are usually treated separately. Moreover, we proposed a two-stage 

strategy for the specification of the propensity score in order to achieve a good 

balancing in the observed covariates, defined at each level of the hierarchical 

structure, as well as the predictions of random effects, which are entitled to 

capture unobserved higher level effects. At the first stage, we estimate a 

multilevel model for the probability of receiving the treatment. This includes a 

random intercept, as well as some random slopes capturing the between-cluster 

heterogeneity in the influence that some covariates have on the probability of 

being treated. Then, we calculate the empirical bayes predictions of these 

random effects. In the second stage, these predictions are finally included, as 

additional covariates, in a single level model for the propensity score. Finally, we 

discussed the potential violation of the SUTVA in a multilevel setting and a 

weaker version of this assumption, which addresses the interference existing 

among units belonging to the same cluster. 

As the empirical part of the work is concerned, this is included in the last 

three chapters. Chapter 4 included an application of multilevel analysis 

techniques, which is interesting per se. In this analysis, a relevant residual 

between-community variability in poverty exit dynamics was found. This fact 

justified the use of multilevel techniques. Moreover, it allowed us to implement a 

study of communities’ effectiveness, which is a topic common in educational 

research, but absent in poverty analyses. We suggested several use of the 

empirical bayes predictions of the random intercept, included in the model, for 

policy making. For example, we suggested a ranking, and a subsequent 
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categorisation of communities, in a “good” and a “bad” group, which can be 

used, along with a more qualitative analysis, like an intensive case study, to help 

policy maker to understand the contextual determinants of poverty exit and to 

individualize communities requiring more urgent intervention.  

In chapter 5, we explored the use of several methods for the estimation of 

the causal effect of fertility on poverty. Using methods based on the UNC 

assumption, such as multiple linear regression and propensity score matching, 

we found that those households having children between the recorded waves 

have considerably worse outcomes in terms of changes in consumption 

expenditures. The negative impact is, however, highly heterogeneous and varies 

substantially with education, for instance. We then implemented, through an 

extensive sensitivity analysis, an assessment of the potential effects from 

omitting relevant but unobserved variables without actually implementing an 

Instrumental Variable approach. This is a very useful tool, in the sense that valid 

and relevant instruments are often hard to come by. In our application the 

estimates are robust with respect to unobserved omitted variables. We found that 

the estimated effect becomes non-significant only if the association between the 

omitted covariate, selection and the outcome is extremely (and unreasonably) 

large. 

Despite the robustness of the UNC in our application, we implemented 

nevertheless the IV method using two different instruments. The first is a well-

used instrument that relates to couples’ preference for sons. Since the instrument 

is close to being randomised, a simple Wald estimator can be used. The second 

instrument relates to the availability of contraceptives in the community where 

the household resides. This instrument is not randomized and hence requires 

controlling for covariates. We found that the two instruments provide very 

different parameter estimates. The use of Instrumental Variable methods in our 

application illustrates that reasonable instruments can lead to estimates that differ 

from those of methods based on UNC but also differ among them. In fact, 

compliers for one instrument can be very different from compliers to another 

instrument and consequently if the treatment effect is heterogeneous the 

200 
 



 
 

estimated LATE in the two cases are likely to be dissimilar, as well as they are 

expected to be different with respect to the ATE and ATT. 

With the first instrument we estimated a negative impact of fertility on 

poverty with a magnitude not dramatically different from that obtained by 

method based on the UNC. We argued that this could be due to the fact that the 

preference for son is quite a general phenomenon in Vietnam, not involving 

particular kinds of households. The estimated proportion of compliers in this 

case is actually quite high: 20%. The estimate with the second instrument, on the 

contrary, is much higher, in absolute value. The estimated proportion of 

compliers in this case is small: 1%. This small sub-population of households 

reacting to the availability of contraceptives is likely to be highly selected. 

Clearly their opportunity to control fertility through contraceptive practices is 

much reduced, as they are not able to get contraceptives outside the community 

family planning centres.  

Whereas the estimates based on this instrument is very different 

compared to the one based on the sex preference, an advantage is that it does 

have direct policy relevance, simply because the instrument itself is a policy 

variable. The effect on this sub-population is high and importantly, much higher 

than what is estimated for the whole population through the ATE. However, we 

noted that the size of this sub-population is rather small, which is an equally 

important consideration for the policy maker. 

In chapter 6, we re-analysed the causal effect of fertility on poverty, 

treated in the previous chapter, with the goal of keeping into account the 

multilevel dimension of the problem. Altogether, we qualitatively confirmed the 

main result obtained in chapter 5. The effect of childbearing events on poverty is 

found to be negative, strong and significant.  

First, we analysed the effect of fertility on poverty using multilevel 

models. We found, likewise in chapter 4 for poverty exit dynamics, that the 

households’ consumption growth shows a high degree of variability between 

communities, confirming the importance of the multilevel dimension. On the 

contrary, there is no evidence for a significative between-communities variation 

in the childbearing effect. However, when we use a weaker version of the 
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SUTVA, allowing interference among households living in the same community, 

we found that the average causal effect is stronger in high-fertility communities 

then in low-fertility ones. We argued that this result can be due to the 

competition for and share of resources that is in action within communities. 

More explicitly, facilities, services (e.g. provided by health care or family 

planning centres), benefits (e.g. maternity benefits), which are made available in 

a community for help households with children are subject to economic limits. In 

communities where the number of children is higher these constraints generate 

competition among households to get them. It is likely that in communities with 

more childbearing events some households cannot gain some benefits, or to 

obtain some services are forced to move to other communities or have to pay 

private providers. 

This result is very important for policy making. Despite the fact that the 

effect of childbearing is negative for both type of communities, its impact is 

stronger in high-fertility ones. This suggests that policy interventions are more 

pressing in those areas. For example, policy makers can be encouraged by these 

results to improve key facilities and increase benefits in communities where the 

number of childbearing events is high. 

On the other hand, we found no significative effect of living in a high-

fertility community versus a low-level one, per se. This result confirms the idea 

that the negative association, we often find, between fertility rates in the place of 

residence and living standards is spurious, in the sense that it is likely to be due 

to the association among both phenomena at an aggregate level and other socio-

economic characteristics (economic development, infrastructures, culture, and so 

on).  

From a methodological point of view, we found that our suggested two-

stage strategy for the specification of the propensity score model is the method to 

be preferred, at least in this application. In fact, this strategy allowed to achieve a 

good balance in both first and second level observed covariates, as well as, in the 

predicted random effect capturing potentially important unobserved community 

level confounders. 

202 
 



 
 

An important result, very useful for those situations where no cluster-

level information is available, is that our strategy allowed to balance community-

level variables even when these were not included in the matching set in the 

estimation of the propensity score model. This indicates that the predicted 

random effects “substitute”, in a sense, the cluster-level variables and, hence, 

achieving a good balance for the former ensures a good balance also for the 

latter. 
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